
Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

Filtering Multimedia Data

in Reservation-Based Internetworks

Lars C. Wolf, Ralf Guido Herrtwich, Luca Delgrossi

IBM European Networking Center

Vangerowstraße 18 • 69115 Heidelberg • Germany

Phone: +49-6221-59-3000 • Fax: +49-6221-59-3400

{lwolf, rgh, luca} @ vnet.ibm.com

Abstract: Multimedia applications with a large number of recipients of a single multimedia stream

require support of different quality-of-service levels for different receivers. For hierarchically encoded

streams, the filtering of substreams in routers has been proposed as a mechanism to achieve this goal.

This paper discusses the effects and mechanisms of filtering in the context of Internet reservation proto-

cols such as ST-II and RSVP. It introduces a new flow specification for hierarchically encoded streams

and describes its processing in endsystems and routers.

1 Introduction

Several distributed multimedia applications such as video conferencing or video lectures must

support multiple receivers. For applications with many participating receivers and for applica-

tions which transmit their data across a wide geographical range, there exists a need to support

receivers and intermediate transmission paths with different capabilities.

An approach to support heterogeneous receivers in multimedia applications is to use filter

mechanisms where only a subset of the full information is presented to the end user on the

receiving side. Data which are not presented are stripped off from the original data stream at

some intermediate agents, for example routers. Thus, the source always emits a full stream, but

the stream is possibly scaled to a stream with lower quality.

In [10, 11] Pasquale has introduced filters as a general concept. His filters would allow a

system to perform arbitrary operations on multimedia data in any part of the network. They

can, for example, be used to transform one encoding format to another. Although the generality

of the model is appealing, it can lead to several problems: long processing times may increase

communication delays, security aspects may prohibit users from down-loading code for arbi-

trary filters into routers, and not all intermediate nodes, for example ATM switches, may be

suited to provide the required processing capabilities.

In this paper, we consider the use of filters for the purpose of packet discarding only, i.e., we

understand filtering in the true sense of the word. We assume that this filtering takes place in

the network layer since only on this layer can all intermediate nodes in a communication path

be known. Other “filtering” operations such as mixing audio streams can be accomplished in

higher layers using mechanisms such as RTP’s bridges [12]. We present a method to add filter-

ing to internetwork reservation protocols such as ST-II [13] and RSVP [16]. It should also be

possible to map the described approach to other multimedia setup protocols.

The outline of the paper is as follows: Section 2 introduces our filtering approach. Section 3

summarizes the changes that need to be made to the flow specification of a stream to accom-

modate filtering. Section 4 explains how the changes affect the processing of flow specifica-

tions and multimedia streams.

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

2 Filtering a Multimedia Stream

Deciding which parts of a multimedia stream to forward and which to filter out can only be

made with respect to the data encoding scheme used. We distinguish between two classes of

encoding formats:

• In independently coded streams, higher-quality parts are substitutions for lower-quality

parts. For example, one substream S1 may contain complete images of the size a*b and

another substream S2 may contain complete images of the size 2a*2b. To choose a different

quality means to choose a different substream.

• In hierarchically encoded multimedia streams, higher-quality parts are additions to the

lower-quality parts. For example, one substream S1 may contain images of the size a*b and

another substream S2 may contain all additional pixels that extend the format to 2a*2b. To

present data in the highest quality, all substreams must be presented.

Only in the hierarchical case we believe filtering to be an appropriate technique. To allow the

system to better take into account the relation between the substreams, we find it appropriate to

associate a single connection with all substreams. For instance, having one connection means

automatically that all substreams are transmitted using the same route through the network,

while the use of several connections can lead to different routes introducing resynchronization

problems.

In the case of independently coded substreams, different streams are sent to the various tar-

gets. Since the streams are independent, synchronization problems do not occur if there is one

connection per substream. We have described such a technique in [1]; in this paper we concen-

trate on the former case.

Hierarchically encoded streams will play an important role in the future of multimedia sys-

tems. New data formats such as MPEG-II [8] use hierarchical encoding to achieve different

levels of presentation quality. These levels result from scaling the original video data in several

dimensions. Gonzales and Viscito describe the following techniques for this purpose [4]:

• Spatial scaling: a multiplicity of spatial resolutions.

• Rate scaling: a multiplicity of picture rates. This is already part of MPEG-I [6, 7] via the

division into I (intra-frame coded), P (predicted coded), and B (bidirectional predicted

coded) frames. This kind of scaling is often also referred to as temporal scaling.

