
Accurate and Extensible Symbolic Execution of
Binary Code based on Formal ISA Semantics

Sören Tempel, Tobias Brandt, Christoph Lüth, Christian Dietrich, Rolf Drechsler
soeren.tempel@tu-braunschweig.de

Supported by the BMBF within projects Scale4Edge (no. 16ME0127), ECXL (no. 01IW22002), and VE-HEP (no. 16KIS1342).



Motivation

Symbolic Execution: SMT-based software verification and testing technique

Enumerates execution through the SUT by reasoning about branches
Requires custom software simulation to operate on symbolic input values
Goal: Employing symbolic execution for testing low-level binary code

DIVU rd, rs1, rs2

(X ≥ 3 ∧ X ≤ 5)

(Y ≥ 0 ∧ Y ≤ 10)

Challenges:
1. Requires a correct symbolic implementation of ISA instruction semantics
↪→ Given the complexity of modern ISAs, a manual implementation is error-prone
2. The analysis must be easily extendable to support design space exploration

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 1 – 7



Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal, machine-readable language
Advantageous for various use-cases, e.g. code generation, fault injection, …
Newer ISAs (e.g. RISC-V) provide an official formal specification
All instructions are formally described in terms of several language primitives

instrSemantics DIVU = do
(rs1-val, rs2-val, rd) <- decodeAndReadRType

runIfElse (rs2-val `EqInt` 0x00000000)
do $ WriteRegister rd 0xffffffff
do $ WriteRegister rd (rs1-val `UDiv` rs2-val)

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 2 – 7



Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal, machine-readable language
Advantageous for various use-cases, e.g. code generation, fault injection, …
Newer ISAs (e.g. RISC-V) provide an official formal specification
All instructions are formally described in terms of several language primitives

instrSemantics DIVU = do
(rs1-val, rs2-val, rd) <- decodeAndReadRType

runIfElse (rs2-val `EqInt` 0x00000000)
do $ WriteRegister rd 0xffffffff
do $ WriteRegister rd (rs1-val `UDiv` rs2-val)

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 2 – 7



The Case for Executable Formal Specifications

Problem: Formal specifications are not directly executable
Requires maintaining compiler tooling for each use-case
Executable formal specification have emerged recently

↪→ We facilitate our own prior work on LIBRISCV

Approach: Implement symbolic execution as an ISA specification interpreter

Decode ReadRegister RunIfElse UDiv …

SMT Representation SMT Representation SMT Representation

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 3 – 7



The Case for Executable Formal Specifications

Problem: Formal specifications are not directly executable
Requires maintaining compiler tooling for each use-case
Executable formal specification have emerged recently

↪→ We facilitate our own prior work on LIBRISCV

Approach: Implement symbolic execution as an ISA specification interpreter

Decode ReadRegister RunIfElse UDiv …

SMT Representation

SMT Representation SMT Representation

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 3 – 7



The Case for Executable Formal Specifications

Problem: Formal specifications are not directly executable
Requires maintaining compiler tooling for each use-case
Executable formal specification have emerged recently

↪→ We facilitate our own prior work on LIBRISCV

Approach: Implement symbolic execution as an ISA specification interpreter

Decode ReadRegister RunIfElse UDiv …

SMT Representation SMT Representation

SMT Representation

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 3 – 7



The Case for Executable Formal Specifications

Problem: Formal specifications are not directly executable
Requires maintaining compiler tooling for each use-case
Executable formal specification have emerged recently

↪→ We facilitate our own prior work on LIBRISCV

Approach: Implement symbolic execution as an ISA specification interpreter

Decode ReadRegister RunIfElse UDiv …

SMT Representation SMT Representation SMT Representation

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 3 – 7



Contribution: BINSYM

BINSYM: Prototype implementation of the proposed approach for the RISC-V ISA

Maps LIBRISCV language primitives to SMT bit-vector theory with Z3
Provides symbolic implementations of the register file, memory, …

⇒ Supports any custom instr. described in term of existing primitives

Source Code: https://github.com/agra-uni-bremen/binsym
Provides an implementation of Dynamic Symbolic Execution (DSE)
Written in roughly 1000 LOC in Haskell (excluding the formal model)!

