
Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

Evaluation of a

CPU Scheduling Mechanism

 for Synchronized Multimedia Streams

Ralf Steinmetz, Lars C. Wolf

IBM European Networking Center

Vangerowstraße 18, D-69115 Heidelberg, Germany

Phone: +49-6221-59-4280, Fax: +49-6221-59-3300

{steinmetz, lwolf}@vnet.ibm.com

Abstract: Multimedia applications handling audio and video data have to obey

time characteristics of these media types – for a single stream of multimedia data

as well as for the synchronization of related streams. Correctness with respect to

time constraints requires mechanisms which lead to favored processing of multi-

media operations. CPU scheduling techniques based on the experience from

real-time operating systems offer a solution and provide multimedia applications

with the ability to meet time-related Quality of Service (QoS) requirements.This

presentation starts with an overview on the required Quality of Service for syn-

chronized audio and video streams. Subsequently it describes an implementation

of a CPU scheduler designed to run under IBM’s AIX. The evaluation of the

implementation based on measurements shows that the scheduler is able to sup-

port the time requirements of multimedia applications and that such mechanisms

are indeed necessary since otherwise deadline violations occur.

Keywords: multimedia, real time, scheduling, synchronization, operating sys-

tem support, quality of service, QoS

1 Introduction

In accordance with [StNa95] we understand multimedia in the following way: A multi-

media system is characterized by the integrated computer-controlled generation,

manipulation, presentation, storage, and communication of independent discrete and

continuous media. The digital representation of data and the synchronization between

these various data are the key issues for integration. Synchronization is needed to

ensure a temporal ordering of events in a multimedia system.

The temporal ordering must also be applied to related data streams, where one of

the more common relationships is the simultaneous playback of audio and video in ‘lip

synchronization’. Both media must be ‘in sync’ otherwise the result will not be

adjudged as satisfactory. In general synchronization involves relationships between all

kinds of media including pointers, graphics/images, animation, text, audio, and video.

As human perception varies from individual to individual it is usual in subjunctive

experiments to carry out experiments with a sample of individuals to obtain a reason-

able cross-section of results.

The lack of in-depth analysis of synchronization between the various kinds of

media and, in particular lip and pointer synchronization led us to conduct some experi-

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

ments of our own to obtain results that allow us to quantify the quality of service (QoS)

requirements for multimedia synchronization. The details are reported in [Stei96].

These QoS constraints must be achieved by the multimedia system. Real-time CPU

scheduling techniques which serve multimedia application processing with respect to

their time-criticality provide a solution to these problems. For a more detailed descrip-

tion of various methods to express time, the implementation of the respective sched-

uler and a larger set of measurements of experimental evaluation see [WBVo94].

In this paper we first discuss the results of a series of experiments on human media

perception that may be used as ‘Quality of Service’ guidelines. The results show that

humans perceive media streams as ‘in sync’ even when some skew between related

data streams exists. Sections 3 and 4 discuss the chosen scheduling algorithm and its

implementation. In Section 5 we give an evaluation of the scheduler’s ability to pro-

vide real-time guarantees. This is part of our work on the transport system HeiTS

(Heidelberg Transport System) [WoHe94] which offers real-time communication sup-

port for distributed multimedia applications.

2 Synchronization Quality of Service

‘Lip synchronization’ refers to the temporal relationship between an audio and video

stream for the particular case of humans speaking. The time difference between related

audio and video data is known as ‘skew’. Streams which are perfectly ‘in sync’ have

no skew, i.e., 0 ms. We conducted experiments and measured the skews that were per-

ceived as ‘out of sync’. In our experiments users often mentioned that something is

wrong with the synchronization, but this did not disturb their feeling for the quality of

the presentation. Therefore, we additionally evaluated the tolerance of the users by

asking if the data out of sink affects the quality of the presentation.