• Amplitude scaling: multiple versions of a picture with varying fidelity at the same spatial

and temporal resolution. This is also specified as frequency scaling, either via data partition-

ing, in which the discrete cosine transformation (DCT) coefficients are separated into sev-

eral regions and the regions are handled differently, or via signal-to-noise-ratio (SNR)

scaling, in which the least significant bits of the DCT coefficients are separated from the

most significant bits and separately handled.

For any of these scaling methods, all substreams together yield an image of the best quality.

There is a well-defined order to filter out substreams, should it become necessary.

2.1 Substream Identification

Routers need information on data packet contents in order to be able to drop portions of a

stream. We opted for a simple scheme where each data packet is tagged by the source by

assigning an appropriate value to a field of the packet’s header. If data segmentation is possi-

ble, segments should be tagged in the same way as the original PDU.

In the case of ST-II, such a field is already available, so that, in this specific case, no change

to the protocol is required. The data priority1 field can be used, which consists of 3 bits, allow-

ing for 8 different levels. We feel that 3 bits provide the support we need to implement the fil-

tering functions we have in mind and that 8 levels are sufficient to experiment with this

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

technique. In the future, we expect that perhaps more bits might be necessary. By convention,

we say that the most important substream shall be tagged with the lowest value (0) and the

least important with the highest value (7). Routers will use this information during the resource

reservation (see Section 4 below).

An alternative to packet tagging is to let the application specify a pattern which can be iden-

tified by the router. The router analyses each packet to check if it matches with the given pat-

tern. The advantage of this approach is that any kind of pattern can be specified and thus a very

large number of applications can be supported. For instance, it would be possible to filter pack-

ets generated by old applications which have no notion of filtering, such as telnet. On the other

hand, this approach has also some inconveniences, because of the longer time required by the

source to specify the different patterns and by the routers to match them.

Implementing this pattern matching technique in ST-II would require modifications to the

header of the data PDU to include additional information. The current header fields of an ST

data packet (if the data priority field is not used as in tagging) do not allow for pattern match-

ing because they would be set to the same values for the whole stream.

The RSVP setup protocol does not define the format of the data PDUs to be transferred.

Thus both tagging and pattern matching can be implemented as long as the chosen data format

permits it.

2.2 An Example

As an example, let us consider in the following a stream S, coded with a hierarchical scheme.

The full stream consists of 3 substreams, the base substream S0, and the additional substreams

S1 and S2:

1. Substream S0: (rate = 0.4 Mbit/second, substream id = 0)

2. Substream S1: (rate = 0.6 Mbit/second, substream id = 1)

3. Substream S2: (rate = 1.0 Mbit/second, substream id = 2)

Substream S0 delivers the base information and is, therefore, the most important. Thus it is

assigned the lowest value (substream id = 0). Substreams S1 and S2 get values 1 and 2 respec-

tively. By combining substreams S0, S1, S2, it is possible to build three different quality

streams to be presented:

1. Stream Q0: (low quality, contains substream S0 only, requires 0.4 Mbit/second).

2. Stream Q1: (medium quality, contains substream S0 & S1, requires 1.0 Mbit/second).

3. Stream Q2: (high quality, contains substream S0, S1 & S2, requires 2.0 Mbit/second).

Figure 1 illustrates a simple scenario with several hosts participating in the transmission of the

streams. The data flows from the source H0 to the three destinations located at H2, H3, and H5

through routers H1 and H4. In our example, each destination decides to receive a stream of dif-

ferent quality, corresponding to different portions of the data. While the target at host H2 would

like to receive the full quality stream Q2 (thus, all available substreams), targets H3 and H5

need not so high a quality, and therefore they use substreams S0 & S1 (yielding Q1), and only

S0 (resulting in Q0), respectively.

If the stream of this example was, for instance, an MPEG stream, intra-coded images (I-

frames) could be carried by substream S0, providing the base information and thus the low-

quality stream. Predictive frames (P-frames) and bidirectional predictive frames (B-frames)

could be carried by substreams S1 and S2, respectively, and the medium-quality and high-qual-

ity streams could be obtained by adding S1, or both S1 and S2, to S0.

1. The word “priority” seems to imply that high-priority data shall be processed first with respect to low-prior-

ity data, and therefore it is misleading. We prefer to call this field “substream identifier”.

