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Abstract

Trust is a fundamental requirement in distributed systems, especially in cloud computing
environments. However, trust has been invalidated over the years through, e.g., bugs in
the software used by the cloud provider or adversarial employees. A promising solution
that aims to re-establish trust in cloud platforms is the use of a trusted execution environ-
ment (TEE), such as Intel’s Software Guard Extensions (SGX). Intel SGX is one of the most
sophisticated TEE implementations as it offers both confidentiality and integrity under
a strong threat model. This makes SGX an attractive target for adversaries and several
questions regarding its security and performance have been raised.

This thesis analyses the properties of SGX and identifies multiple performance issues as
well as security weaknesses. Firstly, programming antipatterns in SGX-enabled software
have been discovered, which, in combination with high secure execution mode transition
costs, can lead to severe performance degradation. These antipatterns can be identified
and fixed through the use of a toolkit presented herein. Secondly, this thesis uncovers
a new class of application side-channel attacks called multithreaded controlled-channel
attacks. This attack class has been ignored in the past but is a high-impact attack vector
under the new SGX threat model as it can be used to gain code execution inside the TEE.
Lastly, SGX’s inflexible software deployment is an issue that previous work has tried to
fix through the use of dynamic loading; however, these solutions lack support for hot-
patching. In this thesis, the state of the art is extended with support for hot patching at
runtime to remove costly TEE reloads.
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Zusammenfassung

Vertrauen ist eine grundlegende Anforderung in verteilten Systemen, insbesondere in
Cloud Computing-Umgebungen. Jedoch wurde das Vertrauen im Laufe der Jahre unter
anderem durch Fehler in der von Cloud-Anbietern verwendeten Software oder durch
boswillige Mitarbeiter untergraben. Eine vielversprechende Losung, um das Vertrauen
in Cloud-Plattformen wiederherzustellen, ist die Verwendung einer vertrauenswiirdigen
Ausfithrungsumgebung (Trusted Execution Environment, TEE), wie beispielsweise In-
tels Software Guard Extensions (SGX). Intel SGX ist eine der fortschrittlichsten TEE-Im-
plementierungen, da sie sowohl Vertraulichkeit als auch Integritit unter einem starken
Bedrohungsmodell bietet. Dies macht SGX zu einem lohnenswerten Ziel fiir Angreifer,
und es wurden mehrere Fragen hinsichtlich der Sicherheit und Leistung von SGX aufge-
worfen.

Diese Arbeit analysiert die Eigenschaften von SGX und identifiziert mehrere Leistungs-
probleme sowie Sicherheitsschwachstellen. Erstens wurden Programmier-Anti-Pattern in
SGX-fihiger Software entdeckt, die in Kombination mit hohen Kosten fiir den sicheren
Ausfiihrungsmodusiibergang zu schwerwiegenden Leistungseinbuflen fithren kénnen.
Diese Anti-Pattern kénnen mithilfe eines hier vorgestellten Toolkits identifiziert und
behoben werden. Zweitens deckt diese Arbeit eine neue Klasse von Anwendungsseit-
enkanalangriffen auf; die als "multithreaded controlled-channel attacks" bezeichnet wer-
den. Diese Angriffsklasse wurde in der Vergangenheit vernachlissigt, ist jedoch unter
dem neuen SGX-Bedrohungsmodell ein hochwirksamer Angriffsvektor, da sie zum Ein-
schleusen von Code in die TEE verwendet werden kann. Schlieflich ist die unflexible
Softwarebereitstellung von SGX ein Problem, das frithere Arbeiten durch die Verwendung
von dynamischem Laden zu beheben versucht haben; diese Losungen unterstiitzen jedoch
kein Hot-Patching. In dieser Arbeit wird der Stand der Technik um die Unterstiitzung fiir
Hot Patching zur Laufzeit erweitert, um kostspielige TEE-Neustarts zu vermeiden.
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1 Introduction

In the last decade, usage of cloud resources has increased drastically [73, 62]. What
started with the offering of (theoretically) limitless virtual machines, expanded into more
and more specialized offerings meant to satisfy every use-case, prompting businesses to
move away from self-hosted infrastructure to a cloud provider of their choosing. However,
moving to the cloud can be problematic for certain businesses as these handle and pro-
cess sensitive data, e.g., Personally Identifiable Information (PII), medical data or financial
data. Should such businesses use the cloud, they have to hand over the data and trust that
the cloud provider and its personnel is not stealing or modifying the data.

Encryption can protect data at rest, and is even mandated for such sensitive data han-
dled by companies inside the European Union (EU) as per the General Data Protection
Regulation (GDPR), Art. 32. When processing the encrypted data, however, there is an is-
sue: The data either (i) needs to be decrypted or (ii) the processing has to work on encrypted
data. Decryption is not an option as again the sensitive data would be available to the cloud
provider. Processing encrypted data has been a field of active research for many years un-
der the name homomorphic encryption [64]. While homomorphic encryption is practical for
some basic operations, it suffers from very low performance for other, more complex op-
erations to not being able to do some operations at all, depending on the scheme used [1].
In 2015, a new, third option became available. Intel unveiled its Software Guard Exten-
sions (SGX) technology that claimed secure computation of sensitive data with complete
isolation from the hardware provider [60]. The only trust needed would be in Intel to
implement the system correctly. What Intel announced is commonly known as a Trusted
Execution Environment (TEE). With TEEs, data can be safely decrypted for processing as
such data is still protected from access through a multitude of techniques. The concept of
TEEs is not novel and has been used in ARM processors, mainly in the mobile processor
market, in the past [7]. There, the implementation was called TrustZone which enabled
ARM processors to switch between a normal and a secure world. Samsung [74] utilizes Trust-
Zone to enable a secure and trusted boot procedure for Android in addition to integrity
verification of the running Operating System (OS). On desktop and server platforms, the
first steps towards trusted computing were done with the utilization of Trusted Platform
Modules (TPMs) [51] and later Intel Trusted Execution Technology (TXT) [48] which pro-
vided similar functionality.

TEEs are, however, not perfect and have drawbacks. In the case of Intel SGX, the TEE is
a special execution mode of the processor and switching between this mode and normal
execution is non-trivial with a performance cost. It is also not possible to just run unmod-
ified legacy software in this mode. New software either needs to written specifically for
SGX or legacy software needs to be ported to SGX. When doing so, developers need to be



aware of the intricacies of SGX to write secure and performant software. This is even more
important if SGX-enabled software should be updatable during execution, a property that
is often used in cloud deployments.

Lastly, every system that claims it is secure attracts security researchers proving the
opposite. This is also true for Intel SGX whose availability caused a lot of side-channel
attacks to be discovered that were partly applicable to other mechanisms inside the pro-
cessor as well. The severity of these attacks vary from arbitrary code execution [17] over
data exfiltration [93] to denial of service [52] and depend on the SGX properties used.

The research presented in this thesis focuses on the topic of performant and updatable
SGX software and attacks against such software. SGX was chosen as it is the most available
technology that also offers the most features. The techniques described herein can be
adapted to other TEEs with similar features and do not require SGX specifically. The
main requirement is that applications are partitioned with the secure part running inside
the TEE. This can be achieved through the use ofa platform-agnostic TEE framework that
follows this model, e.g. Google Asylo [11], or by building an enclave-like abstraction layer
on top of another TEE technology.

1.1 Publications

The article thesis at hand makes several contributions regarding the security and usage
of Intel SGX. The individual contributions are contained in the following three scientific
publications in conference proceedings. These three publications are contained in this
document and are listed (with their respective page numbers) in the following:

1. Nico Weichbrodt, Pierre-Louis Aublin and Riidiger Kapitza. “sgx-perf: Performance
Analysis Tool for Intel SGX Enclaves”. In: 19th International Middleware Confer-
ence Proceedings (2018), pp. 201213 (on page 23)

2. Nico Weichbrodt, Anil Kurmus, Peter Pietzuch and Riidiger Kapitza. “AsyncShock:
Exploiting Synchronisation Bugs in Intel SGX Enclaves”. In: Proceedings of the
21st European Symposium on Research in Computer Security (ESORICS, 2016), pp.

440-457 (on page 43)

3. Nico Weichbrodt, Joshua Heinemann, Lennart Almstedt, Pierre-Louis Aublin and
Riidiger Kapitza, “Experience Paper: sgx-dl: Dynamic Loading and Hot-Patching for
Secure Applications”. In: 22nd International Middleware Conference Proceedings

(2021), pp. 91-103 (on page 67)



1.2 CONTRIBUTIONS

1.2 Contributions

The contributions of this article thesis in general and of the research papers stated in the
previous section in particular can be attributed to the following research challenges:

Research Challenge 1: Detecting and Fixing Suboptimal Enclave Interfaces

With Intel SGX a TEE implementation exists that is available in commodity hardware to
the general public. While its programming model is similar to traditional applications, it
differs in key areas that, through inexperience or simply wrong usage, can cause perfor-
mance of security sensitive application to be lower than expected [22, 9]. The first contri-
bution aims to alleviate this issue. sgx-perfiis a high-level logger and analyser that helps
developers write better code by giving concrete change recommendations. The applica-
tion is first run normally with the sgx-perflogger attached which records relevant data
into a profile. With the sgx-perf analyser, the profile of an application can then be anal-
ysed for performance bottlenecks. The sgx-perfanalyser gives concrete recommendations
on changes that will benefit enclave performance. An evaluation showing the effectiveness
of sgx-perf'is provided.

Research Challenge 2: Attacking and Defending Multithreaded Enclaves

As Intel SGX is commonly available, it has become a prominent target of security re-
searchers who try to break its security guarantees. While no-one has broken SGX directly,
a steadily growing number of side-channel vulnerabilities and micro-architectural attacks
has been found and published. The second contribution, AsyncShock, introduces a novel
side-channel attack vector on multithreaded SGX enclaves. AsyncShock enables an at-
tacker to stop and resume enclaves threads at will and allows them to force the enclave
into a specific thread schedule. In enclaves that contain synchronization bugs, this fea-
ture can be used to reliably trigger such a bug which in turn can enable further malicious
actions, from simple secret exfiltration up to control flow hijacking. AsyncShock was suc-
cessfully used against two different bugs and was able to exfiltrate sensitive enclave data.

Research Challenge 3: Enabling Secure Modularity in Enclavized Applications

Intel SGX has been the TEE implementation of choice when porting existing applications
to run inside a TEE. Certain system software and capabilities, however, have been missing
so far, notably support for extending an application at runtime. The third contribution is
sgx-dl, a framework that allows for securely adding and removing dynamic code from an
SGX enclave at runtime. sgx-dl enables enclave developers to update and extend enclaves
after launch by embedding a dynamic loader inside the enclave. With this dynamic loader,
enclave can be built in a modular fashion that also allows for updates of the modules
over the enclave’s lifetime. sgx-dl has a low overhead and is shown to work with different
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approaches of integration, from only dynamically loading a single part up to dynamically
loading a whole application.

1.3 Outline

This extended overview of the article thesis is meant to be a summary of the publications
presented in Sections 3, 4 and 5. A full list of publications by the author is given on Page
v of this document. Those publications that are considered as an essential part of this
work are contained in the thesis and are included in their respective sections. The thesis
makes explicit references to those papers to highlight their context and the relation be-
tween the publications. This thesis is structured as follows: Section 2 gives an overview
over the TEE implementation Intel SGX as the presented works are built on top of’it. In
Section 3, the performance profiling toolkit sgx-perfis presented. It enables developers
to profile an unmodified Intel SGX application and gather performance statistics regard-
ing enclave transitions. sgx-perf can give recommendations based on the gathered data
helping developers to optimize their application and prevent performance bottlenecks.
In Section 4, the AsyncShock attack system is presented. With AsyncShock it is possible to
control enclave threading such that synchronization issues in SGX enclaves can reliably
be exploited. The dynamic loading and hot-patching framework sgx-dl is discussed in
Section 5. It offers a novel way to add dynamic loading and hot-patching capabilities to
Intel SGX enclaves with very little overhead. Finally, a summary of this extended overview
and a short outlook on future work is given in Section 6.



2 Background

In the last years, Trusted Execution Environments (TEEs) have become commonly avail-
able in computing systems, the most common implementation being ARM TrustZone [7]
due to its prevalence in mobile devices such as smartphones. TrustZone implements two
execution contexts, the normal world and secure world, with the secure world being isolated
against access from the normal world but not vice versa. It is typically used to separate
the untrusted mobile operating system in the normal world from other telephony related
software in the secure world. While TrustZone is the de-facto standard on mobile devices,
traditional desktop and server PC systems were lacking a viable option. In 2007 [48] In-
tel released Intel Trusted Execution Technology (TXT) [48, 35] which aims at attesting the
authenticity of the platform and operating system while also building a chain of trust for
software started later on the system. Intel TXT requires a TPM as a root of trust from
which the chain of trust is bootstrapped.

While TXT tries to authenticate the whole system step-by-step, another approach is to
create a trusted environment for an application from scratch on an otherwise untrusted
platform. In 2015 the first Intel processors with support for Intel Software Guard Exten-
sions (SGX) were released which does exactly that. Similarly, AMD released their compet-
ing implementation, AMD Secure Memory Encryption (SME) and AMD Secure Encrypted
Virtulization (SEV), in 2016 [2] and extended it in 2020 with Secure Nested Paging (SNP) [3].
Since this thesis presents work based on SGX, the following section will explain it in de-
tail. However, the concepts of the publications presented in this thesis can be adapted to
work on other TEE implementations.

