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Motivation

m Goal: Employ symbolic execution for testing binary code to en-
sure that we test the software exactly as it is deployed later on.

m Challenges: Requires symbolic software interpretation, i.e. a
correct symbolic ISA implementation which must be extensible.

m Approach: Utilize on executable formal ISA specification for sym-
bolic execution of binary code targeting this formalized ISA.

Contributions

m BINSyMm, an SE engine for RISC-V binary code based on the exe-
cutable formal ISA model provided by prior work on LiBRISCV.

m Case study showing its extensibility and a comparison with prior
work empirically investigating correctness and performance.
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foo: (define-fun DIVU 1: instrSemantics DIVU =
// al(z) = aO(x) / al(y) ((regs Reg-File) 2: (rsl-val, rs2-val, rd) <- decodeAndReadRType
DIVU al,a0,al (rd Reg-Index) o 3: runIfElse (rs2-val ‘EqInt’ 0x00000000)
// 1f (a0 < al) goto fail (rsl Reg-Index) § 4: do $ WriteRegister rd Oxffffffff
BLTU a0,al, fail (rs2 Reg-Index)) Reg-File é 5: do $ WriteRegister rd (rsl-val ‘UDiv‘ rs2-val)
% (let ((rsl-val (select regs rsl)) 9 6:
- (rs2-val (select regs rs2))) 7: instrSemantics BLTU = do
¢_ 2 (store regs rd 8:
Compiler 4 (if (= rs2-val #x00000000)
g #xFFffffff
void (define-fun BLTU (...) Bool Formal
foo(uint32_t x, uint32_t y) { (... (bvult rsl-val rs2-val))) Description

uint32_t z = x / vy;
if (x < z) goto fail; (assert
(BLTU (DIVU regs al a0 al) a0 al))

(check-sat) ;; --> satisfiable

Evaluation

Comparison with prior work on symbolic RV32 binary execution:
m Found g5 previously unknown bugs in the RISC-V lifter of angr

m We further achieve competitive symbolic execution performance
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(e.g. WriteRegister, EqInt, UDiv)

Conclusion

Key Insights:
m Complexity Reduction: Executable formal semantics reduce the
manual implementation effort and hence the margin for errors.

m Extensibility: Formal semantics ease extending the analysis to
additional custom instructions and aid design space exploration.

m Execution Performance: The symbolic execution speed of our
prototype implementation is competitive with existing work.

More Information:

m The RISC-V prototype implementation of our approach is written
in 1000 LOC in Haskell and fully open source (scan the QR codel!)

m Artifacts for our evaluation are available on Zenodo
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