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

Figure 1: Different qualities created from three substreams

3 Specification of Substream Characteristics

Protocols that make use of resource reservation, such as ST-II and RSVP, need to be provided

with information about the quality-of-service (QoS) requirements of a stream. With filtering,

they also need to be informed about the amount of bandwidth required by each substream. This

information needs to be carried to all the routers and targets, so that they know which lower-

quality substreams can be derived from the full stream.

In reservation protocols, the natural way of distributing information to all the routers and

targets is to include it into the flow specification (FlowSpec). The difficulty consists of finding

an efficient way of describing the various substreams. When the number of possible sub-

streams is limited to 8, as assumed above, providing a list of the substreams is still acceptable.

For larger numbers, more efficient schemes should perhaps be elaborated, possibly by using

regular expressions. However, we doubt that arbitrary quality levels will be needed in practice.

3.1 The ENC FlowSpec

Before we enter the discussion, we briefly introduce the FlowSpec used by our ST-II imple-

mentation. The intent here is to show how the single substreams can be described. Any other

FlowSpec proposed in the literature (e.g., [9]) could have been chosen for the same purpose.

The ENC (European Networking Center) FlowSpec contains the following QoS parameters:

• diligence (either guaranteed or statistical QoS)

• maximum end-to-end delay (in microseconds)

• maximum message size (in bytes)

• message rate (in messages/second)

• workahead (in messages/second)

• reliability class (determines error handling strategy)

The diligence parameter indicates whether “guaranteed” or “statistical” service is desired by

the application. The “guaranteed” service provides the best guarantees, and can support appli-

cations with very strict requirements. It implies a conservative reservation scheme which may

lead to poor resource utilization; therefore, our system offers also the “statistic” service where

more optimistic assumptions are made, and small violations of the guarantees are allowed.

The maximum end-to-end delay, maximum message size, and message rate define the maxi-

mum transmission delay of a packet belonging to the stream, its maximum size, and the high-

S2

S1

S0

Q2

Q1

Q0

Available Quality

Delivered Substreams

H0

H1

H4

H5

H3

H2

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

est frequency at which an application may send packets without violating the QoS,

respectively. Short-term violations of the rate are allowed; they are bounded by the workahead

parameter. Finally, the reliability class parameter specifies whether transmission errors should

be detected and how, if at all, they should be corrected.

3.2 Substream Description

There is no need to entirely replicate the FlowSpec for each single substream. In the following,

we consider each parameter of the FlowSpec separately to verify whether replicated informa-

tion for every substream is required.

Diligence: It is desirable that the diligence is specified on a substream basis. For instance, an

application may require guaranteed QoS provision for the base substream or a small set of sub-

streams only. In a video conference, it would be possible to request guaranteed service for a

black-and-white quality substream while statistical service could be sufficient for the better

quality in colors.

Maximum End-to-end Delay: A common specification for all substreams is sufficient for the

maximum end-to-end delay parameter. The end-to-end delay of the full stream is shared by all

substreams since a larger delay for one substream would increase the delay of the full stream.

Maximum Message Size and Message Rate: These two parameters define the total amount of

bandwidth required by each substream. They need to be specified on a substream basis.

Workahead: For workahead, it has to be considered that the full stream S consists of a repeti-

tion of substream (S0 … Sn-1) packets such as

S = S0S1…Sn-1S0S1…Sn-1 … S0S1…Sn-1 = (S0S1…Sn-1)*

or as another example

S = (S0S1S2S2S1S2S2)*

Thus, the workahead Wi of a substream Si with a rate Ri is a simple function of a base worka-

head W and does not need to be specified separately. It can be specified as Wi = (W * Ri) / N,

where N is a ‘normalization’ factor with a value of 1000. Rates will always be smaller than that

value, thus, the workahead per substream Wi can be specified with fine granularity.

Reliability: Applications may need to assign different reliability classes to different sub-

streams. The reliability for substreams may be different because of the different importance of

a substream with respect to the full stream. While an application may be interested in error

indication or correction for the base stream, it will cause less problems if data from lower pri-

ority substreams is lost. In this case, the lowest reliability class may be used. In an MPEG

stream which might be scaled in the temporal dimension, reliable transfer should probably be

chosen for I-frames, because when an I-frame is lost the following P- and B-frames cannot be

calculated. The same argument applies to a stream scalable in the SNR dimension; here, the

MSB substream has to be transmitted with a high reliability class while for the LSB part a

lower reliability class can be used.