-320
-240

-160
-80

0
80

240
320

0

20

40

60

80

100

Body View

Shoulder View

Head View

0

20

40

60

80

100

Skew [msec]Viewtype

[%]
[%]

160

Detection Detection

Figure 1: Detection of synchronization errors with respect to the three different

views. Left part, negative skew; video ahead of audio; right part, positive

skew; video behind audio

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

In order to get accurate and good skew tolerance levels we selected a speaker in a

TV news environment in three different views: head, shoulder and body. We recorded

the presentation and then re-played it with artificially introduced skews created with

professional editing equipment skewed at intervals of 40ms i.e. -120ms, -80ms, -40ms,

0ms, +40ms, +80ms, +120ms.

Figure 1 provides an overview of the results. The vertical axis denotes the relative

number of test candidates who detected a synchronization error, regardless of being

able to determine if the audio was before or after the video. On the left side of the cen-

tral axis the graph relates to negative skew values where the video is ahead of the audio

and on the right side where the audio is ahead of the video. The curves in the figure are

asymmetrically, the right hand side of the curves are steeper than the left sides. The

reason for this is that we are used to the situation where the motions of the lips are per-

ceived a little before the audio is heard from our daily experience because the velocity

of light is larger than that of sound.

The ‘body view’ curve is broader than the ‘head view’ curve as in the former a

small skew is easier to notice. The ‘head view’ is also more asymmetric than the ‘body

view’, due to the fact that the further away we are situated, the less noticeable an error

is.

We identified the ‘in sync’ region that spans a skew between -80 ms (audio behind

video) and +80 ms (audio ahead of video). In this zone most of the test candidates did

not detect the synchronization error. Very few people said that if there was an error it

did affect their notion of the quality of the video. Additionally, some results indicated

that the perfect ‘in sync’ clip was ‘out of sync’. Our conclusion is that lip synchroniza-

tion can be tolerated within these limits.

0

20

40

60

80

100

-320 -280 -240 -200 -160 -120 -80 -40 0 40 80 120 160 200 240 280 320

acceptableannoying indifferent

Level Of Annoyance [%]

Skew [msec]

View: Shoulder

Figure 2: Level of annoyance at shoulder view

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

Just as important as the error itself is the effect which such an ‘out of sync’ video

clip has on perception. Therefore the test candidates were asked to qualify a detected

synchronization error in terms of being acceptable, indifferent, or annoying. Out of

these answers we derived a ‘level of annoyance’ graph, Figure 1, and verified the bor-

ders of the in-sync area.

The envelope curve (the upper edge of the dark area) defines the amount of candi-

dates who detected a synchronization problem. This is the same curve for the ‘shoulder

view’ as shown in Figure 1 (just without a spline interpolation).

The dark grey areas relate to all test candidates who detected a synchronization

error and found the clip watchable with this synchronization error. In a small follow-on

experiment we selected a few test candidates who would tolerate such a skew and

showed them a whole movie with a -160 ms skew where the video was ahead of the

audio. Annoyances were reported just after the beginning of the film but soon after it

was noted that the candidates concentrated on the content instead of being attracted/

distracted by the synchronization offset. The curve at the bottom of the dark grey area

shows an asymmetry between sound and light as mentioned before.

The light grey area indicates the people who found the skew distracting. During the

evaluation phase of this study on synchronization we introduced a skew of +80 ms and

-80 ms into two whole movies which were shown to a few candidates who found it irri-

tating but still could concentrate on the content. The same experiment however with a

skew of -240 ms or +160 ms would lead to a real distraction from the content and to a

severe feeling of annoyance.

The required QoS for synchronization is expressed as the allowed skew. The QoS

values shown in Table 1 relate to presentation level synchronization. Most of them

result from exhaustive experiments and experiences, others are derived from literature

as referenced in [Stei96]. To our understanding; they serve as a general guideline for

any QoS specification in [Stei96]. As first order result to serve as a general guidance,

these values may be relaxed depending on the actual content.

We can therefore conclude that skews between -80 ms and +80 ms are deemed

acceptable by most casual observers.

3 QoS provided through Scheduling

QoS management in multimedia systems is based on two models [Vogt95]. The work-

load model is used to describe the load an application will place onto the system. The

QoS model is used by an application to define its performance requirements and by the

system to return corresponding performance guarantees.