2.1 Intel Software Guard Extensions (SGX)

Intel SGX is an extension of Intel’s x86 architecture and implements a trusted execution
environment that achieves confidentiality and integrity during execution [37]. Its archi-
tecture differs from the previously mentioned TEE implementations as SGX is neither
isolating on a OS nor Virtual Machine (VM) level. SGX instead allows the creation of so-
called enclaves which are isolated compartments that are part of processes and therefore
isolate at the application level. This also means, that enclaves always run in user mode,
the lowest possible privilege level in x86. A process can launch multiple enclaves that are
also isolated from each other.

From an application perspective, the enclave is nothing more than a special memory
area. This memory, however, is not directly accessible from the untrusted application; it
can neither be read from nor written or jumped to. Instead, new instructions are used to
set up and manage enclave memory. SGX adds two new instructions, ENCLU and ENCLS,
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Figure 2.1: Lifecycle of an SGX enclave.

with several sub-instructions accessed through specific values in the rax register. Dif-
ferent responsibilities of the enclave lifecycle are given to user- and kernel mode which
is why ENCLU is only available to user mode and ENCLS is only available to kernel mode.
For example, creation of the enclave is handled by the kernel but entering and exiting an
enclave is only possible to user mode.

The security of SGX enclaves are based on a single root of trust: Intel. To verify whether
an enclave is running on real Intel SGX hardware, the platform can generate a quote for an
enclave which is a cryptographic proof'signed by the platform and checked by an external
service run by Intel that certifies the validity of the platform and correct initialization of’
the enclave [5]. Intel assures that privacy is maintained by utilizing Intel Enhanced Privacy
ID (EPID). EPID is a group signature scheme that makes it possible for a platform to sign
quotes without identifying each signer or linking signatures to a single signer [23]. In
this case, with the signer being the processor itself, EPID makes sure the identity of the
machine and its owner stays private. On newer platforms (Ice Lake-SP and up), EPID has
been replaced by flexible launch control [4] which allows the platform owner to supply their
own quote generation and verification infrastructure [50].

Veritfying the platform is only one part with the platform verifying the enclave being the
other. During enclave creation, a rolling SHA256 hashsum over all enclave pages is calcu-
lated. This hashsum is called the measurement of the enclave. Together with the expected
and signed measurement supplied by the enclave developer it is possible to check that
the correct and unaltered enclave has been launched. This mechanism therefore ensures
trust in the platform being genuine and the launched enclave being unmodified.

Enclave Lifecycle

Enclave creation is handled by the kernel and uses the ENCLS sub-instructions ECREATE,
EADD, EEXTEND and EINIT. Kernel instructions are shown in Figure 2.1 with the orange
dashed arrows. First, ECREATE is used to create a new empty enclave. With EADD the code
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and data pages of the enclave are added sequentially. During this phase, EEXTEND is used to
advance the calculation of the measurement. Finally, EINIT initializes the enclave. At this
step, the calculated measurement is compared against a supplied one to ensure that (i) the
correct enclave has been launched and (ii) the enclave has not been altered. Additionally,
a valid launch token has to be presented which can only be generated by the launch enclave,
see Section 2.1.1.

After enclave initialization, execution can begin. Untrusted code, however, is not able
to just jump to enclave code. Instead, the ENCLU sub-instructions EENTER, ERESUME and
EEXIT have to be used to transition to and from enclave code. As ENCLU is only available
to user mode, the enclave can only be entered from unprivileged code. This is shown
in Figure 2.1 with the blue solid arrows. With EENTER the enclave can be entered and
execution of trusted code will start. The enclave can be left with EEXIT. ERESUME is used
to re-enter an enclave after an interrupt has caused an Asynchronous Exit (AEX).

An AEX is performed when an interrupt or exception occurs during enclave execution.
In that case, the current enclave state is saved in enclave memory (see Section 2.1.1) and the
enclave is automatically exited to handle the interruption. Afterwards, execution control is
transferred to the Asynchronous Exit Pointer (AEP), a pointer to a handler function speci-
fied during EENTER, that chooses whether to resume enclave execution at the interruption
point with ERESUME. The AEP handler can also perform other operations first or choose to
re-enter the enclave anew with EENTER. As the AEP handler is untrusted code, the enclave
must not expect a certain action and must instead be capable of handling resumption and
restart of the execution. With the newest SGX extension, AEX-Notify [41], however, the en-
clave can force EENTER semantics even when ERESUME is used (see Sections 2.1.2 and 4.2).

When the enclave is no longer needed, it can be removed from memory by the kernel us-
ing the EREMOVE sub-instruction. The kernel has to remove every enclave page individually
using that sub-instruction. As a design quirk, removing a page from an enclave does not
prevent one from entering the enclave again. According to the instruction reference [40],
removing a page does not invalidate an enclave’s initialized status and therefore would al-
low entering it with missing pages. This is actually unproblematic, as long as there are no
memory accesses to these missing pages as they would cause a fault. This potential transi-
tion has been omitted from Figure 2.1 as instructing the Software Development Kit (SDK)
(see Section 2.2) to remove an enclave will remove all pages of that enclave in one call and
prevent the enclave from being entered and is therefore not used in practice.

2.1.1 Technical Details

In the following, multiple technical details of SGX are presented that are needed for the
overarching understanding of the works presented in this thesis. Further details are pre-
sented in their respective papers when needed.
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Launch Enclave

Technically, SGX is only capable of launching enclaves that are signed by a specific key
held by Intel (excluding debug enclaves) which results in a problem: Intel would need
to sign all enclaves with the same key. This issue is remedied by having a special launch
enclave which can generate launch tokens. Launch tokens are bound to the measurement
of the enclave that should be launched. On enclave launch, the matching launch token is
also presented to SGX and verified before launch. This mechanism makes it possible to
have different signing keys, e.g., one per organization developing enclaves, and the launch
enclave only needs to know about those. On newer platforms (Gemini Lake, Ice Lake-
U and newer), system firmware can set the measurement of the launch enclave through
special registers at boot time to allow third-party launch enclaves with potentially different
validation mechanisms. This feature was not available on the first SGX-capable platforms
but is now widely supported. Its existence does not change the results presented in this
thesis, it merely removes Intel even more from the Trusted Computing Base (TCB) by
allowing users to fully control enclave launches.

Secure Enclave Memory

All enclaves reside in a special memory area that is encrypted and integrity protected at all
times. This memory area is called the Enclave Page Cache (EPC). The EPC is part of a larger
special memory area, the Processor Reserved Memory (PRM). The PRM is configured by
the system firmware at boot time. On first generation systems it has a maximum size of
128 MiB and on newer systems a size of 256 MiB. The EPC occupies the most part of the
PRM with 93 MiB and 188 MiB, respectively. The mentioned EPC sizes are small when
compared to today’s DRAM sizes. Enclaves that are bigger than the EPC are supported
as SGX offers a paging mechanism that can swap the content of EPC pages to untrusted
memory, see next subsection.

Other parts of the PRM are used for enclave metadata, the Enclave Page Cache Map
(EPCM), and for storing the hash-tree that integrity protects the PRM [36]. The EPCM is a
data structure that holds metadata for every page inside the EPC. This metadata includes
the enclave the page belongs to and the page permissions. The EPC contains the actual
enclave code, data and management structures.

Systems with higher usable EPC [75] have been available since 2021 exclusively on the Ice
Lake-SP platform. Here, the EPC size is no longer fixed but rather dynamically allocated
and deallocated when needed up to a configurable maximum share of system memory.

EPC Paging

To enable the creation and use of enclave that are larger than the size of the EPC, SGX
offers a paging mechanism. The paging mechanism ensures confidentiality and integrity
by re-encrypting the page before page-out and ensures freshness by keeping the nonce
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used for encryption in the EPC itself'in a different page. One such EPC page can store 512
nonces (8 bytes per nonce, 4 KB page size) so one EPC page can be used to track this many
paged out EPC pages. Such a page can itself also be paged out. Developers can ignore
this paging mechanism as it is transparent to the enclave. As pages need to be encrypted
and decrypted, however, it is a costly mechanism that should be avoided by making sure
all required enclave memory can fit inside the EPC. In general, the performance of SGX
enclaves is the topic of sgx-perf, the first paper presented in this thesis.

On Ice Lake-SP systems, this page mechanism is still available with the aforementioned
performance cost but will usually be not used as the flexible allocation of EPC pages make
paging obsolete except when both enclaves and untrusted applications both need a sub-
stantial amount of system memory.

Enclave Data Structures

Each enclave comprises not only its code and data but also several management data struc-
tures which are created at enclave launch. Most importantly, each enclave contains a SGX
Enclave Control Store (SECS) which holds enclave metadata such as the enclave measure-
ment. The SECS also specifies the size and memory range of the enclave. As enclaves can-
not be jumped to, they require definition of entry points. These entry points are directly
coupled to threads. Each enclave contains at least one Thread Control Structure (TCS)
which specifies for one thread where the enclave should be entered and where the State
Save Area (SSA) for this TCS is located. The SSA is the memory area where registers are
saved in case of an AEX. Each additional thread that should enter an enclave therefore
requires its own T'CS and SSA.

2.1.2 Side-Channel Attacks

SGX promises high security under a permissive threat model: It is assumed, that an at-
tacker has administrator-like privileges and physical access to the machine. The host oper-
ating system is not trusted as well as a potential hypervisor. This threat model makes SGX
a prime target for security researchers which have found a number of flaws and defects in
the interaction of SGX and other processor sub-systems ranging from data disclosure to
control flow hijacking.

Before highlighting these works, we need to distinguish between flaws in the SGX sub-
system and its implementation as well as the interaction of SGX with other systems. To
my knowledge, no security relevant flaw directly inside SGX has been found so far. All
security relevant flaws are contained to interactions with different parts of the processor,
e.g., the cache or the Memory Management Unit (MMU), in the form of side-channels.
Most attacks also not only affect SGX but also break the VM isolation. Intel has also stated
that SGX was not designed to be resilient against side-channel attacks [42] and it’s on the
enclave developer to write software resilient to side channel attacks. Multiple techniques
that claim side-channel attack resiliency in SGX have been proposed, such as Varys [67],

9
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MOoLE [56] and others [26, 38, 19]. There also exist some applications using SGX while also
claiming side-channel resiliency, such as TRUSTORE [66].

Not all side-channel attacks are the same. The two main categories of side channel
attacks are microarchitectural and application side-channel attacks. Microarchitectural side-
channels exist due to some flaw in the architecture of the processor whereas application
side-channels exists due to a flaw in the architecture of the application. The first microar-
chitectural side-channel attack against SGX is Spectre [53] which abuses the speculative ex-
ecution of the processor to leak sensitive data. Spectre laid the groundwork for many more
microarchitectural side-channel attacks such as SgxPectre [27], Foreshadow [91], Zom-
bieLoad [78], Plundervolt [63], CacheOut [76] or LVI [92]. Most of the underlying flaws
have either been fixed by Intel through microcode updates or software mitigations exist.

Application side-channel also exist, however, less research has been published as they
mostly focus on one specific application or application type. One of the first papers that
looks at application side-channels is AsyncShock, the second paper presented in this thesis.
Another prominent example is presented in our paper Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution [93] in which we showed that through
observation of page table accesses it is possible to extract the secret session keys used
in EdDSA from an enclavized 1ibgcrypt. Here, operating on the key one bit at a time,
a binary 1 causes slightly different timing from operating on binary ® which is enough
information leakage to recover the secret key outside the enclave by just observing the
page table. The same approach was again used to build SGX-Step [90], a generic framework
that allows single stepping through an enclave by continuously interrupting it. A defence
against SGX-Step has been released as an SGX extension named AEX-Notify [29, 41], see
Section 4.2.

SGXv2 Extensions and Improvements

In October 2014 the second version of SGX has been specified by Intel[43] with first pro-
cessors becoming available at the end of 2017!. The main advancement of SGXv2 is the
possibility to add enclave pages after enclave creation as well as the capability to change
enclave page permissions at runtime. With SGXvi, the memory layout of the enclave is
fixed after initialization. It is neither possible to add or remove pages nor can the page per-
missions be altered. This prohibits enclaves from securely loading code dynamically after
creation as this feature would require enclave pages to be readable, writable and executable
at the same time. Pages with such permissions are a security issue [15]. Furthermore, an
enclave needs to know its peak memory usage and has to load all pages necessary to sup-
port that at creation time. If peak memory usage is significantly higher than normal then
this increases enclave start up time.

Now, with SGXv2, the enclave start can be accelerated as the enclave can be launched

1https ://www.intel.com/content/www/us/en/support/articles/000058764/software/
intel-security-products.html lists Gemini Lake which launched in Q4 2017.
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with a minimal amount of pages. When more pages are needed, these can be added after
enclave initialization. This feature can for example be used to implement dynamically
sized heaps and stacks and reduces enclave start time. Similarly, SGXv2 enables enclave
page permission changes after initialization. Together with adding pages at runtime, it is
now possible to securely load code as pages can be made non-executable for loading and
non-writable for executing. SGXv2 enabled the work on sgx-dl, the third paper presented
in this thesis.

2.2 The Intel SGX Software Development Kit

To make software development easier, Intel provides a SDK since September 2016 with
support for SGXv2 since February 2018 [45]. The SDK allows enclave developers to write
software with enclaves or integrate enclaves into existing software without the need to
understand or use the SGX specific instructions. This is important as it makes adoption
of the technology by developers easier and faster.

Beside the official SDK by Intel, there also exist other SDKs, e.g., Asylo [11] by Google
and Teaclave [6] originally by Baidu which has been continued by the Apache Software
Foundation. Both offer generic support for building enclavized applications and are not
dependent on one TEE technology but rather can work with multiple. For the work pre-
sented here, the official Intel SGX SDK was used due to its availability and maturity. Both
Asylo and Teaclave were either not available or not in a usable state, e.g. due to missing
features, during the work on the presented projects.

