
REUPNIX: Reconfigurable
and Updateable
Embedded Systems

Niklas Gollenstede

2023-06-18

 [[These notes are meant to be viewed in csq@oqmark pdfpccsq@oqmark .]]

 Thank you.

 Yes, I will be presenting how reUpNix makes for Reconfigurable and Updatable Embedded Systems.

 Why would one want such a thing?

Embedded: Updates & Reconfiguration

Sending stuff 🛰️ into space 🚀 is expensive 💰

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 2–8

 1: Well, for example, it's expensive to send stuff into space. Like, really expensive.

 So whenever we do that, we'd want to make sure we get the maximum use out of whatever we put up there.

 For the computer systems that are embedded in a satellite, this means that, next to being super reliable, they should be

Embedded: Updates & Reconfiguration

Sending stuff 🛰️ into space 🚀 is expensive 💰

update

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 2–8

 2: updatable and

Embedded: Updates & Reconfiguration

Sending stuff 🛰️ into space 🚀 is expensive 💰

update reconfigure

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 2–8

 3: reconfigurable.

 Updatable so that we can react to changing requirements and to fix mistakes that were made.

 Reconfigurable so that we can use the same hardware for different tasks, by changing its software.

Embedded: Updates & Reconfiguration

Sending stuff 🛰️ into space 🚀 is expensive 💰

update reconfigure

1 2 3

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 2–8

 4: When we update a device, we load a new software version onto the device, change its execution to that new version, and eventually remove the previous version of the software. So it is a linear process, replacing old software with new software.

 For reconfiguration, we also want to change the software that a device is executing, or we want to change the settings of that software.

Embedded: Updates & Reconfiguration

Sending stuff 🛰️ into space 🚀 is expensive 💰

update reconfigure

1 2 3
A B

C

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 2–8

 5: But we want to do so more frequently and faster, with lower overhead. Instead of replacing software versions permanently, we want to freely switch between multiple, concurrently installed variants.

Embedded: Updates & Reconfiguration

Sending stuff 🛰️ into space 🚀 is expensive 💰

update reconfigure

1 2 3
A B

C

NixOS

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 2–8

 6: NixOS is a GNU/Linux distribution with a rather unique architecture. This architecture makes NixOS very suitable for safe updates and efficient reconfiguration.

Embedded: Updates & Reconfiguration

Sending stuff 🛰️ into space 🚀 is expensive 💰

update reconfigure

1 2 3
A B

C

NixOS 🖳 🖥:
embedded

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 2–8

 7: But while NixOS is increasingly popular on servers and desktop computers, it still sees very little use on embedded systems.

Embedded: Updates & Reconfiguration

Sending stuff 🛰️ into space 🚀 is expensive 💰

update reconfigure

1 2 3
A B

C

NixOS 🖳 🖥:
embedded

why?

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 2–8

 8: So we asked ourself, why is that, and what can we do about it?

NixOS & reUpNix

Nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 Let's start by looking at how NxOS works in general.

 1: Integral part to the NixOS Linux distribution is the Nix build tool.

NixOS & reUpNix

Nix
.nix.nix.nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 2: You provide Nix with a formal description of your desired system, in Nix' own configuration language.

NixOS & reUpNix

Nix
NixOS

.nix.nix.nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 3: Nix will then build an output according to that formal description. In the case of NixOS, this output is a whole Linux operating system.

NixOS & reUpNix

Nix

systemd

NixOS

/etc

sshd
.nix.nix.nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 4: While the formal definition comes as one wholistic composition, the build result is broken into multiple pieces. With Nix, those pieces are called *components*.

NixOS & reUpNix

Nix
/nix/store

systemd

NixOS

/etc

sshd
.nix.nix.nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 5: The components are stored side-by-side as separate entries in the global directory /nix/store.

 Once written to the Store, components are never modified.

 Each component in the store is named after a hash over its immutable contents.

 Therefore no two different components can ever be in conflict with each other.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

.nix

.nix.nix.nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 6: So if you provide Nix with another system definition, it can build a different set of system components, ...