The QoS model used in HeiTS has three parts: (1) The throughput part describes

the bandwidth required for or granted to a multimedia connection. It consists of the

three parameters of the workload model described below. (2) The delay part defines the

maximum delay a multimedia packet can experience on its way from the source to the

sink of the connection. (3) The reliability part describes how packet losses and bit

errors within packets are handled. They can be ignored, indicated or corrected.

In order to meet synchronization QoS of two streams (respectively two threads),

their delay jitter must be less or equal to the skew discussed in the previous section.

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

The workload for multimedia systems is periodic by nature – consider for instance

an application presenting audio or video data where data packets must be transmitted

at certain instants. To describe the load induced into the system, HeiTS uses the Linear

Bounded Arrival Process (LBAP) as its workload model. The LBAP model assumes

data to be processed as a stream of discrete units (packets) characterized by three

parameters: S=maximum packet size, R=maximum packet rate (i.e., maximum number

of packets per time unit), and W=maximum workahead.

Media Mode, Application QoS

video animation correlated +/- 120 ms

audio lip synchronization +/- 80 ms

image overlay +/- 240 ms

non overlay +/-500 ms

text overlay +/- 240 ms

non overlay +/-500 ms

audio animation event correlation (e.g. dancing) +/- 80 ms

audio tightly coupled (stereo) +/- 11 ms

loosely coupled (dialog mode with

various participants)

+/- 120 ms

loosely coupled (e.g. background

music)

+/- 500 ms

image tightly coupled (e.g. music with

notes)

+/- 5 ms

loosely coupled (e.g. slide show) +/- 500 ms

text text annotation +/- 240 ms

pointer audio relates to showed item -500 ms,

+ 750 ms1

1. pointer ahead of audio for 500 ms, pointer behind audio for 750 ms

Table 1: Quality of Service for synchronization purposes

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

3.1 Schedulability Test and Priority Assignment Scheme

The target operating system for the implementation is AIX, IBM’s UNIX derivate. In

addition to the well-known multi-level-feedback (MLFB) scheduling it provides a set

of fixed priorities at the highest priority levels (priorities 0-15), which are even higher

than the AIX scheduler’s priority. Unlike the other (MLFB) priorities these priorities

are not modified by the AIX scheduler and can be used for real-time processing.

Assigning priorities to processes produces a considerable overhead that cannot be

neglected. Therefore, we do not utilize a dynamic scheme such as earliest deadline first

(EDF) but use a static priority assignment scheme according to the rate monotonic

(RM) algorithm where a process with a short period (i.e., a high rate) receives a high

priority [LiLa73][LSDi89][Stei95]. Priorities are computed at application establish-

ment time and are not changed dynamically during application lifetime. Only when a

newly established application needs a priority level that is already in use the existing

priorities are shifted to make room for the new application handling process. The prior-

ities are ordered in a way that guaranteed processes possess the highest priorities and

statistical processes use the lower part of the real-time priorities. All processes not sub-

ject to real-time constraints are handled by the AIX system scheduler and use priorities

below the real-time priorities.

4 Implementation

The actual scheduling is performed through a set of kernel functions (AIX provides

mechanisms for adding such system calls) that must be called by the process that wants

to be scheduled. This is more efficient than implementing the scheduler as a separate

process (like the AIX system scheduler) because it saves the context switch between

the process to be scheduled and the scheduler process itself.

Requiring that the process calls the scheduler function explicitly leads to “volun-

tary scheduling” and may seem dangerous. However, all code allowed to run in an

environment where it is possible to use real-time priorities has to be established by an

authorized user. Thus, only approved code will be subject to real-time scheduling and,

therefore, especially with reflection on the performance gain, this approach can be

regarded as secure.

To achieve proper scheduling of real-time processes some assumptions about the

structure of the processes have to be made. As shown in Figure 3, it is assumed that

after creating an application the process responsible for handling the data of this appli-

cation is performing a program loop and processes one data packet (e.g., a video

frame) in every iteration. This continues until the application is finished and the pro-

cess is not subject to real-time scheduling any more.

