Technische Universität Braunschweig
  • Studium & Lehre
    • Vor dem Studium
      • Informationen für Studieninteressierte
      • Studiengänge von A-Z
      • Bewerbung
      • Fit4TU - Self-Assessment
      • Beratungsangebote für Studieninteressierte
      • Warum Braunschweig?
    • Im Studium
      • Erstsemester-Hub
      • Semestertermine
      • Lehrveranstaltungen
      • Studien-ABC
      • Studienorganisation
      • Beratungsnavi
      • Zusatzqualifikationen
      • Finanzierung und Kosten
      • Besondere Studienbedingungen
      • Gesundheit & Wohlbefinden
      • Campusleben
    • Nach dem Studium
      • Exmatrikulation und Vorlegalisation
      • Nach dem Abschluss
      • Alumni*ae
    • Strategien und Qualitätsmanagement
      • Strategiepapiere für Studium und Lehre
      • Studienqualitätsmittel
      • Studiengangsentwicklung
      • Qualitätsmanagement
      • Systemakkreditierung
      • Rechtliche Grundlagen
      • TU Lehrpreis
    • Für Lehrende
      • Informationen für Lehrende
      • Konzepte
      • Lernmanagementsystem Stud.IP
    • Kontakt
      • Studienservice-Center
      • Sag's uns - in Studium und Lehre
      • Zentrale Studienberatung
      • Immatrikulationsamt
      • Abteilung 16 - Studium und Lehre
      • Career Service
      • Projekthaus
  • Forschung
    • Forschungsprofil
      • Forschungsschwerpunkte
      • Exzellenzcluster der TU Braunschweig
      • Forschungsprojekte
      • Forschungszentren
      • Forschungsprofile der Professuren
    • Frühe Karrierephase
      • Förderung in den frühen Phasen der wissenschaftlichen Karriere
      • Promotion
      • Postdocs
      • Nachwuchsgruppenleitung
      • Junior Professur und Tenure-Track
      • Habilitation
      • Service-Angebote für Wissenschaftler*innen
    • Forschungsdaten & Transparenz
      • Transparenz in der Forschung
      • Forschungsdaten
      • Open Access Strategie
      • Digitale Forschungsanzeige
    • Forschungsförderung
      • Netzwerk Forschungsförderung
      • Datenbanken und Stiftungen
    • Kontakt
      • Forschungsservice
      • Graduiertenakademie
  • International
    • Internationale Studierende
      • Warum Braunschweig?
      • Studium mit Abschluss
      • Austauschstudium
      • TU Braunschweig Summer School
      • Geflüchtete
      • International Student Support
    • Wege ins Ausland
      • Studium im Ausland
      • Praktikum im Ausland
      • Lehren und Forschen im Ausland
      • Arbeiten im Ausland
    • Internationale Forschende
      • Welcome Support
      • Promotionsstudium
      • Service für gastgebende Einrichtungen
    • Sprachen und interkulturelle Kompetenzvermittlung
      • Deutsch lernen
      • Fremdsprachen lernen
      • Interkulturelle Kompetenzvermittlung
    • Internationales Profil
      • Internationalisierung
      • Internationale Kooperationen
      • Strategische Partnerschaften
      • Internationale Netzwerke
    • International House
      • Wir über uns
      • Kontakt & Sprechstunden
      • Aktuelles und Termine
      • International Days
      • 5. Studentische Konferenz: Internationalisierung der Hochschulen
      • Newsletter, Podcast & Videos
      • Stellenausschreibungen
  • Die TU Braunschweig
    • Unser Profil
      • Ziele & Werte
      • Ordnungen und Leitlinien
      • Allianzen & Partner
      • Hochschulentwicklung 2030
      • Stiftungsuniversität
      • Internationale Strategie
      • Fakten & Zahlen
      • Unsere Geschichte
    • Karriere
      • Arbeiten an der TU
      • Stellenmarkt
      • Berufsausbildung an der TU
    • Wirtschaft & Unternehmen
      • Unternehmensgründung
      • Freunde & Förderer
    • Öffentlichkeit
      • Veranstaltungskalender
      • Check-in für Schüler*innen
      • Hochschulinformationstag (HIT)
      • Kinder-Uni
      • Das Studierendenhaus
      • Gasthörer*innen & Senior*innenstudium
      • Nutzung der Universitätsbibliothek
    • Presse & Kommunikation
      • Stabsstelle Presse und Kommunikation
      • Medienservice
      • Ansprechpartner*innen
      • Tipps für Wissenschaftler*innen
      • Themen und Stories
    • Kontakt
      • Allgemeiner Kontakt
      • Anreise
      • Für Hinweisgeber
  • Struktur
    • Leitung & Verwaltung
      • Das Präsidium
      • Stabsstellen
      • Verwaltung
      • Organe, Statusgruppen und Kommissionen
    • Fakultäten
      • Carl-Friedrich-Gauß-Fakultät
      • Fakultät für Lebenswissenschaften
      • Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
      • Fakultät für Maschinenbau
      • Fakultät für Elektrotechnik, Informationstechnik, Physik
      • Fakultät für Geistes- und Erziehungswissenschaften
    • Institute
      • Institute von A-Z
    • Einrichtungen
      • Universitätsbibliothek
      • Gauß-IT-Zentrum
      • Zentrale Personalentwicklung
      • International House
      • Projekthaus
      • Transferservice
      • Hochschulsportzentrum
      • Einrichtungen von A-Z
    • Studierendenschaft
      • Studierendenparlament
      • Fachschaften
      • Studentische Wahlen
    • Lehrer*innenbildung
      • Lehrer*innenfortbildung
      • Forschung
    • Chancengleichheit
      • Gleichstellung
      • Familie
      • Diversität
    • Kontakt
      • Personensuche
  • Suche
  • Schnellzugriff
    • Personensuche
    • Webmail
    • cloud.TU Braunschweig
    • Messenger
    • Mensa
    • TUconnect (Studierendenportal)
    • Lehrveranstaltungen
    • Im Notfall
    • Stud.IP
    • UB Katalog
    • Status GITZ-Dienste
    • Störungsmeldung GB3
    • IT Dienste
    • Informationsportal (Beschäftigte)
    • Beratungsnavi
    • Linksammlung
    • DE
    • EN
    • IBR YouTube
    • Facebook
    • Instagram
    • YouTube
    • LinkedIn
    • Mastodon
Menü
  • Struktur
  • Fakultäten
  • Carl-Friedrich-Gauß-Fakultät
  • Institute
  • Institut für Betriebssysteme und Rechnerverbund
  • Aktuelle Projekte
  • Emergent Radio: Emergent strategies to optimise collaborative transmission schemes
Logo IBR
IBR Login
  • Institut für Betriebssysteme und Rechnerverbund
    • News
    • Wir über uns
      • Gesamtes Team
      • Anreise
      • Raumplan
      • Projekte
      • Veröffentlichungen
      • Software
      • News Archiv
    • Connected and Mobile Systems
      • Team
      • Lehrveranstaltungen
      • Abschlussarbeiten
      • Projekte
      • Veröffentlichungen
      • Software
      • Datensätze
    • Verlässliche Systemsoftware
      • Übersicht
      • Team
      • Lehre
      • Arbeiten & Jobs
      • Forschung
      • Publikationen
    • Algorithmik
      • Team
      • Lehrveranstaltungen
      • Abschlussarbeiten
      • Projekte
      • Veröffentlichungen
    • Mikroprozessorlabor
    • Studium
      • Wintersemester 2025/2026
      • Sommersemester 2025
      • Wintersemester 2024/2025
      • Abschlussarbeiten
    • Service
      • Bibliothek
      • Mailinglisten
      • Webmail
      • Knowledgebase
      • Wiki
      • Account Management
      • Service-Status
    • Spin-Offs
      • Docoloc
      • bliq (formerly AIPARK)
      • Confidential Technologies
    • Forschungsverbünde
      • IST.hub

