Technische Universität Braunschweig
  • Study & Teaching
    • Beginning your Studies
      • Prospective Students
      • Degree Programmes
      • Application
      • Fit4TU
    • During your Studies
      • Freshmen-Hub
      • Term Dates
      • Information for Freshman
      • Practical Information
      • Additional Qualifications
      • Financing and Costs
      • Special Circumstances
      • Campus life
    • At the End of your Studies
      • Discontinuation and Credentials Certification
      • After graduation
      • Alumni
    • For Teaching Staff
      • Strategy, Offers and Information
      • Learning Management System Stud.IP
      • Team Teaching and Media Education
    • Contact
      • Student Advice Centre
      • Academic Advice Service
      • Admissions Office
  • Research
    • Research Profile
      • Core Research Areas
      • Clusters of Excellence
      • Research Projects
      • Research Centres
    • Early Stage Researchers
      • Promotion of early career scientists
      • PhD-Students
      • Postdocs
      • Junior research group leaders
      • Junior Professorship and Tenure-Track
      • Habilitation
      • Service Offers for Scientists
    • Research Data & Transparency
      • Transparency in Research
      • Research Data
      • Open Access Strategy
      • Digital Research Announcement
    • Research Funding
      • Research funding
    • Contact
      • Research Services
      • Academy for Graduates
  • International
    • International Students
      • Why Braunschweig?
      • Degree seeking students
      • Exchange Studies
      • Doctorate (PhD)
      • Refugee Students
      • Welcome Programme
      • TU Braunschweig Summer School
    • Scientists
      • Mobile Researchers at the TU Braunschweig
      • Research Services and European Office
    • Language and intercultural competence training
      • Learning German
      • Intercultural Communication
    • International Profile
      • Internationalisation
      • International Cooperation
    • International House
      • Information for first semester students
      • Contact
      • News and Events
      • Advisory Services
      • Location
      • About us
  • TU Braunschweig
    • Our Profile
      • Aims & Values
      • Regulations and Guidelines
      • Alliances & Partners
      • Facts & Figures
      • Our History
    • Career
      • Working at TU Braunschweig
      • Vacancies
    • Economy & Business
      • Knowledge and Technology Transfer
      • Entrepreneurship
    • General Public
      • Access to the University Library
    • Media Services
      • Communications and Press Service
      • Communications and Press Service
      • Film and photo permits
      • Advices for scientists
      • Topics and stories
    • Contact
      • General Contact
      • Getting here
  • Organisation
    • Presidency & Administration
      • Presidency
      • Designated Offices
      • Administration
      • Committees
    • Faculties
      • Carl-Friedrich-Gauß-Fakultät
      • Faculty of Life Sciences
      • Architecture, Civil Engineering and Environmental Sciences
      • Faculty of Mechanical Engineering
      • Fakultät für Elektrotechnik, Informationstechnik, Physik
      • Faculty of Humanities and Studies in Education
    • Institutes
      • Institutes from A to Z
    • Facilities
      • University Library
      • Gauß-IT-Zentrum
      • International House
      • Sports Centre
      • Facilities from A to Z
    • Equal Opportunity Office
      • Equal Opportunity Office
      • Family
      • Diversity for Students
  • Search
  • Quicklinks
    • People Search
    • Webmail
    • Campus map
    • CloudStorage
    • Messenger
    • Cafeteria
    • Courses
    • Stud.IP
    • Library Catalogue
    • IT Self-Service
    • Information Portal (employees)
    • Link Collection
    • DE
    • EN
    • IBR Twitter
    • IBR YouTube
    • Facebook
    • Twitter
    • Instagram
    • YouTube
    • LinkedIn
Menu
  • Technische Universität Braunschweig
  • Organisation
  • Faculties
  • Carl-Friedrich-Gauß-Fakultät
  • Institutes
  • Institute of Operating Systems and Computer Networks
Logo IBR
IBR Login
  • Institute of Operating Systems and Computer Networks
    • News
    • About us
      • Whole Team
      • Directions
      • Floor Plan
      • Projects
      • Publications
      • Software
      • News Archive
    • Connected and Mobile Systems
      • Team
      • Courses
      • Theses
      • Projects
      • Publications
      • Software
      • Datasets
    • Distributed Systems
      • Team
      • Courses
      • Theses
      • Projects
      • Publications
      • Software
    • Algorithms
      • Team
      • Courses
      • Theses
      • Projects
      • Publications
    • Microprocessor Lab
    • Education
      • Summer 2022
      • Winter 2021/2022
      • Theses
    • Services
      • Library
      • Mailinglists
      • Webmail
      • Knowledge Base
      • Wiki
      • Account Management
    • Spin-Offs
      • Docoloc
      • AIPARK
      • Confidential Technologies
    • Research Cooperations
      • TUBS.digital