Before processing a newly arrived data packet the scheduler must check whether

accepting this packet would violate the LBAP characteristic (i.e. the workload specifi-

cation) of the data stream. This check can be done in a blocking or a non-blocking way.

The blocking test is performed by the function LBAP_enforce and enforces the

observance of the LBAP property of the data stream: The process is left in a wait state

until the logical arrival time of the packet is reached.

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

In the non-blocking test implemented in the function LBAP_poll the scheduler

simply returns the calculated logical arrival time of the data packet and the information

whether accepting this packet violates the LBAP properties of the data stream or not.

5 Evaluation

To show the effect of using the scheduler for different multimedia applications we per-

formed a series of measurements. We wanted to answer the following question: In

which way does the use of the scheduler influence the behavior of the application and

the system as a whole, i.e., are deadline violations indeed avoided and to what extend.

The CPU scheduler function LBAP_enforce was instrumented in such a way that it

generates events describing the laxity of the calling process, i.e., the time until the pro-

cess reaches its deadline. Positive values indicate that the process still has time before

the deadline is reached, therefore, it is operating correctly; negative values indicate that

the process violated its deadline, it is not able to perform its function in time.

In those cases where several real-time processes were running concurrently the

events are given in generation-time order, i.e., they are not ordered by processes unless

otherwise stated. The charts shown below are extracts from much longer measure-

ments series to increase readability. Each of them shows 200 values which have been

taken from the middle of the sequence of values (the generation of measurement values

started later than the processes under consideration to reduce start-up effects), each

point in a graph represents a single event. The measurement values are given in sec-

onds.

All measurements were performed on a mostly idle workstation (IBM RISC Sys-

tem /6000, Model 360 with AIX 3.2.4) which was not modified during the measure-

user level priority processing
start of real-time scheduling

rms_cpu_create_entry()

scheduler invocation
LBAP_poll()/LBAP_enforce()

data processing

continue?

end of real-time scheduling
rms_cpu_release_entry()

+

-

Figure 3: Processing structure

user level priority processing

real-time priority processing

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

ments, e.g., simple applications such as mail, etc. were running as usual. However,

none of these programs used much CPU processing time. These types of applications

are running during normal workstation operation periods as well, thus, disabling them

during the measurements might lead to slightly more regular measurement results but

not to results which are better applicable to real world scenarios.

The measurements were performed with a varying system load (background load).

The system load was generated artificially by synthetic, non real-time, computation

processes performing simple integer calculations. Hence, in principle these processes

were always ready to run which also lead to low priority due to UNIX scheduler char-

acteristics. Therefore, normal, user created system load might be even harder than this

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

0 Load Processes

4 Load Processes

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

3 Load Processes

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling

with real-time scheduling

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling

with real-time scheduling

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0 20 40 60 80 100 120 140 160 180 200

with real-time scheduling – 0 load processes
with real-time scheduling – 4 load processes

with real-time scheduling – 16 load processes

0, 4, and 16 Load Processes

event number

la
x
it

y
 [

s]

Figure 4: Video playback application

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

synthetic load. We used 0, 1, 2, 3, 4, or 16 of these load processes during the measure-

ments. Running 16 processes leads to a heavily loaded system, the other loads resem-

ble loads easily created during normal workstation operation.

The measurements were performed with programs using the CPU scheduler’s real-

time characteristics followed by measurements with the same programs without per-

forming real-time scheduling (using the time provision mechanisms of the scheduler,

i.e., executing with the specified rate). The load generated by the programs is the same

in both cases (since we use the static RM scheduling algorithm without workahead

scheduling, we have no additional costs for the real-time processes during run time).

Different application scenarios with different setups were investigated, here we

focus on video playback as an endsystems applications. The measured program uses

one process for its operations. The chosen video consists of 15 frames/s, i.e., 66.6 ms/

frame which was also set as the processing rate of the program. The processing time

needed per period is in the average approximately 28 ms which results in a total CPU

usage of about 42%.

The compressed data read by the program was stored in a local file which was

cached into main memory by running the program first without measuring it. The file

was small enough to fit into the cache.