Emergent Radio: Emergent strategies to optimise collaborative transmission schemes


The project "Emergent Radio: Emergent strategies to optimise collaborative transmission schemes" is part of the DFG - priority programme Organic Computing (DFG SPP 1183).

Topic

Development of methods and sensor nodes that minimise the resource requirements of collaborative transmission strategies in wireless sensor networks

Research area and field of work

Electrical Engineering / Computer Sciences: Cooperative transmission schemes / Distributed systems

Summary

Cooperative and collaborative strategies for transmission in wireless sensor networks enable transmission range restricted nodes to reach distant receivers by superimposing transmission signals. This addresses an important practical problem of wireless sensor networks. In this proposal we extend this strategy by emergent properties: We establish a method to adapt the collaborative emergent optimisation process by a) remembering previous behaviour from similar situations, b) using this information to adapt the current optimisation run by using randomised and feedback-based approaches to determine an optimally pre-synchronised set of nodes for transmission and c) optimising and learning observed optimisation behaviour for the random process, which is better than the behaviour we had in memory so far. Using feedback information is a natural and intuitive approach to adapt to the the scenario's dynamics without the requirement for external intervention. Our approach will therefore show both emergent and self-organisation properties. We will demonstrate the suitability of the method by implementing and deploying a sensor network in an office setting. The demonstration will show how to globally minimise and equalise the energy used for collaborative transmission.