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS
.nix

.nix.nix.nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 7: and can place those components in the same store.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 8: Where the components are different to preexisting ones, they will be stored under their different names.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 9: Where a component of the same content already existed, it can be reused.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 10: Because the Nix build process always starts with the formal definition of the complete operating system, and because Nix is designed to capture all inputs used in a build, building a NixOS system is actually very reproducible.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

fle
xi
bl
e

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 11: Also, the Nix description language is turing-complete, and NixOS has multiple mechanisms for composition and customization. This makes NixOS very flexible.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

fle
xi
bl
e

reconfiguration

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 12: NixOS also intrinsically works well for reconfiguration. A single Nix Store can hold multiple NixOS installations, and each of those installations is derived from a composable, formal system description.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

fle
xi
bl
e

reconfiguration

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 13: But NixOS also has some problems that are critical for embedded systems.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

fle
xi
bl
e

reconfiguration

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 14: For starters, the NixOS default installation is quite large. For reUpNix, we were able to shrink the installation size of an empty default installation from more than 1.1 Gigabyte down to 155 Megabytes. So we removed 85 percent of the installation size, without much affecting its usefulness as an embedded operating system.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

fle
xi
bl
e

reconfiguration

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 15: Second, for reconfigurable applications and for backwards compatibility, it makes sense to support OCI containers.

 Existing OCI container integration in NixOS uses Docker or podman. But especially the Docker daemon creates some runtime overhead.

 With some small adjustments, we can actually use the already existing systemd component systemd-nspawn instead.

 Further, we are able to store OCI images more efficiently than either Docker or podman.

 Instead of the classical image layer based deduplication, we deduplicate the image content on a per-file basis.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

fle
xi
bl
e

reconfiguration

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 16: Another big problem of NixOS is, that NixOS tends to produce very large updates.

 We are able to mitigate that, using a novel differential update transfer mechanism.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

fle
xi
bl
e

reconfiguration

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 17: Finally, NixOS bootloader updates happen outside the reproducible Nix build process.

 As a result, its existing implementations are too fragile for the high safety requirements of embedded systems.

 For reUpNix, we therefore designed a bootloader configuration that can be updated in a single, failure atomic operation.

 And we also integrated safe reconfiguration into our bootloader configuration.

NixOS & reUpNix

.nix.nix

Nix
/nix/store

systemd

NixOS

/etc

sshd

NixOS

/etc
.nix

.nix.nix.nix

reproducible

fle
xi
bl
e

reconfiguration

NixOS❌ reUpNix contribution
Large base system ⇒ Shrink (~1.1 GiB→ 155MiB)

OCI containers inefficient ⇒ Remove Docker daemon
& deduplicate files across images

Large system updates ⇒ Differential update transfer
Bootloader update fragile ⇒ Make update atomic

& Integrate reconfiguration

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 3–8

 18: For this talk, I will focus on updates, the bootloader and reconfiguration.

Differential Update Transfer

Nix
/nix/store

systemd
NixOS

/etc
sshd.nix.nix.nix

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 So what makes NixOS updates so big?

 1: Components in Nix span a dependency graph.

Differential Update Transfer

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl.nix.nix.nix

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

Differential Update Transfer

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc.nix.nix.nix

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 2+3: By design, each component contains the name of each of its dependencies at least once.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

.nix

.nix.nix.nix

glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 4: When we build a system that changes a component deep in the dependency graph, then the name of that component changes.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

.nix

.nix.nix.nix

openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 5: But this then necessarily changes the content of any component that depends on it.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

.nix

.nix.nix.nix

sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 6: Since that changes the dependants name, its own dependants also change.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 7: So any change to a component will always ripple through the dependency graph, all the way to the root.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 9: This creates many new components. By default, Nix would need to transfer each of those as a whole.

 But oftentimes, a component with very similar contents already exists on the target.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 10: So to improve the update efficiency, all we need to do is find a similar component from before the update, and transfer the new component differentially.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 11: Unfortunately, Nix components have no package identity. So it is generally hard to tell which of the hundreds or thousands of components is closest related to which other one.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 12: We therefore walk the pair of dependency graphs before and after the update, and do a simpler similarity search on the much smaller set of local dependencies.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 13+: For the example system above, we would start at the root and transfer the diff of those components.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 +: We then take one of the direct dependencies of the root, and do the matching locally.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 +: In this fashion, we recurse though the whole dependency graph, and transfer the diff of each pair of components.

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

Differential Update Transfer

.nix.nix

Nix
/nix/store

systemd
NixOS

/etc
sshd openssl glibc

NixOS'

/etc'
.nix

.nix.nix.nix

systemd'
sshd' openssl' glibc'

Many/all new components, but very similar component exists
Find “before” component, update differentially
No clear package name/ID, or lineage
⇒ walk pair of dependency graphs
Transfer: diff(NixOS, NixOS’), diff(sshd, sshd’), diff(openssl,
openssl’), diff(glibc, glibc’), diff(systemd, systemd’), ...
“diff(C, C’)” by sender (knows C & C’)⇒ unidirectional transfer

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 4–8

 20: Since both dependency graphs can be known to the sender, the sender can create all the diffs on its own.