Figure 4 shows the results for measurements with varying loads. If no load except

the measured process exists in the system, no deadline violations occur even without

using real-time scheduling.

If a load of medium size (three or more processes) is introduced into the system,

the considered application is not able to provide acceptable service to the user. The last

graph in the figure illustrates that by using real-time scheduling, the application does

not suffer from any deadline violations, even if we introduce a high load (up to 16 pro-

cesses) into the system.

All plots of applied real-time scheduling show a laxity less than 42ms. The mini-

mum laxity is never less than 26 ms, hence, the laxity is always in the interval

[26 ms, 42 ms]. In term of lip synchronization QoS, our system is able to provide a

skew of less than 30ms. Hence, we can meet the demanded lipsynch QoS of less then

80 ms.

6 Conclusions

In this paper we tied together our work in user perception of media synchronization

[Stei95] with the implementation and evaluation of appropriate scheduling techniques

[WBVo94] to meet the required QoS demands: Lip synchronization for the playback of

multimedia data.

Further research should be performed to refine the given table of synchronization

QoS; the values shall be verified and refined by extensive user perception tests. Our

mapping strategy of skew onto maximum allowable delay jitter of the stream is a

straight forward approach. It is not clear if such a skew can alternatively be directly

integrated into the scheduling models.

The measurements comprises a set of (what we consider) representative applica-

tions. However, further applications might lead to different results. The dependency

between scheduling and synchronization is still in its infancy. To the knowledge of the

Joint Conference: 8th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation and 8th GI/ITG Conference on Measuring,

Modelling and Evaluating Computing and Communication System, September 18-22,

1995, Heidelberg, Germany

authors so far no multimedia operating system primitives allow for the specification of

a synchronization skew. No scheduling mechanism takes into account the timing rela-

tionship to other request, i.e., a synchronization skew.

Acknowledgments

The authors would like to thank W. Burke, C. Vogt, C. Engler and M. Ehrmantraut for

the work and discussions related to the topic of this paper.

References

[FBZh92] Domenico Ferrari, Anindo Banerjea, Hui Zhang, “Network Support For
Multimedia: A Discussion of the Tenet Approach”, TR-92-072, Interna-
tional Computer Science Institute, Berkeley, CA, USA, 1992.

[LiLa73] C.L. Liu and James W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Realtime Environment”, Journal of the ACM, vol.
20, no. 1, pp. 47-61, 1973.

[LSDi89] John Lehoczky, Lui Sha and Ye Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior”, Pro-
ceedings of the Tenth IEEE Real-Time Systems Symposium, pp. 166-
171, Santa Monica, CA, USA, 1989.

[NaSt95] Klara Nahrstedt, Ralf Steinmetz, “Resource Management in Networked
Multimedia Systems”, IEEE Computer, Vol.28 No. 5, May 1995, pp. 52-
64.

[Stei95] Ralf Steinmetz, “Analyzing the Multimedia Operating System”, IEEE
Multimedia, vol. 2 no. 1, Spring 1995, pp. 68-84.

[Stei96] Ralf Steinmetz, “Human Perception of Jitter and Media Synchroniza-
tion”, to appear in IEEE JSAC, vol. 14 no. 1, January 1996.

[StNa95] Ralf Steinmetz, Klara Nahrstedt, “Multimedia: Computing, Communi-
cation and Application”, Prentice Hall, July 1995, ISBN 0-13-324435-0.

[Vogt95] Carsten Vogt, “Quality-of-Service Management for Multimedia Streams
with Fixed Arrival Periods and Variable Frame Sizes”, ACM Multime-
dia Systems, vol. 3, no. 2, pp. 66-75, May 1995.

[WoHe94] Lars C. Wolf and Ralf G. Herrtwich, “The System Architecture of the
Heidelberg Transport System”, ACM Operating Systems Review, vol.
28, no. 2, pp. 51-64, April 1994.

[WBVo94] Lars C. Wolf, Wolfgang Burke, Carsten Vogt, “Evaluation of a CPU
Scheduling Mechanism for Multimedia Systems”, Technical Report
43.9407, IBM European Networking Center Heidelberg, Germany,
1994.