3.3 A FlowSpec for Substreams

For each substream, a SubFlowSpec including the following parameters is needed:

• diligence,

• maximum message size,

• message rate,

• reliability class.

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

In addition to these parameters, the number of substreams that exist has to be specified.

The resulting FlowSpec for a stream and all its substreams is shown in Figure 2. The meaning

of the fields are:

f_pcode: Identifies this parameter as a FlowSpec.

f_pbytes: FlowSpec length.

f_version: Version number; for this FlowSpec version number 5 is used.

f_pad: Padding.

f_delay: Stream maximum end-to-end delay (microseconds).

f_accum_delay: Delay accumulated between origin and previous host (microseconds).

f_workahead: Stream workahead W (messages).

f_substreams: Number of substreams (integer in the range 2–8).

f_filter: Filter (see below).

The last fields contain substream information:

f_msg_size_first: Maximum message size for substream S0 (bytes).

f_rate_first: Rate for substream S0 (messages/second)

f_dil_first: Diligence for substream S0 (guaranteed or statistical).

f_rel_first: Reliability for substream S0 (reliability class identifier).

f_msg_size_last: Maximum message size for substream Sn-1.

f_rate_last: Rate for substream Sn-1.

f_dil_last: Diligence for substream Sn-1.

f_rel_last: Reliability for substream Sn-1.

Substream identifiers are assigned in the order of appearance in the FlowSpec. The first sub-

stream has identifier 0. At least two substreams have to exist when using this FlowSpec. A

maximum of 8 substreams is allowed.

The f_filter field indicates which substreams should be forwarded by a router. A value of 2,

for instance, indicates that the two most important substreams (S0 and S1 in the example

above) should be forwarded. Data belonging to other substreams is dropped.2

4 Use of the FlowSpec

It is important to specify how a FlowSpec should be handled and interpreted when it is defined.

Not all mechanisms that are useful for a complete FlowSpec are automatically appropriate for

7 15 23 31

f_pcode f_pbytes f_version f_pad

f_delay (maximum regular transit time)

f_accum_delay (minimum transit time)

f_workahead f_substreams f_filter

f_msg_size_first

f_rate_first f_dil_first f_rel_first

…

f_msg_size_last

f_rate_last f_dil_last f_rel_last

Figure 2: Flow Specification including substream descriptions

2. One could consider allowing the selection of non-contiguous substreams, choosing substreams S0 and S2 and

emitting S1, for example. However, we believe that the gain in flexibility does not outweigh the introduced com-

plexity.

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

SubFlowSpecs. In particular, SubFlowSpec negotiation cannot be as general as FlowSpec

negotiation since the dependencies of the different SubFlowSpec must be considered.

4.1 Stream Establishment

A useful method to shorten the FlowSpec negotiation when a stream is established is to pro-

vide a range of acceptable values and not just a single target value for each FlowSpec entry.

This leads to different QoS levels, for example, by providing different frame rates in a video

stream.

We feel that such a mechanism would be too complex with the SubFlowSpecs. Instead, we

exploit the fact that streams are hierarchically encoded and that it is possible to derive different

quality substreams from them. This leads to discrete quality levels rather than a continuous

range and yet is appropriate for many multimedia applications. The following algorithm is

easy to implement in any router.

4.2 Stream Acceptance

In ST-II, if the target side of an application decides to accept a new stream,3 it replies with an

ACCEPT message containing an updated FlowSpec. If the application is not willing to receive

the full stream, it needs to specify which substreams should be received. This can be done by

updating the f_filter field of the FlowSpec. For example, should the application be interested in

receiving substreams S0 and S1 only, it would indicate this by setting f_filter to 2. Also, the

message rate field relative to substream S2 is set to 0 to indicate that substream S2 should not

be received.4

A router which transfers an ACCEPT message to the origin of the stream stores the Flow-

Spec information (f_filter) given in the ACCEPT messages, together with the original Flow-

Spec transmitted in the CONNECT message.5 While the information from the modified

FlowSpec is needed to prepare the specified filter, the original FlowSpec is needed if later a

new target wants to join the existing stream and would like to get a better quality than the

established targets and if the router supports the receiver-oriented connection establishment as

described in [2].6

3. The characteristics of the stream are specified by the FlowSpec received as part of the CONNECT message.

4. First, we considered also that distinct targets might be willing to receive a substream with a different rate,

thus, changing the rate field to the desired value. The router would drop packets which are not required with

respect to the ‘subrate.’ While this introduces flexibility, we think it adds too much complexity in the routers.