Research Topics

  • Developing an emergent radio for collaborative transmission

    In collaborative transmission, a set of nodes superimposes their transmit signals in order to collaboratively reach a remote receiver. In an iterative process the transmit signals are synchronised at a receiver location by phase-shifting the base band signals of distinct transmitters. This synchronisation process is applied in advance of each single transmission process, since the signals are synchronised only on a specific receiver location.
    However, since we assume sensor nodes to have a fixed location, the optimisation scenario is similar for each optimisation process as the number and location of nodes in the environment as well as environmental noise remain mostly constant. We claim that for this reason the optimisation process is also similar for each single optimisation. In particular, the optimisation speed at a given advance in the optimisation process, the channel quality of an optimum solution and the ratio of the distance to the optimum synchronisation and the current channel quality are expected to evolve similar in a specific environment. In an emergent process the sensor network is therefore able to adapt to the environmental situation in a self-improving manner.
    Adaptation of the network is feasible when the global optimisation approach for collaborative transmission is spatially divided between a receiver and the network as, for example, proposed in \citeown{4019,4020}. In these evolutionary approaches, the receiver is responsible for generating the channel quality feedback (the fitness function) while the nodes are capable of adapting the mutation and crossover operators. Since the optimisation speed and process is likely similar for each single optimisation run in a given scenario, we propose to adapt crossover and mutation parameters to this process. One possible solution we will consider is the consideration of an optimisation table for each node in which fitness values and optimisation speed (distance between successive fitness values) are related to crossover and mutation operators applied.
    Since crossover is more useful at the beginning of the optimisation and a small mutation probability can slow down the optimisation process near the optimum, knowledge about prior and current optimisation process is valuable to reduce the optimisation time in a given scenario.
    A further parameter that might foster emergent operation is the transmission power. Since in an environment with a high density of transmitters, the noise power is highly dependent on the transmission power of nodes, we also expect a potential for emergent behaviour in adapting the transmission power to the environmental setting.
    We propose for the nodes to utilise optimisation tables to update and look up proper optimisation parameters during the optimisation process. Optimisation tables are updated and improved as new or better configurations are observed. Collaborative transmission is then becoming more environmental adaptive and emergent.
    We will elaborate this emergent process in analytic studies and field tests in small or medium sized networks of sensor nodes.

  • How to determine the optimum count of transmitting nodes

    In collaborative transmission approaches, nodes combine their transmit signals in order to increase the transmission range. The possible transmission range is dependent on the count of nodes that collaborate. With more nodes participating, the possible gain in transmission range is higher. However, the expected optimisation time is also increased as the number of transmit signals that are to be synchronised increases. Together with the signal count and the optimisation time, the overall energy consumption in the network increases. It is therefore desired to determine in advance of transmission the node count for collaborative transmission that optimises the overall energy consumption in the network so that the receiver node is still reached by the synchronised superimposed signal. In this manner, collaborative transmission is enhanced by a self-optimisation capability since the overall lifetime and connectivity of the sensor network is improved.
    In [Krohn07] an approach to estimate the number of transmitters in a small network of unsynchronised nodes was detailed. We will improve this approach so that it can also be applied for networks of great size. We will determine the approximation quality of this approach analytically. It was derived in [Krohn07] that the estimation quality can be improved by multiplying the transmit signal with an appropriate pseudo-noise sequence. The project will derive pseudo noise sequences that improve the estimation of the count of transmitting nodes.
    The approach will furthermore be evaluated in simulations (e.g. Matlab) and in medium sized networks of real sensor networks (e.g. uParts [Beigl2006, Decker2005, Beigl2005a])
    A related problem is the determination of the distance between the network and the receiver. While the round trip time, which is implicitly provided by the collaborative transmission approach might a rough estimate on this measure, complex scenarios require more ambiguous approaches. In scenarios in which a receiver is located in between sensor nodes (e.g. when sensors are distributed in a room at walls, floor and ceiling) rather than on one side of the network, The round trip time to several nodes might differ greatly.