With the Intel SGX SDK, a partitioning approach to application development has been
chosen, i.e., the application consists of an untrusted part and one or more enclaves which
are responsible for security sensitive executions. To make it easy to call into enclaves, the
complex system of enclave transitions are hidden from developers through two mecha-
nisms called ECalls (enclave calls) and OCalls (outside calls). For developers, ECalls and
OCalls look and behave like normal functions calls, however, internally enclave transitions
are made using the aforementioned instructions.

The SDK is split into three parts. The first part is the Linux kernel driver? which handles
enclave creation, destruction and all enclave memory management. The second part is the
Platform SoftWare (PSW)? which is a bundle of shared libraries needed to execute SDK
applications as well as the launch and quoting enclave from Intel. The last part is the
actual SDK which consists of special in-enclave standard C and C++ libraries, a wrapper
code generator and other helpful static libraries.

Linux Kernel Driver The Linux kernel driver is responsible for creating and destroying
enclaves and offers an ioctl interface through the /dev/isgx device. It also handles
enclave memory over-subscription through the use of a page swapping mechanism. If

thtps ://github.com/intel/linux-sgx-driver
3Both the PSW and SDK are available at https://github.com/intel/linux-sgx
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more virtual enclave memory is needed than EPC is available, the driver will move pages
into untrusted memory to free up EPC space. These pages are re-encrypted and page
metadata, such as a hashsum over the content, is stored in EPC.

Platform SoftWare The PSW contains all needed shared libraries to run applications built
with the SDK. This is mainly the Untrusted RunTime System (URTS), but also the libraries
needed to communicate with the architectural enclaves. Additionally, the PSW supplies
the architectural enclaves needed for execution: the launch enclave for generating launch
tokens and the quoting enclave for generating quotes for remote attestation.

SDK To actually develop applications with enclaves, the SDK is required. It provides a
stripped down version of the C and C++ standard libraries as an enclave needs its own
self-contained standard library. These libraries do not do any system calls and therefore
do not contain any functions that would need to do system calls. The bundled C standard
library does, however, support synchronization primitives like mutexes that will leave the
enclave, see Section 3.1.

For dispatching ECalls and OCalls, the Trusted RunTime System (TRTS) is included.
Other libraries included with the SDK are a cryptography library (tcrypto), a library that
handles sealing of data (tservice)and alibrary that provides a filesystem-like Application
Programming Interface (API) inside the enclave (tprotected_£s) Finally, the SDK con-
tains the wrapper code generator edger8r which is responsible for generating code for
the enclave interface for both the trusted and untrusted side. The wrapper code is needed
as the SDK wants to make enclave transitions seem like function calls. Essentially, the
wrapper code needs to marshall and unmarshall the function call arguments before and
after transitioning from non-enclave to enclave mode and vice-versa.

With the SDK, enclave code looks very similar to normal C code. As seen in Listing 1 on
Page 15, two files are present. The app.c contains the untrusted application code which
initializes the enclave and performs an ECall. The enclave.c contains the trusted ECall
implementation which performs some secure computation. Comparingline 18 and 30 un-
covers that the function signature of the ECall is different inside and outside the enclave.
This is due to the wrapper code generator generating slightly different code for inside and
outside as it has to account for two additional properties. First, the ECall/OCall might fail
which necessitates a status return value and in turn moves the function return value to a
parameter. Second, there might be multiple active instances of the same enclave which
necessitates the addition of an identification parameter (enclave ID, or eid).

2.2.1 The Enclave Description Language

To describe the enclave interface, the Enclave Description Language (EDL) is used. Devel-
opers describe all the ECalls and OCalls of their enclaves in EDL files which are read by
the wrapper code generator to create the trusted and untrusted wrapper functions.
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Developer generated wrapper code SDK Libraries

libsgx_urts.so

app.c

main() «—— ecall_do_work() +—— sgx_ecall()

enclave_u.c

Encl. mode
transition

A
1
1
1
1
1
1
1
1
1
1

v
ecall_do_work() <—— sgx_ecall_do_work() <«— enclave_entry()

enclave.c enclave_t.c libsgx_trts.a

Untrusted application Trusted enclave

Figure 2.2: ECall control flow in the Intel SGX SDK.

Listing 2 on Page 15 shows an example for a minimal EDL file with one ECall. The EDL
simply lists C function signatures of the available ECalls. More details can be found the
Developer Reference of the SDK [45].

2.2.2 ECall Dispatching

Figure 2.2 shows how ECalls are handled inside SDK applications. The generated wrapper
code defines all the ECalls that have been previously defined via the EDL. Its purpose
is to marshall all arguments into one struct that is then passed to the URT'S together
with a unique numeric identifier that identifies this ECall. Note that not this specific call
instance is identified by the identifier but the ECall itself. The URTS then sets up the
processor state and performs an enclave transition to the TRTS.

The TRT'S is mainly responsible for dispatching ECalls inside the enclave. It does so by
first checking whether the supplied ECall identifier is valid for this enclave. If so, it calls
the trusted part of the generated wrapper functions which then unmarshalls the argument
and calls the actual ECall implementation. After the ECall returns, a possible return value
is passed through the wrapper code to the TRTS, URTS and wrapper again back to the
calling application.

As can be seen, this call is not simply a function call even if it looks like it from a de-
veloper’s perspective. The enclave and SDK transitions add time to the execution which
makes ECalls slower when compared to function calls.



14

Developer generated wrapper code SDK Libraries
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enclave.c enclave_t.c libsgx_trts.a

Untrusted application Trusted enclave

Figure 2.3: OCall control flow in the Intel SGX SDK.

2.2.3 OCall Dispatching

OCalls are the reverse of ECalls and therefore work similarly as shown in Figure 2.3. When
the enclave wants to execute an OCall, the in-enclave wrapper code is called which mar-
shalls the call arguments before calling into the TRTS. The TRT'S leaves the enclave to call
into the URT'S which then has to call the untrusted wrapper code. The URTS, however,
needs knowledge about the existing OCalls as it is linked dynamically into the applica-
tion. For this, the application prepares a special OCall table (oT in Figure 2.3) that is passed
to the URTS with every ECall. Using the table, the URT'S can get the function pointer to
the correct wrapper functions and call it. Lastly, the wrapper calls the actual OCall imple-
mentation, collects an optional return value and passes it back into the enclave.

The ECall and OCall system is an elegant way to abstract the complicated mechanism
of switching between enclave and non-enclave mode away from developers. From a de-
veloper’s perspective, the enclave boundary is crossed via seemingly simple function calls.
However, these abstractions come with potentially unexpected performance drawbacks
which are explored in the following chapter.
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/:’::’:7':7(‘:1‘ app.c :’::i‘:i‘:’::':/
#include <sgx_urts.h>
#include "enclave_u.h" // generated header

int main() {
sgx_launch_token = {};
int updated = 0;
sgx_enclave_id_t eid = 0;

sgx_status_t ret = sgx_create_enclave("enclave.signed.so", 1,

&token, &updated, &eid, NULL);
if (ret != SGX_SUCCESS) {
exit(1);

int result = 0;
ret = my_add_ecall(eid, &result, 2, 7);
if (ret != SGX_SUCCESS) {

exit(2);

printf("2 + 7 = %d\n", result);

/7'.-:'.-:1‘:1‘:? enClaVe.C ::-:'::?:’::(-/
#include "enclave_t.h" // generated header

int my_add_ecall(int a, int b) {
return a + b;

}
Listing 1: SGX SDK code example
enclave {
trusted {
public int my_add_ecall(int a, int b);
};
3

Listing 2: EDL example






3 On the Performance of
Utilizing Enclaves

With the SGX SDK, Intel offers an easy way for developers to develop enclave applica-
tions and coupled with SGX’s availability in commodity hardware, it seems to be an obvi-
ous choice for developers to use. When SGX was first introduced to the public, micro [98]
and macro benchmarks [22] were performed to get an understanding of the performance
characteristics of the new technology and two mechanism were quickly identified as po-
tential performance bottlenecks.

As shown in Section 2.2, the SGX SDK offers an intuitive way for implementing calls
into an enclave that mimic function calls. However, while this mechanism is nice from
a developer’s perspective, it is the fact that a transition into the TEE has to be made that
makes this abstraction problematic. With modern compilers and hardware, function calls
are fast with little overhead as they comprise only a few instructions and are not causing
a context switch. Developers using the offered function call abstraction on the SGX SDK
might have the same expectation. Weisse et al. [98] showed in 2017 that this expectation
is false. They measured enclave transition times for SDK ECalls and OCalls and showed
that these transitions require 8,600 to 14,000 cycles of processing time to execute. Their
methodology, however, is not perfect. First, the measured numbers are round-trip times,
so they include two transitions. Second, the round trip includes all SDK functionality
needed to make the transition. The measured numbers are therefore not only the hard-
ware transition time, but also the SDK processing time.

This raises more questions: Are transitions into the enclave less, equal to, or more ex-
pensive than transitions out of the enclave? And how much ofthe time is spent inside the
SDK itself'and, in light of the recent side channel attack mitigations, do these mitigations
have an effect on the transition times?

The other identified performance bottleneck is the size of the EPC and the resulting
page swapping for enclaves that do not fit into the EPC. With only 93 MiB (and later
188 MiB) the EPC is large enough to hold code but too small to hold data of more sophis-
ticated applications. The small EPC size was an architectural limitation and has been re-
moved in newer iterations of SGX which makes this almost a non-issue for current enclave
development. Only in cases where the enclave has a working set larger than the system
memory, EPC swapping will still be an issue as well a normal page swapping due to mem-
ory exhaustion on the host. Therefore, knowing an enclaves working set is still relevant
when looking at big enclavized software, such as Database Management Systems (DBMSs).
The enclave working set is also relevant because the EPC is encrypted and therefore exe-
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cuting enclave code and loading and storing data inside the EPC requires the processor to
decrypt and encrypt EPC pages. In SCONE [9] it has been shown that as soon as the data
does not fit into the processor’s caches any more (but still inside EPC), the encryption can
cause a 10x overhead compared to non-SGX execution.

In the end, enclave transition times and enclave working set size are both metrics en-
clave developers need to be aware of and need to take into account when developing en-
clavized software.

3.1 sgx-perf: A Performance Analysis Tool for Intel SGX
Enclaves

In sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves [95] (on page 23), we present a
system that helps enclave developers by gathering and analysing these metrics. sgx-perfis
unique in that it is giving recommendations to developers based on the gathered metrics
on how to improve enclave performance by structuring their code differently.

First, however, the transition time measurement from Weisse et al. was verified, but
with a modified SGX SDK. Instead of measuring the time before and after the ECall, in
sgx-perf, the SDK was itself modified to measure directly before the instruction responsi-
ble for the enclave transition. Similarly, inside the enclave, the first instruction executed
immediately transitions back out of the enclave to the modified SDK where the second
measurement was made. This still measured a round-trip, but excluded the SDK to gauge
its effect on the transition time. Measuring a single transition and not a round-trip was ac-
tually not possible at time as the rdtscp instruction for reading the timestamp counter of
the processor caused it to fault when inside an enclave. This behaviour was not intended
by Intel and has been fixed in SGXv2 which was not available at the time. Furthermore,
the measurement has been repeated with multiple pcode versions to gauge the eftect of
side-channel mitigations on the transition times.

For this thesis, the measurement has been repeated to include pcode versions that were
released after the publishing of sgx-perf. Tables 3.1 and 3.2 show the measured transition
times for different pcode versions on two machines. The first machine only offers SGXv1
and therefore all times are round trip times. The second machine offers SGXv2 which
allows measuring entering and exiting the enclave separately.

As can be seen, multiple code updates over the course of the machine’s lifespan had a
significant impact on enclave transition performance. While the updates are optional in
the sense that there is no requirement to install them to keep using SGX, they actually
are mandatory if running enclaves should be attested by the Intel attestation service. SGX
embeds a Security Version Number (SVN)into the attestation report that serves as a version
number of the SGX subsystem. To enforce that pcode updates with mitigations against
attacks are actually installed, the attestation service is refusing to attest enclaves with a
SVN that is too old. In the end, pcode updates will be installed which on one hand restores
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pcode Version ‘ Cycles ‘ Time [ps] ‘ Increase
956 (Stock) 6531 +£740 |  ~1.92 -
0xBA (No security updates) 6468 + 752 ~1.90 | ~ 0.99x
0xC2 (Spectre) 11493 £+ 752 ~ 3.38 | ~ 1.76%
0xC6 (Foreshadow) 14308 + 1227 ~4.21 | &~ 219X
0xCC (MDS Attacks) 15821 + 1303 ~4.65 | ~ 242X
0xD4 (MDS Attacks) 16273 £ 1415 ~4.79 | ~249x
0xD6 (No security updates) | 16516 + 1430 A~ 4.86 | ~ 2.53%
0xDC (CacheOut / SGAxe) | 15711 £ 1321 A 4.62 | ~241x
0xE2 (Plundervolt) 15497 £+ 1329 ~ 4.56 | = 2.37x

Table 3.1: Enclave transition times (round trip) with standard deviation for different pcode versions
on a SGXv1 machine (Xeon E3-1230v5). For each pcode version the mitigated attacks are
noted in parentheses. Increase is always compared to the Stock baseline.

pcode Version ‘ Cycles (enter/exit) ‘ Time [ps] ‘ Increase
0x2E (Stock) 2560 £+ 1276 [ 1180 £407 | ~ 1.97/0.91 -
0x46 (MDS Attacks) 4939 +1622 [ 1195+ 398 | ~ 3.80/0.92 | ~ 1.93 x /1.01x
0x78 (CacheOut / SGAxe) | 4697 + 1606 /1198 + 402 | ~ 3.61/0.92 | ~ 1.83 x /1.01x
0xAQ (Plundervolt) 4902 +1629 /1203 £404 | = 3.77/0.92 | ~ 191 x /1.02x

Table 3.2: Enclave transition times with standard deviation for different pcode versions on a SGXv2
machine (Core i7-1065G7). For each pcode version the mitigated attacks are noted in
parentheses. Increase is always compared to the Stock baseline. Enclave enter and exit

measured separately.

security by mitigating attacks but on the other hand reduces performance due to increased
enclave transition times.

