
Accurate and Extensible Symbolic Execution
of Binary Code based on Formal ISA Semantics
Sören Tempel, Tobias Brandt, Christoph Lüth, Christian Dietrich, Rolf Drechsler

Motivation
Goal: Employ symbolic execution for testing binary code to en-
sure that we test the software exactly as it is deployed later on.
Challenges: Requires symbolic software interpretation, i.e. a
correct symbolic ISA implementation which must be extensible.
Approach:Utilize on executable formal ISA specification for sym-
bolic execution of binary code targeting this formalized ISA.

Contributions
BINSYM, an SE engine for RISC-V binary code based on the exe-
cutable formal ISA model provided by prior work on LIBRISCV.
Case study showing its extensibility and a comparison with prior
work empirically investigating correctness and performance.

Prior Work

Language
(C/C++)

LLVM-IR

ISA-Level
(Assembler)

Behavioral
ISA Semantic

Symbolic
Expressions

Se
m

an
tic

G
ap

H
ig

h-
Le

ve
l

Lo
w-

Le
ve

l

(1) Direct
IR-Based

(2) Indirect
IR-Based

(3) Execution-
Based

(4) Proposed
Approach

co
m

pi
le

en
co

de

co
m

pi
le+

lin
k

lif
t

en
co

de

co
m

pi
le+

lin
k

en
co

de

co
m

pi
le+

lin
k

se
m

an
tic

ize
en

co
de

2 Binary Code

foo:
// a1(z) = a0(x) / a1(y)
DIVU a1,a0,a1
// if (a0 < a1) goto fail
BLTU a0,a1,fail
...

3 Generated Solver Query in SMT-LIB

(define-fun DIVU
((regs Reg-File)
(rd Reg-Index)
(rs1 Reg-Index)
(rs2 Reg-Index)) Reg-File

(let ((rs1-val (select regs rs1))
(rs2-val (select regs rs2)))

(store regs rd
(if (= rs2-val #x00000000)

#xffffffff
(bvudiv rs1-val rs2-val)))))

(define-fun BLTU (...) Bool
(... (bvult rs1-val rs2-val)))

(assert
(BLTU (DIVU regs a1 a0 a1) a0 a1))

(check-sat) ;; --> satisfiable

1 Source Code

void
foo(uint32_t x, uint32_t y) {

uint32_t z = x / y;
if (x < z) goto fail;
...

}

4 Formal ISA Specification

1: instrSemantics DIVU = do
2: (rs1-val, rs2-val, rd) <- decodeAndReadRType
3: runIfElse (rs2-val ‘EqInt‘ 0x00000000)
4: do $ WriteRegister rd 0xffffffff
5: do $ WriteRegister rd (rs1-val ‘UDiv‘ rs2-val)
6:
7: instrSemantics BLTU = do
8: ...

...

5 Specification Language Primitives
(e.g. WriteRegister, EqInt, UDiv)

Formal
Description

Compiler

SE:Path
Exploration

se
m

an
tic

iz
e

Evaluation
Comparison with prior work on symbolic RV32 binary execution:

Found 5 previously unknown bugs in the RISC-V lifter of angr
We further achieve competitive symbolic execution performance

base64-encode
bubble-sort

clif-parser

insertion-sort
uri-parser

101

102

103

Ex
ec

ut
io

n 
tim

e 
(s

)

15
8

16 12 13

43

15

45 33

80

250

50

388

138

590

1527

277

989
472

2203
BinSec
BinSym
SymEx-VP
angr

Conclusion
Key Insights:

Complexity Reduction: Executable formal semantics reduce the
manual implementation effort and hence the margin for errors.
Extensibility: Formal semantics ease extending the analysis to
additional custom instructions and aid design space exploration.
Execution Performance: The symbolic execution speed of our
prototype implementation is competitive with existing work.

More Information:
The RISC-V prototype implementation of our approach is written
in 1000 LOC inHaskell and fully open source (scan the QR code!)
Artifacts for our evaluation are available on Zenodo