5. The only information from the ACCEPT message which has to be stored is the f_filter value since it is the

only field indicating the requested stream information. Of course, for links without directly attached targets a

router stores only a combined f_filter describing the requested substreams to be forwarded via that link instead

of the information per target.

Let a stream consist of 3 substreams, as in Figure 1. A router receiving a CONNECT

message extracts the FlowSpec and gives the information about the characteristics of the

specified streams to its resource management system (RMS) [15]. The RMS attempts to

reserve the resources for the streams from highest quality to lowest quality and returns

information about the substreams which can be handled by the router. Thus, it tries to make

a reservation for the full stream first. If this succeeds, the router will deliver the full stream

to its next-hop. If the reservation fails because not enough bandwidth is available, it will try

to reserve for the medium-quality stream only. If this succeeds the router will forward pack-

ets belonging to S0 and S1 and drop packets belonging to S2. If the reservation fails again, it

will try to reserve for the low-quality stream only. Upon success, the router will forward

packets belonging to S0 and drop packets belonging to S1 and S2. If even the low-quality

stream cannot be established, the router disconnects the correspondent targets.

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

For RSVP a similar amount of information has to be stored. The PATH message includes in

the FlowSpec the information about the stream characteristics, and the RESERVATION mes-

sage contains the reserver information (for the dynamic filtering style).

4.3 Filter Placement

From the information a router has about its targets, two kinds of filters can be computed:

• an up-stream filter which specifies which information has to be received by this router and

• a down-stream filter which specifies for each target which information has to be forwarded.

The up-stream filter must be established not at the router itself, but at the system up-stream

from the router, in order to reduce the amount of data transferred via the connecting link. Thus,

the information about the required streams has to be transmitted to the up-stream system. The

down-stream filter is located at the router itself and discards packets if no target reached via

this link has indicated interest. Only if a multicast connection is used, a filter may be placed on

the down-stream system.

In the multicast case, the router receives from the targets (connected to the shared media

network) the ACCEPT messages through the same link, they specify requests for different

numbers of substreams. Thus this situation does not differ (for the router) from other scenarios

and no specific mechanism is needed on a router. Systems reached via a multicast must, how-

ever, create a filter. Thus the question is raised how these systems learn about the “filter cre-

ation requirement”. Since the use of multicast in networks such as Token Ring or Ethernet

requires the establishment of a multicast group (for instance, using a scheme as described in

[14]), the knowledge is already available on all systems participating in the multicast transmis-

sion. For a “sanity check” on a received stream, the simple filter on a down-stream system may

always be set; it merely drops received packets with a higher substream number than

requested. (See also the processing steps shown in Figure 6.)

Figure 3: Filter placement

A scenario is shown in Figure 3 where the source on the left offers three substreams S0, S1, and

S2. The down-stream targets on the right side request S0 and S0 with S1. This means that the

router must receive the two substreams S0 and S1. On the router, down-stream filters for the

three down-stream systems are established. S2 is filtered out at the up-stream system.

The FlowSpecs occurring in the scenario above are illustrated in Figure 4. The original

FlowSpec describes three substreams. All substreams have a rate of 10 messages/second and

should be transmitted with the lowest reliability class. On the way back from the targets to the

origin, the FlowSpecs shown in the middle of the figure are received by the router. The first

down-stream system indicates interest for two substreams. For the second down-stream sys-

6. Eventually, the router has to inform its up-stream system that a different filter has to be used.

S0

S0 & S1

S0 & S1

S0, S1

Up-Stream Down-StreamRouter
Systems

& S2

ImpliedSystem
Up-Stream

Filter

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

tem, only one substream should be transmitted. The result from these desired substreams is

that the FlowSpec which is forwarded from the router to the up-stream system requests two

substreams. The third substream can be completely filtered already at an up-stream system.

Figure 4: Exchanged FlowSpecs

4.4 Filter Administration

Which data of a stream must be received by a router? It is the set of all substreams of this

stream for which some down-stream system h has indicated interest, and since that specifica-

tion (via f_filter) is ordered, we can simply use F = max(f_filterh). Other packets do not need to

be transmitted from the up-stream system to this router.