All this reinforces the main point of sgx-perf: Enclave transitions are expensive and
should be avoided when possible. As mentioned earlier, the SGX SDK hides enclave tran-
sitions as function calls which can cause performance issues if developers are not careful.
At the time of publishing, the only tooling with regard to analysing SGX performance
that existed was the Intel VTune low-level profiler [49]. The profiler is great to find per-
formance bottlenecks in, e.g, single functions, hot loops and similar. There is, however,
no analysis of the enclave interface. With sgx-perfthis gap in the tooling has been closed
as it is the first tool that not only analyses the enclave interface but also gives recommen-
dations on how to change it to improve performance.

sgx-perf consists mainly of two parts. The first part is the logger which is attached to an
enclave application before starting. Attaching is done using the LD_PRELOAD functionality
of the dynamic linker to preload the logger before the SGX SDK. This allows the log-
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ger to hook into the SDK and intercept all ECalls and OCalls to instrument them. Using
the logger in this way enables usage of sgx-perf without the need to change the enclave
application in any way. The logger does not only capture OCalls created by enclave devel-
opers, but also captures the OCalls integrated into the SGX SDK itself which are used to
implement synchronization primitives.

Since an enclave cannot wait for an interrupt, Intel built synchronization primitives into
the SDK that will leave the enclave and then call the appropriate system and library calls
outside the enclave. On first look, that seems like a bad design decision as, e.g, acquiring
a lock should be a very fast operation but now seems to require an OCall which in turn
requires an enclave transitions. However, the SDK implements a hybrid approach. Lock
information is managed inside the enclave and acquiring a lock is therefore fast if the lock
is not held. If the lock cannot be acquired, only then the enclave is left after marking the
lock such that the current lock holder knows that another thread is waiting outside. When
the current lock holder releases the lock, the thread will also perform an OCall to wake
up the waiting thread. This optimization mechanism allows high performance when lock
contention is low but creates a high overhead if lock contention is high due to OCalls.

All gathered data is logged into an SQLite database to make it easy for third-party tools
to interpret and work with the data. sgx-perfalso comes with its own analyser, the second
main part, to interpret the data. The analyser identifies different performance problems
based on the timing behaviour of the ECalls and OCalls and offers recommendations on
how to change the code to eliminate these problems. The evaluation showed that sgx-perf
is capable of making recommendations that increase enclave performance by up to 2.16 x
in four non-trivial SGX workloads.

While the main part of sgx-perf’is gathering and analysing data on enclave transitions,
it also is capable of measuring an enclave’s working set. sgx-perf was published at a time
when EPC sizes were fixed and small (up to 188 MiB) and enclave working set management
was a valid concern. Today, with flexible EPC, these concerns are less relevant but still valid
as software with big working sets such as DBMSs might fill up most of the hosts memory
and therefore might cause EPC page swapping. sgx-perf can still help in these cases to
figure out if'an enclave is too big and to fine tune EPC size allocations on the host.

3.2 Related Work

Before the introduction of SGX, analysing application performance was possible using
a multitude of language-agnostic and language-dependant tools, sometimes even with
support from the operating system kernel.

For example, on Linux there is perf [12], a frontend for the performance counter subsys-
tem of the kernel. Performance counters are hardware registers that collect information
about, e.g., number of executed instructions, cache-misses or branch mispredictions. The
subsystem can also collect information about system calls, socket usage and filesystem
operations. Although the hardware performance counters are global, the subsystem can
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be instructed to filter only a specific task which enables application profiling. While perf’
is language-agnostic, it is capable of annotating source code with event counters to show
hot-spots if the profiled binary contains debug symbols. Therefore, this only works for
compiled languages and not interpreters or JIT compilers.

A similar tool is offered by Intel under the name VTune Profiler (formerly VTune Am-
plifier) [49]. It offers a wide range of possibilities, such as analysis of accelerator and GPU
usage, hot-spot analysis including flame graphs, threading analysis and more while sup-
porting multiple languages such as C, C++, C#, Java, Python and Go. Originally developed
to find memory leaks, the Valgrind [65] toolkit nowadays also contains tools for profiling,
namely the Massif heap profiler, the Cachegrind cache profiler and the Callgrind call graph
analyser which work best with C and C++ applications.

Some programming languages, such as interpreted or JIT compiled languages, also have
their own profiling capabilities and tooling. For Python, the cProfile [14] module offers
function call and hot-spot profiling useable directly from Python code. cProfile is a pop-
ular choice for Python applications and is used by popular projects such as Home Assis-
tant [13]. For Java, a wide range of tools exist such as Oracle’s profiling and event collection
framework Java Flight Recorder [68] or JProfiler [34].

When SGX was released, the need for performance analysis of SGX enclaves could only
be fulfilled by VTune as Intel updated their profiler to work with SGX by offering hot-
spot analysis for SGX enclaves. However, multiple papers quickly identified that SGX en-
claves have some unique performance characteristics which developers need to be aware
of. SCONE [9] and SecureKeeper [22] both measured the impact of SGX paging when an ap-
plication exceeds the available EPC of a system. EPC paging is so costly, that it should be
avoided completely, if possible. Similarly, Weisse et al. [98] and Zhao et al. [102] have both
shown that enclave transitions are costly, and their numbers need to be kept low. Their
proposals of asynchronous enclave transitions and a custom memory allocator have been
explored in SCONE and Eleos [70], respectively. While those papers show the importance
of knowledge of the new performance characteristics, they do not oftfer any way for devel-
opers to check how badly their applications are affected.

Building on those works, Gjerdrum et al. [33] presented a list of SGX performance prin-
ciples and recommendations for enclave developers in a cloud scenario. The authors do
not directly recommend minimizing enclave transitions, instead they focus on the size of
the data that needs to be copied during an enclave transition, and recommend keeping
the data size small. While it is certainly true that copying larger amounts of data takes
longer, the transition itself’is still costly, even if the data is kept small. They also advocate
to keep enclave size small to avoid EPC paging and to increase start times. Although the
paper contains recommendations for developers, it, again, does not provide any way for
developers to check their applications.

sgx-perf fills this gap by offering profiling support for these newly identified perfor-
mance characteristics and providing automatic recommendations to developers on how
to optimize their application around those characteristics. Since the publishing of sgx-
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perf, other related systems have been developed shown below.

SGXoMeter [58] is a framework that allows developers to benchmark their code inside a
controlled SGX environment. Its main purpose is to unveil performance differences be-
tween code running inside an enclave and code running outside an enclave. The architec-
ture of SGXoMeter allows developers to only write their code once and then benchmark it
both ways. In previous works[9g, 22], the overhead of running inside an enclave was shown
to be measurable but negligible when staying inside EPC limits. With SGXoMeter, these
results were reproduced, however, it uncovered that different SGX SDK version can lead to
different performance due to internal changes that, e.g,, affect memory allocation, thread
selection and side channel mitigations. Certainly, it could also be used to gauge the effect
of pcode changes to real-world enclave performance. Compared to sgx-perf, SGXoMe-
ter is not designed to benchmark an existing enclave, but instead offers a mechanism to
benchmark specific functions and algorithms inside and outside an enclave to compare
performance characteristics.

TEEMon [54] is a real-time performance monitor for SGX enclaves. It provides fine gran-
ular metrics of the running enclave to either a monitoring system for real-time analysis
of an enclavized service or for a SGX framework to consume for real-time tuning of the
enclave. TEEMon focuses on providing real-time metrics and, unlike sgx-perf; does not
offer a way to get action recommendations based on the gathered metrics. Due to its ar-
chitecture, it’'s meant to be used at runtime after enclave deployment and not during the
development phase and while it can work with the SGX SDK, it is more tailored to a library
OS enclave.

A similar focus is made by SGXTuner [59] which offers automatic tuning of the standard
library embedded inside a library OS enclave. Compared to enclaves built with the SGX
SDK, library OS enclaves come with a lot of subsystems that can be tuned, such as system
call queues or user-level threading. SGXTuner also supports tuning application specific
parameters, such as the size of buffers, timeouts or other limits.

(Publication starting next page)
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ABSTRACT

Novel trusted execution technologies such as Intel’s Software Guard
Extensions (SGX) are considered a cure to many security risks in
clouds. This is achieved by offering trusted execution contexts, so
called enclaves, that enable confidentiality and integrity protection
of code and data even from privileged software and physical attacks.
To utilise this new abstraction, Intel offers a dedicated Software
Development Kit (SDK). While it is already used to build numerous
applications, understanding the performance implications of SGX
and the offered programming support is still in its infancy. This
inevitably leads to time-consuming trial-and-error testing and poses
the risk of poor performance.

To enable the development of well-performing SGX-based applic-
ations, this paper makes the following three contributions: First, it
summarises identified performance critical factors of SGX. Second,
it presents sgx-perf, a collection of tools for high-level dynamic per-
formance analysis of SGX-based applications. In particular, sgx-perf
performs not only fined-grained profiling of performance critical
events in enclaves but also offers recommendations on how to im-
prove enclave performance. Third, it demonstrates how we used
sgx-perf in four non-trivial SGX workloads to increase their per-
formance by up to 2.16x.
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1 INTRODUCTION

Although cloud computing has become an everyday commodity,
customers still face the dilemma that they either have to trust
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the provider or need to refrain from offloading their workloads
to the cloud. With the advent of Intel’s Software Guard Exten-
sions (SGX) [14, 28], the situation is about to change as this novel
trusted execution technology enables confidentiality and integrity
protection of code and data — even from privileged software and
physical attacks. Accordingly, researchers from academia and in-
dustry alike recently published research works in rapid succession
to secure applications in clouds [2, 5, 33], enable secure network-
ing [9, 11, 34, 39] and fortify local applications [22, 23, 35].

Core to all these works is the use of SGX provided enclaves,
which build small, isolated application compartments designed to
handle sensitive data. Enclave memory is encrypted at all times
and integrity checks by the CPU detect unauthorised modifications.
Internally, enclaves are a special CPU mode and are enabled via
new instructions. To ease development of enclaves, Intel released a
Software Development Kit (SDK) [16]. It hides the SGX hardware
details from the developer and introduces the concept of ecalls and
ocalls for calls into and out of the enclave, respectively, that look
like normal functions calls. While enclaves offer confidentiality of
data and integrity of code and data, these properties come with a
performance cost [1, 31, 44]. However, despite the rapid research
progress over the last years, the understanding of the provided
hardware abstractions and the offered programming support - es-
pecially its performance implications — is still limited. This leads
to time consuming trial-and-error development and debugging as
well as incurring the risk of bad performance.

Early works such as SCONE [1], SecureKeeper [5], and Eleos [31]
have shown that enclaves have multiple potential performance is-
sues that can be addressed through different techniques such as
asynchronous calls [1, 44] and extended memory management sup-
port [31]. However, all these systems provide isolated solutions
and only slightly address the development of commodity applica-
tions using the Intel SGX SDK. To support the SDK, Intel updated
their low-level performance profiler VTune Amplifier [18] to allow
profiling of SGX enclaves. However, VTune is built for perform-
ance profiling on an instruction level, providing information about
hot spots in functions. While this is helpful, it does not provide
information and insights about the specific characteristics of SGX.
In summary, while SGX is rapidly adopted to secure applications,
there is limited knowledge and a severe lack of tooling support
empowering users to implement well-performing applications.

In this paper we aim to address this demand by a tripartite ap-
proach. First, §3 provides a summary of the performance critical
factors of SGX. Second, §4 presents sgx-perf, a collection of tools
to dynamically analyse enclaves, without having to recompile the
application. sgx-perf allows developers to trace enclave execution
and record performance critical events such as enclave transitions
and paging. It does so by shadowing specific functions of the SGX
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SDK and thereby redirecting the control flow. Analysing the recor-
ded data then gives insights on potential bottlenecks. Furthermore,
sgx-perf offers SGX-tailored recommendations on how to improve
the enclave code and interface to increase performance. Third, in §5
we analyse enclaves of multiple projects using sgx-perf, implement
recommendations when applicable to improve performance and
present our findings. In particular, we looked at four classes of
applications that are relevant for cloud enviroments and SGX: a
cryptography library [2], a key-value store [5], an application parti-
tioned using the Glamdring tool [25] and a database [37]. We found
that the enclave interface design is an integral part of enclave per-
formance and that applying the recommendations from sgx-perf
increases performance by at most 2.66X.

In addition, §2 gives background information on Intel SGX, the
SGX SDK, existing tooling support, and why enclave performance
matters, §6 shows related work and §7 concludes.

2 BACKGROUND

This section gives an overview about SGX and the available pro-
gramming support for enclaves as provided by the SGX SDK. Fur-
thermore, we present enclave performance considerations and cur-
rent SGX-aware profiling tools.

2.1 Intel Software Guard Extensions

Intel’s Software Guard Extensions (SGX) [28] is an extension to the
x86 architecture, which allows the creation of secure compartments
called enclaves. Enclaves can host security critical code and data
for applications running on untrusted machines. Authenticity and
integrity of the enclave is guaranteed by SGX through both local
and remote attestation mechanisms.

The memory used for enclaves is a special region of system
memory, called the Enclave Page Cache (EPC). In current SGX
capable systems it has a maximum size of 128 MiB, of which ~93 MiB
are usable. While enclaves can be bigger than this limit, this incurs
costly swapping of pages to and from the EPC. All enclave memory
is fully and transparently encrypted as well as integrity protected.