Swarm Robots

A swarm of many simple robots that have only local perception can in some scenarios be superior to a much more powerful but single robot. Inspired by nature, robot swarms can be robust, flexible, and scalable. More precise, they can tolerate the loss of individuals, quickly adapt to changes, and work on arbitrary sizes.

Steiner Swarm

Consider a swarm of robots that needs to remain connected. There is no central control and no knowledge of the overall environment. This environment is hostile: The swarm is being pulled apart by external forces, stretching it into a number of different directions, so it is in danger of breaking up. Individual robots are weak, with limited sensing, limited communication, and limited connectivity; even worse, each robot’s expected lifetime is limited by random, permanent failures, which may destroy connectedness and functioning of the swarm as a whole. How can we achieve coordinated dynamic swarm behavior without centralized coordination? How can we employ each robot as much as possible, without depending on it if it fails? How can we balance overall flexibility and robustness to deal with the hostile environment?

We propose a set of local continuous algorithms that together produce a generalization of a Euclidean Steiner tree. At any stage, the resulting overall shape achieves a good compromise between

  • local thickness
  • global connectivity
  • flexibility to further continuous motion of the terminals

figure1.png
A swarm connecting 5 moving terminals

We are building upon the flocking algorithm of Olfati-Saber, the boundary detection of McLurkin and Demaine, and especially the boundary tension of Lee and McLurkin (which itself builds upon the previous two). The boundary tension is also the origin of the Steiner tree shape of the swarm.

We added two main components

  • A leader force which gives the leader robots the power to stretch the swarm
  • A stability improvement which tries to keep the swarm tight and regular distributed
For evaluation, a new Swarm Robot Simulator has been developed which puts a focus on simplicity and behavior evaluation using behavior visualizations.

Robot Sorting

Consider a large company of n robots after deployment. They are scattered across a geometric region. While the swarm is still connected in terms of communication, it lacks central control; and while each of the robots carries a unique ID, none of them has information about the actual range of labels. How can we get the group into an organized arrange- ment: an equally spaced array between the positions of the robots with minimum and maximum label? Not only does this demand dealing with the possibly complicated geometric arrangement in a distributed fashion; it also involves sorting them by label, which already requires n log n in a centralized setting. Furthermore, what are the achievable time until completion, required communication, and distance traveled?

We describe a distributed method to accomplish these goals, without using central control, while also keeping time, travel distance and communication cost at a minimum. We proceed in a number of stages (leader election, initial path construction, subtree contraction, geometric straightening, and distributed sorting), none of which requires a central authority, but still accomplishes best possible parallelization. The overall arraying is performed in O(n) time, O(n^2) individual messages, and O(nD) travel distance. Implementation of the sorting and navigation use communication messages of fixed size, and are a practical solution for large populations of low-cost robots.


last changed 2015-07-20, 13:29 by Dr. Dominik Krupke

For All Visitors

Vacancies of TU Braunschweig
Career Service' Job Exchange 
Merchandising

For Students

Term Dates
Courses
Degree Programmes
Information for Freshman
TUCard

Internal Tools

Glossary (GER-EN)
Change your Personal Data

Contact

Technische Universität Braunschweig
Universitätsplatz 2
38106 Braunschweig

P. O. Box: 38092 Braunschweig
GERMANY

Phone: +49 (0) 531 391-0

Getting here

© Technische Universität Braunschweig
ImprintPrivacyAccessibility