 The steam of differential updates can therefore be sent unidirectionally, without requiring any interaction with the update target.

Differential Update Transfer: Results

0

10

20

30

Re
m

ai
ni

ng
 Tr

an
sf

er
 S

ize
 [%

]

 3
1.

6

 2
.5

 1
3.

0

 1
.9

 0
.8

9

139.3 MiB

Base System

File Deduplication
FD + fixed 64 byte chunking

FD + Reference chunking
FD + R + 64

bsdiff per package

 2
7.

3

 0
.4

2 4
.6

 0
.4

1

 0
.1

2

107.8 MiB

Base w/o Kernel

Update Libc

0

10

20

30 3
6.

1

 2
4.

0

 3
4.

7

 2
3.

1

 1
0.

8
141.4 MiB

 3
0.

5

 1
5.

6

 3
0.

0

 1
8.

0

 3
.6

109.8 MiB

75 Days

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 5–8

diff(C, C’) =

 To evaluate the efficiency of the differential update transfer, we considered a number of different system update scenarios and implementations of the csq@oqmark diffcsq@oqmark function. Here you see a subset of them.

 First, we consider an update where we modify the definition of glibc. As we saw on the previous slide, this ripples through the component dependency graph, causing retransmission of almost all components.

 Next, we update our upstream package definitions, getting us 75 days worth of real-world software updates.

 We run both of these updates on two different systems. The first one is our minified base system.

 Then, we took our base system and removed the Linux kernel. In this setting, the kernel is a bit of a special case, because it is compressed, which makes differential transfer less effective. It should be possible to use an uncompressed kernel, but that did not work for us, so we removed it from this experiment.

 The first implementation of the diff function we looked at was simple file deduplication. For each file in all new components, we only transfer it if a file of the exact same content does not already exist in one of the previous components. Otherwise, we reuse that already existing file.

 Then, we cut each file into fixed-offset 64-byte chunks, and applied the same reuse-if-already-present logic to these chunks.

 Next, we tried a Nix-specific approach. We cut each file into pieces if and where they contain references to other nix store components, and again apply the reuse-if-already-present logic.

 Then we also combined the fixed 64-byte and the Nix component reference chunking.

 Finally, we used bsdiff as an off-the-shelf solution. Bsdiff is an established open source program to build small diffs of program binaries whose source code is similar to each other.

 The upper right corner of each graph shows the uncompressed total size of all new components of each update. And as we see, each update essentially replaces the whole system, whose size is just over 140 megabytes.

 zstd compression at its default settings alone compresses to about 40 percent for the base system and about 35 percent when excluding the kernel.

 Compression is the only optimization that Nix currently applies when transferring updates, and the following numbers therefore also include this compression.

 The bars show the remaining percentages of that after each respective deduplication and compression.

 File deduplication before compression improves the transfer size by another 4 to 9 percent of the baseline, or up to 22 percent without compression.

 Our Nix-specific reference-point chunking works fairly well in the artificial update case, but its advantage evaporates on real updates, and it is clearly outperformed by simple fixed chunking.

 The only disadvantage of the fine chunking is tat it requires significantly more time and memory to generate the differential updates.

 But this happens offline on the sending side before the transmission, so this is not really a concern for our usecase.

 Finally, bsdiff yet again outperforms the previous approaches, but it also again takes much much longer and more memory to create the update diffs.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility
Solution: A/B partitioning for Boot switched via GPT

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 With a new NixOS system transferred to the target Nix store, we now need to change the bootloader to apply the update.

 Our goal is to do this safe and atomically for NixOS on any hardware and independently of the firmware.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 2: A single system partition can be updated with any number of NixOS installations, as long as the filesystem with the Nix store is safe to be written to.

 For wide firmware compatibility, the Linux kernel and initrd need to be placed on a separate FAT32 boot partition.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 3: So when before we had one bootloader entry on the boot partition,

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 4: we could simply modify the configuration there and add another entry for our new NixOS system.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility but unreliable
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 5: But we really can't do that, because FAT is now safe to write to. If a write gets interrupted, FAT can become corrupted, which would render our system unbootable.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility but unreliable
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 6: Instead, we therefore do A/B partitioning. But we do so only for the bootloader partition, still keeping a single system partition.

 Unfortunately, this really only moves our problem. We now need to modify the firmware, to select which partition to boot from.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility but unreliable
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 7: Since we don't want to interact with the firmware, we also duplicate the GPT partition table, with each table pointing at one boot partition.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility but unreliable
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 8+9: This now actually solves our issue. We can switch between the duplicated GPT tables by rewriting the GPT header. This header occupies a single disk sector, and can therefore be replaced in a single atomic write.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility but unreliable
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 8+9: This now actually solves our issue. We can switch between the duplicated GPT tables by rewriting the GPT header. This header occupies a single disk sector, and can therefore be replaced in a single atomic write.