Inside the EPC, each enclave has its own page holding metadata
about the enclave such as its size and signature to check for its
integrity, called measurement. Furthermore, each enclave has at
least one Thread Control Structure (TCS) page describing an entry-
point into the enclave. TCSs are used by threads to enter the enclave.
The number of TCS determines the maximum number of threads
that can execute inside the enclave concurrently. Each TCS also
points to its own stack inside the enclave. Lastly, enclave heap, code,
and data sections are also located inside the EPC.

Enclave creation must be handled in kernel-space, e.g., through
a kernel module, whereas enclave interaction is restricted to user-
space applications. Privileged code cannot enter enclaves and un-
privileged code cannot create enclaves. Entering an enclave is done
through the EENTER instruction which changes the execution con-
text to inside the enclave. It can be left again with EEXIT.

Entering and leaving the enclave are synchronous operations, i.e.,
they are done explicitly. Furthermore, there exists a way to asyn-
chronously leave the enclave. Whenever an interrupt, exception,
fault or similar happens while the processor is executing inside the
enclave, then the current context, i.e., the state of the registers, is
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Figure 1: Architecture of an ecall. The developer provides
the application and ecall implementations whereas the SDK

generates code which uses the URTS and TRTS libraries.

saved into the thread-specific State Save Area (SSA). The current
instruction is then finished and the enclave is left to handle the situ-
ation, e.g., call the interrupt handler. This is called an Asynchronous
Enclave Exit (AEX). After the handler finishes, the processor ex-
ecutes the user-defined handler located at the Asynchronous Exit
Pointer (AEP) instead of resuming the enclave. Typically, the hand-
ler uses the ERESUME instruction to continue enclave execution,
which restores the saved context and continues at the point of
interruption but re-entering with EENTER is also possible.

2.2 Intel SGX Software Development Kit

To ease enclave development, Intel released a Software Develop-
ment Kit (SDK) [16] in 2016. The SDK abstracts the enclave trans-
itions into a concept they call enclave calls and outside calls. Enclave
calls, or ecalls, are calls from the untrusted application into the
enclave. Outside calls, or ocalls, are calls in the opposite direc-
tion. Enclave developers specify the enclave interface in form of
ecalls and ocalls using the Enclave Description Language (EDL).
The SDK source-to-source code generator sgx_edger8r then gen-
erates wrapper code from this EDL file to be compiled and linked
into the developed application and enclave. Furthermore, the SDK
provides a trusted, but stripped down standard C/C++ library, a
trusted cryptography library and Trusted Runtime System (TRTS)
for the enclave as well as an Untrusted Runtime System (URTS)
for the untrusted application. The cryptography library provides
basic encryption and decryption functions whereas the TRTS and
URTS handle the enclave transitions and call dispatching. Missing
features from the standard C/C++ library that require system calls
have to be reimplemented, e.g., as ocalls.

As can be seen in Figure 1, the actual enclave transitions are
located in the URTS (EENTER and ERESUME) and TRTS (EEXIT). The
SDK uses the same generic entry point for all ecalls with a trampo-
line dispatching the call to the right function. Similarly, ocalls are
handled the other way round.

2.3 Enclave Performance Considerations

Enclave performance has been the subject of research since the
availability of SGX-capable hardware in 2015. The consensus is
that both enclave transitions and enclave paging are expensive
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and should be avoided. Several research projects propose different
techniques to eliminate transitions and make better use of the
memory consumption [1, 31, 44]. Unfortunately these require a
change in programming paradigms and are not openly available
like the SGX SDK.

2.3.1 Enclave Transitions. Enclave transitions are the base mech-
anism to be able to execute code inside the trusted execution en-
vironment. Furthermore, enclaves are restricted to a subset of the
instructions available on the processor. In particular they cannot
use int or syscall [14] and therefore cannot issue system calls,
for I/O operations or threads synchronisation. These features thus
require the implementation of additional ocalls.

Weisse et al. [44] measured enclave transitions of SDK ecalls and
ocalls in the order of 8,600 to 14,000 cycles, depending on cache hit
or miss. Instead, we directly measured the time elapsed between the
EENTER and EEXIT instructions, excluding the overhead of the URTS
looking for a free TCS and the TRTS actually dispatching the call,
in three different settings: (i) on an unmodified Intel SGX-capable
processor; (ii) after applying the SDK and microcode updates to
fix the Spectre [20] speculative execution vulnerability, which also
affects SGX [6, 29]; and (iii) after applying the microcode update to
fix the Foreshadow (L1 Terminal Fault) [42] attack.

In the first case, we measured transition times of ~ 5, 850 cycles
(= 2,130 ns) with a warm cache for one round-trip (see §5 for the
experimental settings). In the second case, we measured a transition
time of = 10, 170 cycles (= 3, 850 ns), ~ 1.74x more than without
patches. Finally, with all the updates and microcodes to address the
Spectre and Foreshadow vulnerabilities enclave transitions became
even slower, resulting in a round-trip time of ~ 13, 100 cycles (~
4,890 ns), ~ 2.24x more. This further underlines the need to save
on enclave transitions.

2.3.2 In-Enclave Synchronisation. Enclaves can be multi-threaded
and therefore need synchronisation primitives. Unfortunately, as
sleeping is not possible inside enclaves, the in-enclave synchron-
isation primitives provided by the SGX SDK implement additional
ocalls to sleep outside of the enclave.

The SDK offers mutexes that work as follows: if a thread tries
to lock an unlocked mutex, then this operation succeeds without
needing to leave the enclave. Whenever a thread tries to lock an
already locked mutex, it will put itself into a queue and exit the
enclave via an ocall to sleep. The thread holding the mutex will then
need to wake up the sleeping thread by looking into the queue and
leaving the enclave via an ocall. A mutex lock can therefore result
in two ocalls. This is especially a problem as the wake-up ocall is
typically very short (<10pus) and therefore the enclave transition is
taking the majority of the time.

2.3.3 Enclave Paging. Another important factor for enclave per-
formance is enclave size, especially the size of the working set. SGX
stores all enclaves inside the EPC which on current implementations
has a size of 128 MiB. Of those, 93 MiB are usable; the difference is
used to store metadata used for integrity protection [10].

In the EPC, enclaves basically consist of four parts: one metadata
page, its code, the heap and a thread-data page (TCS), stack and
SSA pages for each configured enclave thread. The heap and stack
sizes are set at enclave build time via a configuration file and should
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be large enough to accommodate all needed dynamic memory alloc-
ations. Contrary to normal application development, the heap and
stack are not virtually infinite, but actually have a limit that can be
hit if developers are not cautious. Therefore, one might be tempted
to increase their sizes, or even the number of maximum concurrent
threads, to some high number. With SGX v2, this becomes less of a
problem, as the enclave can be extended after creation. Therefore,
the enclave can be created small and as soon as stack or heap are
exhausted, new pages may be added on-demand. Clearly, this still
incurs paging if the enclave exceeds the EPC size.

SGX supports paging from EPC to main memory to accommod-
ate enclaves that do not fit into EPC. However, these operations are
costly and have a big impact on enclave performance [1, 5]. This is
due to the cost of added enclave transitions to handle page faults
as well as extra computation needed for cryptographic operations.
Therefore, carelessly increasing and using enclave memory might
incur paging and therefore performance hits.

2.4 Existing Tooling Support

Since SGX essentially adds a new processing mode, most existing
tools inspecting processes do not expect enclaves and, therefore,
are not able to interact with them. To our knowledge, only the
following two tools support SGX in some way.

The SDK ships with a plugin for the GNU Debugger (gdb), allow-
ing it to inspect enclaves!, set breakpoints and more. The separate
application and enclave stacks are virtually stitched together to
display a single call-stack for calls inside the enclave to ease debug-
ging. This plugin only works for applications developed with the
SDK, other projects like SGX-LKL [27] also support gdb with their
own plugin.

Intel updated their profiling software VTune Amplifier [18] to
work with SGX. VTune is able to do a so-called sgx-hotspots analysis
on applications utilizing enclaves which gives developers insight
into their enclave functions regarding execution hotspots. A hotspot
is a piece of code that is executed frequently, e.g., the body of a loop,
defined by metrics such as overall cycles per instruction or cache
misses. Knowing where hotspots are can help developers to decide
which code parts to optimise further. VTune focuses on low-level
analysis of code fragments only.

Unfortunately, these tools are not sufficient to help the developer
write efficient enclave code as they do not take into account SGX
specific features.

3 SGX PROBLEMS AND SOLUTIONS

As outlined in §2.4, the metrics collected by current tools are not
sufficient to tackle the performance problems of enclaves. Accord-
ing to previous research projects [1, 31, 44], the overhead of using
enclaves primarily boils down to (i) the number of enclave trans-
itions during execution and their duration; and (ii) the number of
paging events.

Paging events perform SGX-specific computations while also
causing enclave transitions due to fault handling. Therefore, redu-
cing the number of enclave transitions should be prioritised. This
can be achieved through a well-designed enclave interface that both
maximises the execution time spent either inside or outside the

!'This only works on enclaves that have the debug flag set.
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Solution

Batch calls
Move caller in/out encl.

Problem

Short Identical Successive Calls

Merge calls

Short Different Successive Calls .
Move caller in/out encl.

Reorder calls

Short Nested Calls Duplicate ocalls

Lock-free data structures

Short Synchronisation Calls Hiybrid sync. primitives

Reduce memory usage
Load pages before ecall
Do not use SGX paging

Paging

Limit public ecalls
Limit ecalls from ocalls
Check data and pointers

Permissive Enclave Interface

Table 1: Identified performance and security problems and
their possible solutions.

enclave and minimises the number of transitions during execution.
This leads us to our premise that calls whose raw execution time is
shorter than the enclave transition time should be avoided if at all
possible. In addition, we argue that the robustness of the enclave
interface is of prime importance and that it is necessary to analyse
it to look for potential security problems.

The rest of this section details SGX-specific problems that can
arise in practice regarding the performance and security of enclaves
as well as recommendations to improve the code. A summary can
be found in Table 1.

3.1 Short Identical Successive Calls

The Short Identical Successive Calls (SISC) problem occurs when
multiple short executions of the same call are made in succession.
As transitions have a fixed cost, computations that are shorter than
it are wasteful. Therefore, multiple calls of the same ecall entering
or multiple calls of the same ocall leaving the enclave in succession
should be batched.

Another solution can be to move the caller function inside/out-
side of the enclave. As a result, only one transition will occur for
the successive calls. See §5.2.3 for an example. Note that moving a
function from inside the enclave to outside, to remove successive
ecalls, might pose a security risk as the ecall probably handles sens-
itive data. A security evaluation is therefore recommended when
moving functions outside of the enclave.

3.2 Short Different Successive Calls

Contrarily to SISC, a Short Different Successive Calls (SDSC) prob-
lem occurs when multiple short executions of different calls are
made in succession. Same as with SISC, this causes a waste of re-
sources as actual computation time might be less than transition
time. Possible solutions are merging these calls into a single call
or moving the caller function inside/outside the enclave. See
§5.2.2 for an example.
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3.3 Short Nested Calls

The Short Nested Calls (SNC) problem occurs when short calls are
made at start or end of another call. These short calls are candidates
for possible elimination as their execution should either be done
before or after the call instead of during the call. However, this might
not always be possible due to the application’s architecture. An
example for this is an ecall that issues an ocall to allocate memory
for a result. Instead of allocating this memory during the ecall,
the allocation should be moved to before the ecall. The solution is
therefore to reorder the ocall to execute before the ecall.

This might be problematic if the needed space is not known
before the ecall’s execution. However, in this case a sensible default
can be chosen and an ocall can be issued only if more memory is
needed. Both SecureKeeper [5] and LibSEAL [3] use similar tech-
niques to circumvent issuing ocalls for untrusted memory alloca-
tions during ecalls.

The solution is not exclusive to ocalls during ecalls, it can also be
applied to short ecalls during ocalls. Depending on the call, short
ocalls can also be duplicated inside the enclave. This increases
the Trusted Code Base (TCB) of the enclave but also improves
performance.

3.4 Short Synchronisation Calls

A special case of SNC are Short Synchronisation Calls (SSC). As
stated in §2.3.2, the SDK provides in-enclave synchronisation primit-
ives that potentially issue ocalls for sleeping and waking up threads.
The wake-up ocalls are typically very short (<10ps on average in all
cases we observed) whereas the sleep calls can vary in execution
time, depending on how long the thread is sleeping. Short sleep
calls suggest that the time the lock is taken is very short and going
outside of the enclave for sleeping should be avoided.

In these cases, it would be beneficial to have a hybrid locking
mechanism that first tries to take the lock inside the enclave mul-
tiple times in a spinlock fashion before going to sleep or, if possible,
to use non-blocking data structures.

3.5 Paging
As stated in §2.3.3, paging events during enclave execution are very
costly due to additional transitions and cryptographic operations.
Enclaves too large for the EPC can be the result of having a too large
dataset inside the enclave or of poor data handling inside the en-
clave. Developers need to be aware that the need for space-efficient
data structures is higher for enclaves than other applications.
Paging can be mitigated by multiple techniques: (i) keep the
enclave small to always fit into EPC, (ii) prevent page faults during
enclave execution by pre-loading pages into the EPC or (iii) use an
alternative memory management mechanism inside the enclave
instead of the SGX paging mechanism. (i) can be achieved by using
space-efficient data structures or by loading smaller chunks of data
into the enclave, if possible. However, this might not be enough as
the EPC is shared between all running enclaves. It is not possible to
assume which enclave size is suitable as the EPC might already be
blocked by other enclaves and paging is unavoidable, especially in
a multi-tenant cloud scenario. (ii) is possible by loading the needed
pages before issuing the ecall. This prevents the costly page faults
and AEXs inside the enclave during execution. Examples of (iii)
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have been implemented by the Eleos [31] and STANlite [33] systems.
In a nutshell, these systems store sensitive data in an encrypted and
integrity-protected manner outside of the enclave, in the untrusted
environment. Then, when the data is needed, it is copied inside the
enclave and decrypted.