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 4 – 7

https://github.com/agra-uni-bremen/binsym


Empirical Evaluation

Empirical comparison with prior work on symbolic execution of RV32 binaries
Research questions:

RQ1 Do we discover the same amount of paths as prior work?
RQ2 Does our work achieve competitive SE performance?

Benchmark angr BINSEC SYMEX-VP BINSYM
base64-encode 125 6250 6250 6250
bubble-sort 720 720 720 720
clif-parser 11424 11424 11424 11424
insertion-sort 5040 5040 5040 5040
uri-parser 8194 8240 8240 8240

Table: Empirical comparison with prior work on synthetic benchmarks.

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 5 – 7



Empirical Evaluation

Empirical comparison with prior work on symbolic execution of RV32 binaries
Research questions:

RQ1 Do we discover the same amount of paths as prior work?
RQ2 Does our work achieve competitive SE performance?

Benchmark angr BINSEC SYMEX-VP BINSYM
base64-encode 125 6250 6250 6250
bubble-sort 720 720 720 720
clif-parser 11424 11424 11424 11424
insertion-sort 5040 5040 5040 5040
uri-parser 8194 8240 8240 8240

Table: Empirical comparison with prior work on synthetic benchmarks.

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 5 – 7



Empirical Evaluation

Empirical comparison with prior work on symbolic execution of RV32 binaries
Research questions:

RQ1 Do we discover the same amount of paths as prior work?
RQ2 Does our work achieve competitive SE performance?

Benchmark angr BINSEC SYMEX-VP BINSYM
base64-encode 125 6250 6250 6250
bubble-sort 720 720 720 720
clif-parser 11424 11424 11424 11424
insertion-sort 5040 5040 5040 5040
uri-parser 8194 8240 8240 8240

Table: Empirical comparison with prior work on synthetic benchmarks.

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 5 – 7



Empirical Evaluation

Empirical comparison with prior work on symbolic execution of RV32 binaries
Research questions:

RQ1 Do we discover the same amount of paths as prior work?
RQ2 Does our work achieve competitive SE performance?

Benchmark angr BINSEC SYMEX-VP BINSYM
base64-encode 125 6250 6250 6250
bubble-sort 720 720 720 720
clif-parser 11424 11424 11424 11424
insertion-sort 5040 5040 5040 5040
uri-parser 8194 8240 8240 8240

Table: Empirical comparison with prior work on synthetic benchmarks.

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 5 – 7



Empirical Evaluation

base64-encode bubble-sort clif-parser insertion-sort uri-parser

101

102

103

Ex
ec

ut
io

n 
tim

e 
(s

)

15

8

16
12 13

43

15

45
33

80

250

50

388

138

590

1527

277

989

472

2203
BinSec
BinSym
SymEx-VP
angr

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 6 – 7



Conclusion

Key Insights:
1. Executable formal semantics reduce manual effort and the margin for errors
2. Formal semantics ease extending the analysis to additional instructions
3. Execution speed with executable formal ISA specifications is competitive

Future Work: Formally prove the correctness of the symbolic semantics
↪→ Using theorem-prover definitions provided by prior work

Sören Tempel et al. Accurate and Extensible Symbolic Execution of Binary Code based on Formal ISA Semantics 7 – 7



Accurate and Extensible Symbolic Execution of
Binary Code based on Formal ISA Semantics

Sören Tempel, Tobias Brandt, Christoph Lüth, Christian Dietrich, Rolf Drechsler
soeren.tempel@tu-braunschweig.de

Supported by the BMBF within projects Scale4Edge (no. 16ME0127), ECXL (no. 01IW22002), and VE-HEP (no. 16KIS1342).