Atomic Bootloader Updates
Goal: safe/atomic updates for NixOS on any hardware/firmware
System: multiple systems on one reliable FS (e.g., journaling)
Boot: FAT32 for firmware compatibility but unreliable
Solution: A/B partitioning for Boot switched via GPT

Flash Disk

Table A

boot-1
boot-2
system
data

Table B

boot-1
boot-2
system
data

Table 2

boot-2
boot-1
system
data

Boot (FAT32)
kernel + initrd
Boot (FAT32)
entry before

Boot (FAT32,rw)
entry before
entry after

Boot-A (FAT32,ro)
entry before

Boot-B (FAT32,ro)
entry after

Boot-A (FAT32,rw)
entry before

Boot-B (FAT32,rw)
entry after

E
System (ro)

/init, ...

System (ro)

• before update
• after update

Data (rw)
User data,
Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H

.Backup

GPT
H

eader
M

BR
H

eader

⇒ applicable to other operating systems!

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 6–8

 10: A nice bonus of this approach is, that it also works for any other operating system.

Reconfiguration

Update: 1 2 3

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 1: Reconfiguration means to change which software or software configuration a system is executing.

 This makes it quite similar to updating the system's software.

Reconfiguration

Update: 1 2 3

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 2: But updates have a slow, linear progression, where new versions replace old ones.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 3: Reconfiguration should happen faster and freely between a set of available configurations.

 Recall that one Nix Store can already hold any number of realized NixOS configurations.

 To enable reconfiguration, we therefore only need to do two things:

 Get multiple sensible system configurations installed at once on the same device,

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 4: and do the actual switching between them.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 5: The formal definition of each NixOS machine can define multiple variants, called system profiles. These profiles can differ in small ways, like a single line change in a service configuration file. But they can also be vastly different, using different services, kernel modules, or even completely different kernels.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

default

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 6: With reUpNix, each machine implicitly has a default profile. This profile is a safe fallback. It includes a basic shell environment and SSH, but no application services. This default profile is so simple that it should never break, but it is still enough to install updates and transition into any of the other profiles.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

default

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 7: Within each update generation, our bootloader configuration will always boot the default system profile.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

default

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 8: We decided to allow reconfiguration only by rebooting.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

default

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 9: This ensures that the reconfiguration behavior is always correct and well defined. That is, the system's runtime state after the reconfiguration depends only on the then active configuration, and can not be influenced by the previous configuration.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

default

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 10: Rebooting is also the only way to achieve complete reconfigurability, since it is the only way to change, for example, the active kernel.

 But if we always boot the default profile, how do we reboot into a different profile? Well, we have a *boot once* functionality.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

default

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 11: On the booted system, you can run a command that sets a custom profile as the next-boot entry.

 On the next boot, the bootloader will read that next-boot entry, delete it, and resume booting into that custom profile.

 Regardless of whether booting then succeeds or not, the next-boot entry is already deleted, and any consecutive boots will choose the default profile again.

 This ensures that you can never get stuck in a boot loop.

 On UEFI systems, we could use an existing variable *LoaderEntryOneShot* for the *boot once* semantic. For u-boot, we had to implement it using a combination of compiled-in and dynamic boot options.

Reconfiguration

Update: Reconfigure:1 2 3
A B

C

default

Change system’s executed software configuration

NixOS: multiple variants (“profiles”)
reUpNix: reconfig⇒ reboot
Correctness: independent of previous profile
Completeness: e.g. change kernel

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot Linux

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 7–8

 12: One drawback of rebooting for reconfiguration is that rebooting a low-end Linux device is not necessarily fast.

 In our experiments on a Raspberry Pi 4, a complete reboot takes almost 25 seconds.

 We still think that it is worth it to pay this time for correctness and completeness of the reconfiguration.

Summary

NixOS: flexible, reproducible, predictable, reconfigurable
Not suited for embedded

Solved NixOS problems for embedded
Reduced system size (~1.1 GiB→ 155MiB)
Updates up to 99.88% smaller (mitigate change amplification)
Atomic bootloader config update (switch A/B part via GPT)

reUpNix key features
Reconfiguration / multi-system setup
Efficient OCI services (w/o Docker, file-deduplicated)
Unidirectional communication update transfers

ng REUPNIX: Reconfigurable and Updateable Embedded Systems 8–8

The End

Nix Store Reference Pinning

/nix/store

fd53d :

rx2gn :

d3lzb :

ng REUPNIX: Reconfigurable and Updateable Embedded Systems – 2–5

Update Deduplication

O N

=

(a) File Dedup.