In general, enclaves should be designed to encounter paging as
seldom as possible as it incurs too high performance costs through
additional transitions.

3.6 Security Enhancements

Given that enclaves deal with sensitive data inside an untrusted
environment, it is necessary to reduce the attack surface of their
interface [17]. We have observed three possible security problems
that can easily be mitigated.

First, the SGX SDK allows ecalls to be defined as public or private [15].

Public ecalls can always be called whereas private ecalls can only
be called during an ocall. Defining an ecall as private can enhance
the enclave security by limiting the possible paths leading to an
ecall. It is then easier for developers to make assumptions about
the state the enclave is in when executing a given ecall.

Second, the developer has to precisely specify which ecalls are
allowed within each ocall. If a particular ecall has been forgotten,
an error will be triggered during execution. Developers might be
tempted to simply allow every ecall from all the ocalls. In the worst
case, if a specific ecall/ocall combination is not considered by the
developer, this could be exploited by an attacker to change the
control path of the execution of the program and gain access to
enclave secrets. Consequently, it is important to limit the ecalls that
can be called from any ocall.

Third, the EDL file defines the behaviour of pointers passed as
arguments of the ecalls and ocalls: in, if data has to be copied inside
(resp. outside) the enclave before an ecall (resp. ocall); out, if data
has to be copied outside (resp. inside) the enclave after an ecall (resp.
ocall); and user_check, if handling the pointer is left to the developer.
While user_check is the simplest behaviour, it might also lead to
security vulnerabilities, e.g., due to buffer overflows, time-of-check-
to-time-of-use attacks [43] or passing an in-enclave address [19]. It
is thus important to check and limit how the pointers are passed
and used across the enclave interface.

4 THE SGX-PERF TOOLS

In this section we present sgx-perf, a toolset to analyse perfor-
mance-impacting behaviour of enclaves. It pinpoints the problems
mentioned in §3 and gives developers hints on how to restructure
their enclaves to avoid these issues.

sgx-perf consists of multiple tools that work together: an event
logger, the working set estimator and an analyser. Event recording
is done by the event logger which traces ecalls, ocalls, AEXs and
EPC paging. Working set estimation is done by a separate tool, as
it heavily interferes with enclave execution. Lastly, analysis and
visualization of the data is done by the analyser.

The sgx-perf event logger is implemented as a shared library.
This library is preloaded into the untrusted application using the
LD_PRELOAD environment variable so the dynamic linker loads it
before all others including the URTS. This makes it possible to use
the event logger without having to modify the untrusted application,
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app.c enclave u.c libsgx_urts.so

main() ————— ecall_do_work()

sgx_ecall()

sgx_ecall()

liblogger.so

ecall_do_work() <—— sgx_ecall_do_work() <—— enclave_entry()

enclave.c enclave_t.c libsgx_trts.a

(:) Untrusted application O Trusted enclave

sgx-perf Logger
Figure 2: sgx-perf tracks ecalls by shadowing the call to
sgx_ecall so it is called instead of the URTS.

the enclave or the SDK. Function calls are traced by providing the
traced symbols anew. For example, the logger provides its own
implementation of pthread_create which is then called by the
application instead of the real function inside the standard library.
It can trace the call and record an event before dispatching the call
to the real implementation.

Additionally, the logger registers its own signal handlers for some
signals. The handler registering functions signal and sigaction
are also overloaded, so that other registered handlers can be saved
and called after the logger has processed the signal itself. This is
important for tracing some applications, e.g., Java applications with
enclaves attached via Java Native Interface (JNI), as the OpenJDK
uses signals for communication between threads.

All events are serialised to a SQLite database. This makes it
possible to analyse the data with other tools without having to
implement parsing of the data. Migrating the data to a real SQL
server can also be envisioned.

4.1 Tracing ecalls and ocalls

The main method of interaction with enclaves are ecalls and ocalls
which cause enclave transitions. As described in §2.3.1, we know
that enclave transitions are costly and if high performance is desired,
their count needs to be minimised. Furthermore, short calls into
or out of the enclave are also not desirable as the overhead of
transitioning can overshadow the actual computation time.

To show the ecall and ocall behaviour of an application, the
logger traces these transitions as described in the following.

4.1.1 Tracing of ecalls. To use ecalls, the application developer has
to describe the enclave interface and generate wrapper code. This
wrapper code allows the developer to call the ecall functions by
their given name (e.g., ecall_encrypt) like a normal function. In
practice, the symbols exists twice, once inside the enclave and once
outside. The outside wrapper calls the sgx_ecall function of the
URTS with a generated numeric identifier which causes an enclave
transition into a trampoline that resolves the identifier to the actual
ecall and calls it.

This design of issuing all ecalls through a common function
inside the URTS allows the logger to shadow the implementation of
sgx_ecall with its own to trace calls into the enclave (see Figure 2).
When the sgx_ecall function of the logger is called, it first records



28

Middleware 18, December 10-14, 2018, Rennes, France

app.c enclave _u.c libsgx_urts.so

main() ——— ecall_do_work() sgx_ecall()—

ocall_print() «——— sgx_ocall_print()

sgx_ecall() | OTiogger
liblogger.so .~
ocall,stubA()

ocall_print() —— sgx_ocall()
ecall_do_work() <—— sgx_ecall_do_work() <—— enclave_entry()
enclave_t.c

enclave.c libsgx_trts.a

(::) Untrusted application O Trusted enclave

sgx-perf Logger
Figure 3: sgx-perf rewrites the ocall table oT,,;4 to its own
table 0T}, 44, during ecalls to track ocalls.

the current time as well as the identifier of the issuing thread and
the ecall identifier. It then calls the sgx_ecall function of the URTS.
Finally, it again records the current time in order to measure the
duration of the ecall. Note that the logger is executing outside of
the enclave and is therefore able to measure time.

4.1.2  Tracing of ocalls. To trace ocalls we tried to employ the same
mechanism as for ecalls as the design for calling ocalls is basically
the same: a common sgx_ocall function dispatches the call based
on an identifier. Unfortunately, this function is part of the TRTS and
therefore inside the enclave. The logger cannot shadow an enclave
function as this would violate the enclave’s integrity.

The sgx_ocall function uses the EEXIT instruction to leave
the enclave which needs the address of the ocall function to jump
to. These addresses are not fixed, as the ocalls could be inside
shared libraries or because the binary is relocated by the Operating
System (OS). This makes it impossible for the SDK to include the
addresses into the enclave during compilation, therefore they have
to be injected at runtime.

The SDK chooses the following approach: It constructs a table
mapping numeric identifiers to function pointers called ocall_table
which is given as an argument to sgx_ecall. The pointer to the
table is then saved inside the URTS for later use. Should an enclave
issue an ocall, it will exit the enclave to a function that will look
up the function pointer from the saved ocall table. This makes
it possible for the logger to change the table and inject our own.
However, the function pointers included in the original table are
already pointing to the correct ocall functions and not to a common
function, e.g., a trampoline, that we could intercept.

Therefore, as seen in Figure 3, a call stub is generated by the
logger on the fly for each function in the table. The call stub is given
information about the ocall like its identifier, the enclave identifier
and the original function pointer. Then, when an ocall happens,
the generated call stub is called instead, which logs the appropriate
events and then calls the original ocall. All stubs are combined as a
new table (0T}44e,) Which is propagated in place of the original
one during the ecall tracing. This means, that we always replace
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the table, even if the ecall does not perform any ocalls, as we cannot
know this beforehand.

Call stub and table creation is only needed once per ocall table.
In practice, this means exactly once per enclave as SDK applications
have one ocall table per enclave. Note that timestamps recorded
do not include transition times as they are recorded outside of
the enclave. This results in ocalls being seemingly shorter than
ecalls when doing the same work as ecall timestamps include the
transition time. For the analysis phase this means that for ocalls
the execution time can be compared directly to the transition time
whereas for ecalls, the transition time has to be subtracted from the
measured execution time first.

4.1.3 Tracing In-Enclave Synchronisation. As stated in §2.3.2, the
SDK supports special in-enclave synchronisation primitives that
use ocalls to put threads to sleep. Through its ocall tracking facility,
the logger can track these ocalls in a general way. In addition, the
logger overloads the four specific synchronisation ocalls of the SDK:
(i) sleep, (ii) wake up one, (iii) wake up multiple and (iv) wake up one
and sleep. These four ocalls can be reduced to two event types: sleep
and wake-up. The events allow the logger to also track which thread
wakes up which other threads to track dependencies between them.
This information can be used to detect high-contention scenarios
that cause a high frequency of ocalls.

4.1.4 AEX Counting and Tracing. While executing inside an en-
clave, interrupts and faults can still occur. These need to be handled
by the untrusted operating system and therefore the enclave has
to be exited. For this, the concept of an AEX exists which saves
the enclave state and then leaves the enclave to execute, e.g., the
interrupt handler. Afterwards, a jump to the address pointed to
by the AEP is made, which then decides whether to resume the
enclave or do something else (see §2.1).

In the SDK, the AEP points to exactly one instruction, namely
ERESUME which resumes the enclave. The logger can optionally
patch this location with a jump to its own AEP. This allows it to
either only count the number of AEXs per ecall or to record also
the time at which each AEX occurred. This information is useful in
conjunction with ecall duration, as longer ecalls are subject to more
AEXs. Similarly, AEXs increase ecall duration as they interrupt
them. Tracing AEXs allows the analyser to correlate ecall duration
with AEX times as multiple AEX in short succession will delay
an ecall significantly while not being an issue with the ecall itself.
Such bursts of interruption can be caused by high system load or
other external factors. For example, a high amount of interrupts
on the core currently processing the enclave will result in an high
amount of AEXs. Knowledge of this is helpful to separate high-
interrupt execution, e.g., a network thread, from enclave execution
by pinning the threads to different cores.

Due to a limitation in the first version of SGX, it is not possible to
infer the reason for the AEX. While we can distinguish interrupts
from some type of faults (e.g., segmentation faults, as those will
engage a signal handler), we cannot differentiate interrupts from
simple page faults. SGX v2 will enable this, as the SGX subsystem
can be instructed to record the exit type into the enclave state.
This type could then be read by the logger as long as the enclave
is a debug enclave to further give the reason for the enclave exit.
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However, even though the AEX cause is not recorded, the logger
can still determine paging events, as shown in § 4.1.5.

4.1.5 EPC Page Tracing. Another problem with SGX enclaves is
the limited space for the EPC. The EPC holds all enclave pages
and is limited to 93 MiB. If the EPC is full, the SGX driver swaps
pages to untrusted memory. This requires re-encryption of the page
and incurs a heavy performance overhead as previous research has
shown [1]. Ideally, enclave pages should never leave the EPC when
the enclave is in use.

As paging happens inside the kernel, it is only possible to track
it using kernel tracing approaches. The logger uses kprobe [21]
to trace the respective functions inside the kernel driver that page
in and page out enclave pages. This allows recording not only the
time at which the swap happened, but also the virtual address of
the page. Referencing those with the known enclaves of the process
allows the logger to find out when and which part of an enclave
has left the EPC. This information can be used to, e.g., determine
enclave parts that were never actually used.

4.2 Enclave Working Set Estimation

In §3.5, we claimed that enclaves should be designed to seldom
encounter paging. As this is potentially hard to achieve, sgx-perf
comes with a tool that enables developers to get information about
the working set of their enclaves on a page granularity, which is
useful for right-sizing enclaves.

The working set is a metric that cannot directly be inferred
from the size of the enclave binary. Enclaves do contain pages that
can be safely paged out, as they are normally never used. These
pages are either guard pages, e.g., for the enclave stack, or padding
pages which are normally not accessed, but are needed as they are
contained in the enclave measurement and the enclave size needs
to be a power of two bytes.

The working set of pages is therefore much smaller than the
actual enclave. To figure out the working set, sgx-perf provides a
tool that tracks all accessed pages: the working set estimator. It
reports the amount of pages accessed between two configurable
points in time and operates by stripping all page permissions from
enclave pages, catching access faults and restoring permissions
on access. This works due to the fact that page permissions are
saved and checked twice, once by the Memory Management Unit
(MMU) and once by SGX. While the SGX permissions are fixed
after enclave creation time?, it is possible to modify the MMU
page permissions during runtime, which are checked first. Missing
permissions therefore lead to access faults when pages are accessed.
Catching the faults and restoring permissions allows the working
set estimator to track page accesses and determine the working set.
This method is similar to the page tracing done by some SGX attack
papers [43, 45]. In these cases, the page tracing is used to determine
control flow of the enclave whereas in our case we just count the
accesses. A page-table based approach, i.e. looking and clearing the
access bits, would also work but requires kernel involvement which
we wanted to avoid.

However, this approach has the disadvantage that we only see
pages that are accessed during execution. We can’t infer all possible

2Changing these is possible from inside the enclave with SGX version two. Software
support is already available in the SGX SDK since v2.0.
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branches taken during execution and therefore have to rely on
different enclave inputs to give us an exhaustive list of page accesses.
Figuring out which pages are accessed or not can only be done via
exhaustive execution.

4.3 Data Analysis and Developer Hints

The main objective of sgx-perf is to give developers information
about their application’s performance as well as hints on how to
improve it. This is achieved using the analyser. In the following
sections, we describe what information is provided by the analyser,
which criteria are used to detect problems and what hints are given
in these cases.