  • Determination of a set of pre-synchronised nodes

    While the restriction of the number of nodes participating in collaborative transmission will already decrease the synchronisation time and energy consumption for collaborative transmission, the amount of pre-synchronisation of transmit nodes also impacts these parameters.
    Assume two sufficiently different receiver locations A and B and an arbitrary set of nodes form the sensor network for which the base band frequency of the transmit signals is synchronised at receiver location A. the same set of nodes is then most likely unsynchronised at location of receiver B since the path lengths of the transmit signals differ for this alternative location. There might, however, exist a second, not necessarily disjoint set of nodes that is better pre-synchronised for a receiver at location B.
    The optimisation task is therefore to determine for a given receiver location that set of nodes that constitutes the best pre-synchronisation of transmit signals since this node set minimises the expected optimisation time and consequently the expected energy consumption. This approach is capable of further improving the ability for self-optimisation of a collaborative transmission approach since the optimisation speed, the energy consumption and consequently the lifetime and connectivity of a collaboratively transmitting sensor network is improved by this approach.
    We will study various randomised approaches to this problem that might include an initialisation phase in which the receiver might estimate the channel quality of random sets of nodes. A straightforward approach would, for example, consider iterations in which random sets of nodes collaboratively transmit and thereby provide a sample on their amount of presynchronisation. If this should be possible, we will also try to derive a deterministic approach to determine the optimum share of nodes that participate tin the collaborative transmission process.
    A problem expected with this approach is the ability to sustain network connectivity. Since the energy level of nodes is not considered in the decision on the node set, some nodes might participate disproportionally often.

Contact

NameEMailTelefonRaum
Prof. Dr.-Ing. Michael Beiglmichael[[at]]teco.edu+49 721 608417 00
Dr. Stephan Sigg+49 531 3913249

Publications

References

  • Albert Krohn: Superimposed Radio Signals for Wireless Sensor Networks, Technical University of Braunschweig, Januar 2007 (Krohn07, BibTeX)
  • Michael Beigl, Christian Decker, Albert Krohn, Till Riedel and Tobias Zimmer: uParts: Low cost sensor networks at scale, in Demo at Ubicomp 2005, Tokyo, Japan, September 2005 (Beigl2005a, BibTeX)
  • Michael Beigl, Albert Krohn, Till Riedel, Tobias Zimmer, Christian Decker and Manabu Isomura: The uPart experience: Building a wireless sensor network, IEEE/ACM Conference on Information Processing in Sensor Networks (IPSN), Nashville, Tennessee, Friday, April 21, 2006, Seite 366-373, ACM Press, 2006 (Beigl2006, BibTeX)
  • Mathias, cand.-wirt.-inf. Reisch: Particle Location System, Studienarbeit, 2008 (D.09.3002)
  • Tobias Zimmer, Frank Binder, Michael Beigl, Christian Decker and Albert Krohn: Resource Management for Particle-Computers, in Poster at at Ubicomp 2003, Seattle, USA, Oktober 2003 (Zimmer2003, BibTeX)
  • Christian Decker, Albert Krohn, Michael Beigl and Tobias Zimmer: The Particle Computer System, Proceedings of the ACM/IEEE Fourth International Conference on Information Processing in Sensor Networks (IPSN05), Los Angeles, Seite 443-448, April 2005 (Decker2005, BibTeX)

aktualisiert am 10.08.2009, 12:32 (dynamischer Inhalt) von Dr. Stephan Sigg

Für alle

Stellen der TU Braunschweig
Jobbörse des Career Service
Merchandising
Sponsoring- & Spendenleistungen
Drittmittelgeförderte Forschungsprojekte
Vertrauenspersonen für Hinweisgeber

Für Studierende

Semestertermine
Lehrveranstaltungen
Studiengänge von A-Z
Informationen für Erstsemester
TUCard

Interne Tools

Status GITZ-Dienste
Handbuch für TYPO3 (Intern)
Corporate Design-Toolbox (Intern)
Glossar (DE-EN)
Meine Daten ändern
Hochschulöffentliche Bekanntmachungen

Kontakt

Technische Universität Braunschweig
Universitätsplatz 2
38106 Braunschweig
Postfach: 38092 Braunschweig
Telefon: +49 (0) 531 391-0

Anreise

© Technische Universität Braunschweig
Impressum Datenschutz Barrierefreiheit