Original FlowSpec

FlowSpecs Received at Router from Down-Stream Systems

FlowSpec forwarded from Router to Up-Stream System

f_pcode = 2 f_pbytes = 40 f_version = 5 f_pad

f_delay (maximum regular transit time)

f_accum_delay (minimum transit time)

f_workahead f_substreams = 3 f_filter = 3

f_msgsize_last = 102400

f_msgrate_last = 10 f_dil_last = B f_rel_last = 0

f_msgsize_first = 40960

f_msgrate_first = 10 f_dil_first = G f_rel_first = 0

f_msgsize = 61440

f_msgrate = 10 f_dil = B f_rel = 0

f_pcode f_pbytes f_version f_pad

f_delay

f_accum_delay

f_workahead 3 2

40960

10 G 0

61440

10 B 0

102440

0 B 0

f_pcode f_pbytes f_version f_pad

f_delay

f_accum_delay

f_workahead 3 1

40960

10 G 0

61440

0 B 0

102440

0 B 0

f_pcode = 2 f_pbytes = 40 f_version = 5 f_pad

f_delay (maximum regular transit time)

f_accum_delay (minimum transit time)

f_workahead f_substreams = 3 f_filter = 2

f_msgsize_last = 102400

f_msgrate_last = 0 f_dil_last = B f_rel_last = 0

f_msgsize_first = 40960

f_msgrate_first = 10 f_dil_first = G f_rel_first = 0

f_msgsize = 61440

f_msgrate = 10 f_dil = B f_rel = 0

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

The steps necessary (beyond the usual control protocol processing) are shown in Figure 5.

As part of the connect and accept message processing, the information from the FlowSpecs

must be stored and updated to reflect the requests of the down-stream targets.

Figure 5: Reservation protocol processing

As shown in Figure 6, during the data protocol processing it is necessary to check whether a

filter exists for the stream the packet belongs to, and whether this filter has to be applied to the

packet. Further processing is done as in a system with no filter mechanism.

4.5 Dynamic Changes

Our algorithms take into account most cases of dynamic changes to streams. If an additional

target wants to receive the stream and the origin sends out a CONNECT message, the neces-

sary functions are already in place: while forwarding the CONNECT, a router finds the stored

FlowSpec; when processing the ACCEPT, the selected substream information F is updated.

The ACCEPT message reflecting this value is forwarded in the up-stream direction, adding

new substreams only if the new target required these.

For receiver-oriented stream joining as described in [2], the target contacts a router which

sends the CONNECT directly without involvement of the origin. If the new target would like

to receive a better quality than the other targets, additional substreams are required. The router

informs up-stream systems by sending a NOTIFY message with a FlowSpec reflecting the new

set of substreams. Then the first system which receives this NOTIFY, and which forwards the

desired substreams already via a different link, simply changes its filter and drops the NOTIFY

message.

Stream Set-Up Processing

switch (SCMP packet type):

[…]

case CONNECT: store FlowSpec for this stream as original FlowSpec;

forward CONNECT message;

break;

case ACCEPT: store FlowSpec for this stream as modified FlowSpec for this target;

create/update up-stream filter:

create/update F, the maximum of f_filter specified by all

targets for this stream;

create/update down-stream filter for this target;

forward ACCEPT message with a FlowSpec which reflects F;

break;

case DISCONNECT: /* disconnect desired by origin */

case REFUSE: /* disconnect desired by target */

remove per target FlowSpec for this stream;

update up-stream filter information:

update F, the maximum of f_filter specified by all remaining

targets for this stream;

remove down-stream filter for this target;

forward DISCONNECT message with a FlowSpec which reflects F;

break;

[…]

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

Figure 6: Data transfer protocol processing

If a target disconnects from a stream, it sends a REFUSE message up-stream. If it was the only

target receiving a particular substream, the next router detects (while processing the REFUSE)

that the new value for F is smaller than the old value and forwards a REFUSE containing the

new F. The up-stream router can therefore change its filter to a coarser one.

If the origin wants to disconnect a specific target (without tearing down the whole multiple

target connection), it sends a DISCONNECT down-stream. If a router detects that the remain-

ing targets require fewer substreams than before (the target to be disconnected was the only

one receiving a particular substream), it can inform its up-stream router about the changed fil-

ter using the above described NOTIFY message.

Changes to the FlowSpec of the stream can be done as usual, for example in ST-II via

CHANGE or CHANGE_REQUEST messages. For instance, if a target decides after some

time that it wants to receive a different set of substreams (and the required resources are avail-

able in case more substreams are selected), it transmits a CHANGE_REQUEST message.