4.3.1 General Statistics. To give a first overview of the application,
the analyser will calculate general statistics for all ecalls and ocalls.
These statistics comprise number of calls, average and median dur-
ation, standard deviation as well as 90th, 95th and 99th percentile
values. Furthermore, the analyser can generate histograms for the
call execution times as well as scatter plots showing the call’s exe-
cution times over the course of the application’s execution. This
information gives a quick overview over the calls and can be used to
detect outliers. The analyser can also generate call graphs detailing
dependencies between ecalls and ocalls to get an overview of the
application’s call patterns (see Figure 5 in §5.2.1).

4.3.2  Problem Detection. The main goal of the analyser is to give
hints to developers regarding changes that can impact performance
positively. In §3 we already detailed which performance problems
can exist and how to mitigate them: Short Identical Successive Calls
(SISC), Short Different Successive Calls (SDSC), Short Nested Calls
(SNC), Short Synchronisation Calls (SSC) and paging. The analyser
finds these issues and offers possible mitigation strategies such
as batching or reordering, merging, moving or duplicating, as
shown in §3. For all five mitigation strategies the analyser tries to
find opportunities to use them by analysing the calls made by the
application. The overall intuition is, that a call experiencing many
short executions needs to be optimised more than one experiencing
only few. Therefore, the analyser mainly works by weighting ratios
of call execution times. As a transition into the enclave and back
out again takes ~ 5us on a fully patched system, we chose to look
at calls with execution times below 10us. Furthermore, the analyser
tries to narrow the enclave interface, e.g., by finding ecalls that can
be made private. It is the responsibility of the developer to check
the applicability of the given recommendations. sgx-perf does not
know about the internals of the applications and therefore cannot
know if some recommendations cannot be applied due to design or
application logic constraints.

Direct and Indirect Parents. For all analyses it is necessary to
know which call has been issued before the call that is currently
looked at. For ocalls during ecalls and ecalls during ocalls we have
a simple relationship that is logged by default and called direct
parents: An ecall E is a direct parent of an ocall O if and only if
O was called during execution of E. The same is true for ecalls
during ocalls. Contrary to direct parents, indirect parents are calls
of the same type that were executed before the current call while
belonging to the same direct parent.
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Figure 4: Some example for calls (C) with their direct (CF)
and indirect (P « C) parents (P).

Figure 4 shows some calls and their indirect parents. Each E and
O is an ecall and ocall respectively with their subscript numbers
denoting their order with regards to time. Direct parents are denoted
in superscript and indirect parents are referenced as a dotted arrow.
As seen in (1), each ecall on the same level has the previous call as
its indirect parent except for the very first ecall. This is the case
when ecalls are called one after another. In (2) we see that only the
ocall O3 has O, as its indirect parent as they are both issued by E;
and in (3) no calls have indirect parents. (4) shows a case in which
the indirect parent of E3 is not the previous call but rather the call
before that one as O is not of the same type as E3.

Enclave Interface Security. The analyser is able of providing de-
velopers with hints regarding the security of the enclave interface.
First, direct parents can be used to detect whether an ecall can
be made private. If all instances of an ecall have direct parents,
i.e., were issued during ocalls, then the analyser can recommend
to make this ecall private and give a list of ocalls that need to be
allowed to call it. Note that this recommendation is dependent on
the workload.

Optionally, the analyser can be supplied the EDL file of the
enclave. If so, it compares the current allowed ecalls for each ocall
with those actually called. If they don’t match, the analyser will
show which ecalls should be removed from the set of allowed ecalls.
The analyser will state the smallest set of allowed ecalls if no EDL
is provided.

Furthermore, the analyser highlights calls which have pointer
arguments annotated with user_check so that developers are re-
minded to look at these calls in particular whether all checks re-
garding the pointers are made.

Duplication and Moving Opportunities. Moving calls into or out
of the enclave is a solution to the SISC and SDSC problems. Duplica-
tion of ocall functionality inside the enclave is a solution to the SNC
problem. Detecting opportunities to apply the solutions is done by
looking at the mean call execution times. Shorter execution times
imply a stronger need for optimisation because more transitions
can be saved. However, the ratio of short calls vs the total number
of calls is also important: Only if the majority of executions are
short, then the optimisation should be recommended. Thus, we
arrive at Equation 1 with Cp, stating how many calls were shorter
than n ps and Cy, being the total call count.

G Cs Cio
(azfx)v(c—zzﬁ)v(c—zmx) (1)
a, B and y are configurable weights and default to o = 0.35, f = 0.50
and y = 0.65. These and the following weight values have been
obtained through experimentation. In essence, the analyser checks
if (i) 35% of calls () are shorter than 1 ps, (ii) 50% of calls (f) are
shorter than 5 ps or (iii) 65% of calls (y) are shorter than 10 ps. If
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the expression is true, a hint that this call should be moved across
the enclave boundary to save transitions is displayed.

Reordering Opportunities. Call reordering is a solution to the SNC
problem that is applicable to ecalls and ocalls. To detect reordering
opportunities we check if calls are made after the start or before the
end of another call. The analyser sets this in relation to the overall
call count (Cs) as well as distance from the start/end by counting
how many calls were made in the first (C%) and last (C¢) 10 ps
(C10) and 20 ps (Cyo) of a call. Equation 2 shows this for reordering
opportunities at the start of calls. It is the same for reordering
opportunities at the end of calls with C5 switched to C¢.

Cs Cs
Again, a,  and y are configurable weights and default to o = 1.00,
B = 0.75 and y = 0.50. In essence, the analyser checks if the
weighted calls (calls nearer to the start/end weigh more) are above
the threshold y. The call is flagged for possible reordering if the
condition is true.

S S
(ﬁxa+ﬂxﬁ >y )

Merging and Batching Opportunities. For the SISC and SDSC
problems batching and merging calls are the respective solutions.
To merge or batch calls, the analyser cannot simply look at call
frequency and execution time. Instead, it finds the indirect parents
of each call and looks at the time difference between each indirect
parent’s end and the current call’s start. Batching is a special case
of merging and is applicable when the call is being its own indirect
parent. Whether multiple different calls are flagged as mergeable
into one is depicted by the expressions in Equation 3.

P—Zz/l/\ i><oc+ﬁ><ﬁ+@><y+@><5 >e (3)

Cs Ps Ps Ps Ps
As before, a, B, v, 8, € and A are configurable weights and default
toa = 1.00, f = 0.75,y = 0.50 and § = € = A = 0.35. First, the
analyser only considers calls for merging, that are indirect parents
at least 35% of the time (A). Py is the total call count of the indirect
parent whereas Cy is the total call count of the current call. Then,
the analyser checks how many indirect parents were 1, 5, 10 ps and
20 us away, weights them accordingly (a, B, v, , faster calls weigh
more) and checks if the results is higher then the threshold e. The
call and indirect parent are flagged for possible merging/batching
if the condition is true.

Recommendation Priorities and Security Implications. While all
recommendations achieve the same results, i.e., less transitions, they
do so in different ways. The analyser can recommend more than one
optimisation per call. It is then up to the developer to decide which
route to take with the following in mind: moving and duplication
can increase the TCB of an application while reordering does not.
Therefore reordering should be evaluated first before moving on
to other recommendations. Furthermore, moving code out of the
enclave should not be made without a security evaluation to avoid
leaking enclave secrets. Contrarily, moving code into the enclave
does not pose any additional security risk.

5 EVALUATION

Our evaluation answers the following questions: (i) what is the over-
head of running an application with sgx-perf? And (ii) can sgx-perf
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(1) Single ecall (2) ecall + ocall
Native 4,205 ns 8,013 ns
with Logging 5,572 ns 10,699 ns
Overhead ~1,366 ns ~2,686 ns
ocall only - ~1,320 ns
(3) Long ecall Execution time AEX count
with Logging 45,377 ps -
AEX counting 45,390 ps 11.51
AEX tracing 45,390 ps 11.56
Overhead per call per AEX
AEX couting ~14,612 ns ~1,076 ns
AEX tracing ~15,151 ns ~1,118 ns

Table 2: Mean execution times per call and overhead of the
logger overhead experiments. Variance is omitted as it is not
significant.

detect optimisation opportunities in systems that use Intel SGX?
To this end we evaluate sgx-perf with several microbenchmarks
as well as four different applications: (i) TaLoS [2], a cryptography
library, (ii) SecureKeeper [5], a key-value store, (iii) SQLite [37], a
database and (iv) LibreSSL [30] partitioned with Glamdring [25].
Our evaluation first shows that the overhead of the event trace
logging of sgx-perf is a fixed 1366 ns per call (see 5.1). Then, it
shows that sgx-perf recommendations are useful to the developer
as we were able to improve the performance by 1.33X to 2.66X after
following them (see 5.2.3).

Experimental Settings. All the experiments were conducted on a
system consisting of a Intel Xeon E3-1230 v5 @ 3.40 GHz processor,
32 GB (2x16 GB @ 1600 MHz) of memory and a 256 GB SATA-III
SSD. We used Ubuntu 16.04.4 with Linux 4.4.0-116 with Kernel Page
Table Isolation which mitigates the Meltdown [26] attack. If an
application needs clients processes, they are executed on identical
machines connected via a 10 Gbit/s ethernet link.

5.1 Performance Overhead of Logging

To measure the overhead of the event logger, we conducted three
experiments: (1) a single ecall is executed n times; (2) a single ecall
is executed n times. This ecall also performs a single ocall; and (3)
a single ecall is executed n times. This ecall itself is executing a
loop for k iterations doing nothing. For this experiment we also (i)
counted or (ii) traced AEXs.

Each experiment has been executed 1000 times. For the experi-
ments (1) and (2) we choose n = 1,000, 000, for experiment (3) we
choose n = 1000 and k = 1,000, 000. For each run a warmup of
1,000,000 calls for (1) and (2), and 1000 calls for (3) respectively, has
been used.

The results can be found in Table 2. As seen, the event logger
adds an overhead of 1,366 ns per ecall. A similar result of ~1,320 ns
can be seen for ocalls. To find out the overhead of AEX counting
and tracing, we performed experiment (3). In this experiment, a
long running ecall is issued that will experience AEXs due to the
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Figure 5: nginx + TaLoS main enclave calls. Square nodes are
ecalls, round nodes are ocalls. Solid arrows indicate direct
parents, dashed arrows indirect parents. Numbers on edges
indicate call count, numbers in brackets indicate call id.

timer interrupt. In this case, we made three measurements: attached
logger without AEX counting or tracing, attached logger with AEX
counting and attached logger with AEX tracing. As seen, when
AEX counting is enabled, the logger adds an overhead of ~1,076 ns
per counted AEX. Tracing AEXs instead of just counting increases
the overhead again by 1.04X per AEX.

5.2 Optimisation of Enclaves

To evaluate the data analysis part of sgx-perf, we took a look at
different enclaves to see if they have problems that can be detected
by sgx-perf. We took a look at enclaves from the following projects:
(i) TaLoS [2] with nginx [13]; (ii) SecureKeeper [5]; (iii) SQLite [37]
and Glamdring [25] partitioned (iv) LibreSSL.

5.2.1 TaloS with nginx. TaLoS [2] is an enclavised LibreSSL [30]
designed to be a drop-in replacement. It can be used by applications
that use OpenSSL or LibreSSL to enhance their security by relocat-
ing all cryptographic operations into an enclave. TaLoS exposes
the OpenSSL interface as its enclave ecall interface. We therefore
tried to find out if the OpenSSL interface is suitable as an enclave
interface or if performance issues can arise. As TaLoS is meant
to replace OpenSSL in other applications, we used nginx [13] as
a host application that calls into TaLoS. Our evaluation consists
of performing 1000 HTTP GET requests with curl[38] against our
TaLoS nginx server.

The enclave interface consists of 207 ecalls and 61 ocalls of which
61 and 10 were called 27,631 and 28,969 times, respectively. Overall,
60.78% of ecalls and 73.69% of ocalls were shorter than 10ps. We took
a look at the main part of functions - that is accepting connections,
reading, writing and shutdown. In nginx, this comprises the func-
tion calls seen in Figure 5. We can directly see many relationships
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that occur 1000 times (or a factor thereof) which corresponds to our
1000 requests. However, we can also see the first shortcoming of the
OpenSSL interface, namely its error handling. OpenSSL does not
directly return meaningful error codes in its functions but rather
pushes errors into an error queue. Access to that queue is available
through the ERR_* family of functions. This incurs additional en-
clave transitions compared to errors being directly returned by the
function (ecalls 23, 26 in Figure 5).

Reading from and writing to the underlying socket is also not
optimal. In TaLoS, the read and write system calls are implemented
as ocalls which incurs a transition (ocalls 26 and 27 in Figure 5).
While this is required as OpenSSL needs to communicate via the
network to implement the TLS protocol, this has a non-negligible
impact on the performance. A better design would be to batch
the ocalls to read and write or give the application control of
the socket and use OpenSSL’s BIO abstraction layer to access it
from inside the enclave. Unfortunately this requires changes to the
implementation of the TLS protocol and to the calling application.

In summary, the OpenSSL interface is not suitable as an enclave
interface due to its high number of transitions for simple operations.
We analysed the code and found that while the authors of TaLoS
already did a number of optimisations, the main blocker for more
performance is the goal of being a drop-in replacement.

5.2.2 SQlite. Several research works have considered running an
SQL database inside an enclave [3, 33]. We wrote a microbench-
mark that performs a series of insert operations into a database
persistently stored on disk, implementing system calls naively as
ocalls. We ran experiments similar to those of the LibSEAL paper,
replaying commits from popular git repositories, and achieved a
performance of ~23087 requests/s. The enclavised version achieved
~13160 requests/s (0.57X). sgx-perf reported 41 ocalls, three of
which are each responsible for 33% of the execution time: 1seek,
write and fsync.

