Accurate and Extensible Symbolic Execution

of Binary Code based on Formal ISA Semantics
Séren Tempel, Tobias Brandt, Christoph Liith, Christian Dietrich, Rolf Drechsler

Motivation

m Goal: Employ symbolic execution for testing binary code to en-
sure that we test the software exactly as it is deployed later on.

m Challenges: Requires symbolic software interpretation, i.e. a
correct symbolic ISA implementation which must be extensible.

m Approach: Utilize on executable formal ISA specification for sym-
bolic execution of binary code targeting this formalized ISA.

Contributions

m BINSyMm, an SE engine for RISC-V binary code based on the exe-
cutable formal ISA model provided by prior work on LiBRISCV.

m Case study showing its extensibility and a comparison with prior
work empirically investigating correctness and performance.

@ Binary Code

@ Generated Solver Query in SMT-LIB

Prior Work

(1) Direct (2) Indirect (3) Execution- (4) Proposed

IR-Based IR-Based Based . Approach i

K Language i :
>

S (c/c+4) T H * : ’ ;

T 3 = = £ |

Oy =+ 1 | 1| I

LLVM-IR ® 2, o oy | QL |

o o | o |

= £, : =X :

3 SI= S : S| :

2 ISA-Level ; ; | / ;

= (Assembler) ¢ ¢ | v® |

: | E |

C)) | O |

E O O |) |

A S S S :

Behavioral 3 | g 4 :

ISA Semantic = | |

o) (D) I () |

> | _O |

v | O |

- | O |

g Symboli | G '

mbolic | |

o R ® ¢ o | ¢ |

xpressions | |

<€

foo: (define-fun DIVU 1: instrSemantics DIVU =
// al(z) = aO(x) / al(y) ((regs Reg-File) 2: (rsl-val, rs2-val, rd) <- decodeAndReadRType
DIVU al,a0,al (rd Reg-Index) o 3: runIfElse (rs2-val ‘EqInt’ 0x00000000)
// 1f (a0 < al) goto fail (rsl Reg-Index) § 4: do $ WriteRegister rd Oxffffffff
BLTU a0,al, fail (rs2 Reg-Index)) Reg-File é 5: do $ WriteRegister rd (rsl-val ‘UDiv‘ rs2-val)
% (let ((rsl-val (select regs rsl)) 9 6:
- (rs2-val (select regs rs2))) 7: instrSemantics BLTU = do
¢_ 2 (store regs rd 8:
Compiler 4 (if (= rs2-val #x00000000)
g #xFFffffff
void (define-fun BLTU (...) Bool Formal
foo(uint32_t x, uint32_t y) { (... (bvult rsl-val rs2-val))) Description

uint32_t z = x / vy;
if (x < z) goto fail; (assert
(BLTU (DIVU regs al a0 al) a0 al))

(check-sat) ;; --> satisfiable

Evaluation

Comparison with prior work on symbolic RV32 binary execution:
m Found g5 previously unknown bugs in the RISC-V lifter of angr

m We further achieve competitive symbolic execution performance

2203
| Il BinSec 1527

| Il BinSym
| HEE SymEx-VP
: B angr 250

=
o
w

590

4772

Execution time (s)
=
(@)

=
o
[

Technische

Universitat
Braunschweig

@ Specification Language Primitives

(e.g. WriteRegister, EqInt, UDiv)

Conclusion

Key Insights:
m Complexity Reduction: Executable formal semantics reduce the
manual implementation effort and hence the margin for errors.

m Extensibility: Formal semantics ease extending the analysis to
additional custom instructions and aid design space exploration.

m Execution Performance: The symbolic execution speed of our
prototype implementation is competitive with existing work.

More Information:

m The RISC-V prototype implementation of our approach is written
in 1000 LOC in Haskell and fully open source (scan the QR codel!)

m Artifacts for our evaluation are available on Zenodo

University
of Bremen

O
d f kl Deutsches Forschungszentrum
fur Kunstliche Intelligenz

@ H German Research Center for
Artificial Intelligence