O N

transfer!

=

̸=

̸=

=

(b) Blocks

O N

reuse!

̸=

=

Nix
Ref.

(c) Refs

O N
̸=

̸=

=

̸=

(d) Ref+Block

ng REUPNIX: Reconfigurable and Updateable Embedded Systems – 3–5

Update Transfer Size

0

10

20

30

Re
m

ai
ni

ng
 Tr

an
sf

er
 S

ize
 [%

]

 3
1.

6
 2

.5
 8

.0
 1
3.

0
 1

.9

 2
.2

 0

.8
9

 0
.9

6
 1

.4

139.3 MiB

Base System

FD
FD+64

FD+4K
FD+R

FD+R+64
FD+R+4K

BSD(Comp)
FD+BSD(File)

FD+R+4K+BSD(Chunk)

 2
7.

3
 0

.4
2

 1
.4

 4

.6

 0
.4

1
 0

.7
8

 0
.1

2
 0

.1
9

 0
.1

6

107.8 MiB

Base w/o Kernel

 8
.0

 1

.8

 2
.7

 3

.2

 1
.8

 1

.9

 1
.2

 1

.3

1158.1 MiB

MQTT/Nix

 3
1.

5
 2

.5
 8

.0
 1
3.

0
 1

.9

 2
.2

 0

.9

 0
.9

6
 1

.4

139.4 MiB

MQTT/OCI

Update Libc

0

10

20

30 3
6.

1
 2

4.
0

 2
7.

4 3
4.

7
 2

3.
1

 2
6.

5
 1

0.
8

 1
1.

1
 1

6.
7

141.4 MiB
 3

0.
5

 1
5.

6 1
9.

4
 3

0.
0

 1
8.

0
 2

1.
1

 3
.6

 4

.5

 7
.0

109.8 MiB

 1
6.

3 1
1.

6
 1

2.
9

 1
6.

0 1
1.

6
 1

2.
7

 6
.5

 9

.6

800.5 MiB

 3
6.

1
 2

3.
9 2
7.

4 3
4.

7
 2

3.
1

 2
6.

6
 1

0.
8

 1
1.

1
 1

6.
6

141.4 MiB

75 Days

0

10

20

30

 3
4.

8
 2

3.
8

 2
5.

7
 2

0.
2

 1
6.

5
 1

7.
1

 7
.0

 1
1.

7
 1

6.
2

47.2 MiB

 2
9.

4
 1

4.
2

 1
5.

7 2
0.

7
 1

9.
3

 2
0.

1
 8

.4

 1
5.

7
 1

7.
6

30.6 MiB
 1

3.
9

 1
0.

4
 1

0.
6

 1
3.

9
 1

0.
5

 1
0.

6
 3

.2

 4
.4

 1
2.

4

129.6 MiB

 2
7.

2
 1

7.
7 2

6.
5

 2
7.

1
 1

7.
7 2

6.
5

 7
.8

 2

6.
7

149.5 MiB Version Update

ng REUPNIX: Reconfigurable and Updateable Embedded Systems – 4–5

OCI Container Storage Cost

de
fau

lt alt slim

bu
llse

ye
alp

ine
0

25

50

75

100

Si
ze

 re
la

tiv
e

to
 U

nc
om

pr
es

se
d

[%
]

6.
0

Gi
B

4.
4

Gi
B

3.
4

Gi
B

5.
9

Gi
B

4.
3

Gi
B

3.
8

Gi
B

4.
5

Gi
B

3.
9

Gi
B

3.
2

Gi
B

3.
5

Gi
B

2.
1

Gi
B

1.
6

Gi
B

1.
0

Gi
B

0.
9

Gi
B

0.
9

Gi
B

Docker reUpNix

Uncompressed Shared Layers Shared Files

ng REUPNIX: Reconfigurable and Updateable Embedded Systems – 5–5

	Embedded: Updates & Reconfiguration
	Embedded: Updates & Reconfiguration
	Embedded: Updates & Reconfiguration
	Embedded: Updates & Reconfiguration
	Embedded: Updates & Reconfiguration
	Embedded: Updates & Reconfiguration
	Embedded: Updates & Reconfiguration
	Embedded: Updates & Reconfiguration
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	NixOS & reUpNix
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer
	Differential Update Transfer: Results
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Atomic Bootloader Updates
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Reconfiguration
	Summary
	Appendix
	Nix Store Reference Pinning
	Update Deduplication
	Update Transfer Size
	OCI Container Storage Cost