5 Conclusion

We have shown how to implement a simplified version of Pasquale’s filter concept in a reserva-

tion-based internetwork running ST-II or RSVP. The filtering functions we use are sufficient

for many multimedia applications because they:

• are easy to implement and fast to execute,

• do not depend on knowledge about encoding formats in routers,

• do not require users to download filter code into routers, and

• work nicely with common encoding schemes for digital video.

Just like the scaling function at the transport level described in [1], the network-layer filtering

is yet another mechanism to make our multimedia communication system HeiTS (Heidelberg

Transport System) [3, 5] an even more useful tool for exchanging digital audio and video

across internetworks.

We intend to propose the mechanisms contained in this paper to the IETF working group

which is specifying a new version of the ST-II protocol.

Stream Processing

/* data received and should be forwarded to down-stream system */

if (a filter is set for this down-stream system) {

if (packet substream id > F, the maximum of f_filter specified by a target) {

discard packet;

}

} else {

forward_packet;

}

If the default value of F is set to the number of possible substreams (currently 8) this can

even generally be written as:

if (packet substream id > F) {

discard packet;

} else {

forward_packet;

}

Kommunikation in Verteilten Systemen 1995 (KiVS)’, 22.-24.02 1995, TU Chemnitz-Zwickau, Germany

References

[1] L. Delgrossi, C. Halstrick, D. Hehmann, R.G. Herrtwich, O. Krone, J. Sandvoss, C.
Vogt: Media Scaling with HeiTS, ACM Multimedia 93, Anaheim, August 1993.

[2] L. Delgrossi, R.G. Herrtwich, F.O. Hoffmann, S. Schaller: Receiver-Initiated Communi-
cation with ST-II, to appear in Multimedia Systems Journal, ACM/Springer, also as
Technical Report 43.9314, IBM European Networking Center, Heidelberg, 1993.

[3] L. Delgrossi, R.G. Herrtwich: Real-Time Multimedia Communication with the Heidel-
berg Transport System, submitted for publication.

[4] C. Gonzales, E. Viscito: Flexibly Scalable Digital Video Coding, Signal Processing:
Image Communication, Vol. 5, No. 1-2, February 1993, pp. 5-20.

[5] R.G. Herrtwich: The HeiProjects – Support for Distributed Multimedia Applications,
Technical Report 43.9206, IBM European Networking Center, Heidelberg, 1992.

[6] D. LeGall: MPEG: A Video Compression Standard for Multimedia Applications, CACM,
Vol. 34, No. 4, April 1991, pp. 46-58.

[7] MPEG, ISO IEC JTC 1: Information Technology – Coding of Moving Pictures and Asso-
ciated Audio for Digital Storage Media up to about 1.5Mbit/s, International Standard
ISO/IEC IS 11172, 1993.

[8] MPEG-II, ISO IEC JTC 1: Information Technology – Coding of Moving Pictures and
Associated Audio for Digital Storage Media, Test Model4, Draft, MPEG 93/255b, Febru-
ary 1993.

[9] C. Partridge: A Proposed Flow Specification, Internet RFC 1363, September 1992.

[10] J. Pasquale, G. Polyzos, E. Anderson, V. Kompella: The Multimedia Multicast Channel,
Third International Workshop on Network and Operating System Support for Digital
Audio and Video, San Diego, November 1992.

[11] J. Pasquale: Filter Propagation in Dissemination Trees: Trading off Bandwidth for Pro-
cessing in Continuous Media Networks, Fourth International Workshop on Network and
Operating System Support for Digital Audio and Video, Lancaster University, November
1993.

[12] H. Schulzrinne: RTP: A Transport Protocol for Real-Time Applications. Internet Work-
ing Draft, 1993.

[13] C. Topolcic: Experimental Internet Stream Protocol, Version 2 (ST-II), Internet RFC
1190, October 1990.

[14] B. Twachtmann, R.G. Herrtwich: Multicast in the Heidelberg Transport System, Techni-
cal Report 43.9306, IBM European Networking Center, Heidelberg, 1993.

[15] C. Vogt, R.G. Herrtwich, R. Nagarajan: HeiRAT: The Heidelberg Resource Administra-
tion Technique - Design Philosophy and Goals, Kommunikation in verteilten Systemen,
Munich, March 1993.

[16] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala: RSVP: A New Resource ReSer-
Vation Protocol, IEEE Network, September 1993, pp. 8-18.