On Linux, SQLite v3.23.1 makes separate calls to 1seek and
write in order to persistently store the database on disk. The 1seek
ocalls were quite short with an average duration of 4us whereas the
write ocalls took 17ps on average. The sgx-perf analyser showed
a potential optimisation opportunity for the SDSC problem in the
form of call merging. Merging the 1seek and write calls lead to an
increase to ~17483 requests/s, 33% more, by eliminating one ocall.
Figure 6 compares the results.

5.2.3 Glamdring. Glamdring [25] is a partitioning framework which
aims to automatically partition applications into an untrusted and

trusted part with the trusted part living inside an SGX enclave.

The workflow of Glamdring looks as follows: First, the developer

marks certain data as sensitive. Second, Glamdring employs static

dataflow analysis and static backwards slicing to find all functions

accessing and modifying the sensitive data. Lastly the application

is partitioned and code is generated. Glamdring achieves 0.23X -
0.8% the performance of the native application.

We analysed a Glamdring-partitioned LibreSSL v2.4.2 and re-
peated the signing benchmark of the paper (signing certificates)
with our logger attached. The benchmark runs for 30 seconds and
tries to sign as many certificates as possible. The results show a
performance of 33.88 signs/sec. Working set analysis showed a
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Figure 6: Normalised performance for SQLite and LibreSSL
for native, enclavised and optimised execution.

small enclave with 61 pages used after start-up and 32 pages used
during benchmark execution.

The enclave interface consists of 171 ecalls and 3357 ocalls. In
total, sgx-perf logged 18 ecalls being called 6.6 million times and
35 ocalls being called 110,511 times. Analysis showed that the
bn_sub_part_words ecall is the main performance hog by account-
ing for 99.5% of all ecalls and a mean execution time of just 3us
which is basically the transition time. Therefore, this call’s actual
computation is too short compared to the transition time needed.
This also applies to some other ecalls but these are called <1% of
the time. The ocalls also show short execution times with 78.65%
of all ocalls being shorter than 1ps (95.34% shorter than 10ys).

The sgx-perf analyser found multiple SNC and SISC problems,
mainly short ocalls of the BN_ family of calls for big number pro-
cessing. Also, the bn_sub_part_words ecall was identified as an
SISC problem. This ecall was marked for potential batching. Look-
ing at the code, we could see that this call was always called in
pairs inside bn_mul_recursive:

1 void bn_mul_recursive(...) {

2 /] ...

3 switch (c1 * 3 + ¢c2) {

4 case -4:

5 ecall_bn_sub_part_words(t, a+n, a, tna, tna-n);

6 ecall_bn_sub_part_words(t+n, b, b+n, tnb, n-tnb);
7 break;

8 // ... Repeated three more times

9 }

10 /7 ...

11 )

As the name suggests, the function is calling itself recursively at
the end. By moving this entire function inside the enclave we were
able to remove the successive ecalls to bn_sub_part_words and
improve the performance by 2.16X.

We compared native LibreSSL against the original Glamdring
version and our optimised version with less ecalls and ocalls. We
also compared against applying the Spectre and Foreshadow (L1TF)
microcode updates to see its impact on a real application. The
normalised results can be seen in Figure 6. On our machine we see
a higher native speed compared to the results from the paper (145
vs. 63 signs/s) but similar enclave performance (33 vs 36 signs/s). We
attribute that to the difference in hardware, operating systems and
compiler versions. As seen, optimising the automated partitioned
code lead to a 2.16X speed-up and even an 2.66X (Spectre [6, 29])
and 2.87x (L1TF [42]) speed up on the patched system. This further
underlines the need to reduce excessive enclave transitions and to
have a good enclave interface.
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Figure 7: Generated histogram of call execution times for
one of SecureKeeper’s ecalls grouped into 100 bins.

5.2.4 SecureKeeper. SecureKeeper [5] is a secure version of the
Apache ZooKeeper [12] coordination service. It uses SGX to imple-
ment a proxy that sits between clients and ZooKeeper to store data
transparently encrypted. Client-proxy communication is transport
encrypted whereas the proxy en-/decrypts the payload an path of
the packet going to/coming from ZooKeeper. This allows running
the service in untrusted environments like cloud platforms. Secure-
Keeper’s architecture only incurs an overhead of 11% compared to
an unsecured ZooKeeper.

We analysed a single SecureKeeper instance running under full
load for 31 seconds with our logger attached, similarly to the bench-
marks shown in the paper. The logger recorded 1.1 million ecall and
111 ocall events. The enclave interface consists of just two ecalls
and six ocalls of which two and three were called, respectively.
Analysis showed that both ecalls have a mean execution time of
~14ps and ~18ys, ~4-6X the transition cost.

SecureKeeper uses the SGX SDK’s synchronisation primitives to
coordinate access to queues and to a map. The map is only written
when a client connects whereas a queue exists per client and is syn-
chronised per client. During our testing we saw 18 synchronisation
related ocalls which were issued during the connection phase of the
benchmark in which all clients simultaneously connect, therefore
creating high contention on the map. We observed low contention
on the queue, as no ocalls were issued during actual benchmark
execution. The remaining ocalls were debugging print ocalls during
connection establishment.

In Figure 7 we can see the generated histogram for the ecall
sgx_ecall_handle_input_from_client. It can be seen, that al-
most all calls are longer than 10us with most calls taking about
15us. In Figure 8 we can also see the call execution times plotted
over the time of the application.

We were not able to spot any performance optimisation possibil-
ities. The enclave interface is very narrow and no calls are short
lived. Furthermore, SecureKeeper already uses some optimisations,
e.g., saving ocalls for memory allocation by estimating the needed
amount and allocating the memory before the ecall. As Secure-
Keeper is meant to run in a cloud environment, we looked at the
enclave working set to determine how affected SecureKeeper might
be by paging. Working set analysis showed 322 pages (1.26 MiB) are
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Figure 8: Generated scatter plot of call execution times for
one of SecureKeeper’s ecalls.

needed at start-up but during execution only 94 (0.36 MiB) are used.
SecureKeeper spawns one enclave per client which explains the low
usage as every client needs that many pages. The enclaves are suf-
ficiently small, if SecureKeeper were able to fill up the whole EPC
on its own, it could operate 249 enclaves in parallel without exper-
iencing paging. We consider SecureKeeper sufficiently optimised
with regards to the enclave interface and enclave size.

6 RELATED WORK

To our knowledge no comparable high-level analysis tool for SGX
exists so far. As stated in §2.4, VTune Amplifier, a commercial low-
level analysis tool from Intel, can inspect and profile SGX enclaves
to find performance bottlenecks on an instruction level. The Linux
tool perf [4] provides similar insights but does not offer support
for SGX enclaves. That is to say, these tools report to the developer
which instruction, line of code or function is costly and should
be optimised to improve the performance of the system. However,
contrarily to sgx-perf, they do not address the performance issues
specific to Intel SGX: costly enclave transitions and paging.

SGX performance has been a topic of interest for various work.
SCONE [1] and SecureKeeper [5] both measured the impact of SGX
paging on an application exceeding the EPC size. They concluded
that enclaves should never exceed the EPC size, as paging is simply
too costly. Weisse et al. [44] and Zhao et al. [46] both looked at en-
clave transition performance and showed that those transitions are
very costly. The number of transitions should therefore be reduced
as much as possible. While they proposed solutions to minimise
the impact of these problems, such as executing enclave transitions
asynchronously [1] or using a custom memory allocator [31], they
do not provide a tool to measure the impact of SGX-specific prob-
lems in an arbitrary application.

Gjerdrum et al. [8] were the first to present a list of SGX per-
formance principles and recommendations for enclave developers
in a cloud scenario. The authors do not directly recommend min-
imising enclave transitions but instead state that during an ecall
the supplied data should be as small as possible to reduce the time
it takes to copy it inside the enclave. While we agree, we think
that minimising the actual number of transitions is more important.
However, we disagree with their second recommendation stating
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that enclaves should not exceed 64kB in size to increase start-up
times and prevent paging. While EPC memory is scarce, we argue
that having an efficient strategy to minimise enclave paging is more
important than limiting the size of the enclave, especially in a cloud
environment where the EPC might already be oversubscribed.

While we are the first to propose a profiling tool specific for
Intel SGX, the idea of profiling tools specific to a particular system
is not novel. For example, LIKWID [40, 41] or MemProf [24] both
use the low-level performance counters of modern processors (e.g.,
number of cache misses) to extract high-level metrics (e.g., memory
bandwidth or remote accesses of memory objects on a NUMA
machine) that help the developer to improve the performance of
their application with new, more useful insights.

Performance anti-pattern detection is a research area that focuses
on documenting common performance problems as well as their
solutions. Smith and Williams [36] were the first ones to explore
anti-patterns that have consequences on the performance of the
system. They presented four anti-patterns: (i) excessive dynamic
memory allocation; (ii) successive (database) operations; (iii) critical
section of code where most of the processes cannot execute concur-
rently and have to wait; and (iv) wide variability in response time.
Subsequently, Parsons et al. [32] and Cheng et al. [7] proposed new
tools to automatically detect these performance anti-patterns in
enterprise systems. The reader could view the problem we address
as performance anti-pattern detection specific to Intel SGX.

7 CONCLUSION

Trusted computing with Intel SGX has become an important topic
in the software development world. Several works [1, 5, 44, 46] have
shown that paging and enclave transitions have a strong impact on
the performance of the system. However, there is, to the best of our
knowledge, no tooling support that gives an high-level overview
of enclave behaviour to uncover potential performance problems.

In this paper we presented sgx-perf, a collection of tools that can
trace enclave execution during runtime to generate a trace file. This
file can then be analysed regarding different criteria to identify SGX-
specific performance anti-patterns and to give developers hints to
increase enclave performance.

We evaluated sgx-perf by analysing four SGX applications. Ap-
plying the recommendations given by sgx-perf, we were able to
increase performance by 1.33X - 2.16X. The source code is available
on GitHub?.
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4 Security Issues Arising
with the new Threat
Model

When trying to increase the performance of an application, just optimizing the hot-
path or the algorithm itself'is not enough. With today’s multicore hardware, an obvious
technique for increasing performance is to utilize parallelism and multithreading to eas-
ily multiply performance numbers. Of course, multithreading not only improves perfor-
mance when multiple cores can do work simultaneously but can also help in single-core
situations when accesses to external, possibly slower, resources are in the hot path of; e.g,,
arequest. In such a case, a thread can go to sleep, and a new thread can start working on
the next request until the first thread can resume its work when the accessed resource is
ready. However, multithreading enables a new class of attacks that need to be considered
in the threat model: exploitation of synchronization bugs.

Studies have shown [57, 99], that writing correct multithreaded code is hard, and syn-
chronization bugs are often overlooked when it comes to security. A synchronization bug
causing unintended behaviour is dependent on specific thread scheduling which is con-
trolled by the operating system. The chance of threads being scheduled so that the bug is
triggered might simply be very low, therefore the bug might not trigger unless the thread
scheduling is specifically altered to force the bug being triggered. The traditional threat
model for remote applications considers attackers which are capable of sending arbitrary
requests to a service. An altered thread scheduling might be achievable by a remote at-
tacker by crafting and sending requests in a certain way; however, due to the remote na-
ture of the attacker, doing so deterministically is very hard if not impossible as network
latencies are typically not stable enough.

Local access is seldom considered as an attacker cannot be given administrative privi-
leges as they could just read/write application memory, deny access, or similar. A restricted
local access can be considered but increases the TCB to include the operating system and
its isolation mechanisms. Such an attacker has a far better success chance as they could
exhaust local resources to force the operating system scheduler into a specific behaviour,
such as creating high processor contention or just keeping exclusive access to a required
shared resource, e.g. hardware. This, however, does not allow deterministic exploitation
of any synchronization bug, e.g., data races, which are very sensitive to timings.

With trusted computing, the threat model changes and the TCB is drastically lowered
to only include the application and the necessary TEE components, e.g., in the case of
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SGX the processor and its SGX implementation. Now, the attacker is assumed to have
full control over the operating system as the TEE protects the application even in this
scenario. This also includes full control over thread scheduling and therefore an attacker
is capable of manipulating the thread scheduling in any way they deem beneficial. This
makes it theoretically possible to trigger any synchronization bug by enforcing a specific
thread schedule.

4.1 AsyncShock: Exploiting Synchronisation Bugs in
Intel SGX Enclaves

In AsyncShock: Exploiting Synchronisation Bugs in Intel SGX Enclaves [96] (on page 43) it is
shown that multithreaded enclaves that contain synchronization bugs can be exploited by
manipulating the thread scheduling. AsyncShock offers a flexible way of forcing an appli-
cation through a specific thread schedule by letting attackers write a playbook that details
how threads should be scheduled. To influence the actual thread scheduling AsyncShock
utilizes a technique first described by Xu et al. [100]. In their paper, it is shown how to
extract secrets from an enclave with known code by tracing the order in which enclave
pages are accessed. To do this, all enclave pages are stripped of their page permissions
which causes execution to fault with a segmentation fault. The fault is then caught, the
page access recorded and page permissions are restored for that page only so the execu-
tion can commence until the next fault. This fault is also caught, strips the permissions of
the previous page again and grants permissions to the current page. With this technique,
the whole execution can be traced.

Stripping page permissions from enclaves works because they are stored twice: once
inside the normal, insecure page table and once inside the secure EPCM. As shown in
Figure 4.1, accesses to enclave pages are also checked against both permissions with the
page table being checked first. As the page table is stored in normal memory, it is possible
for an untrusted application to edit the permissions stored in it.

AsyncShock utilizes the same described technique but instead of tracing execution, it
uses the fault handler to stop execution for a specific thread until other threads have done
a certain amount work before stopping those and resuming the first thread. When to stop
and resume threads is recorded in the playbook which is read by AsyncShock on launch
and then followed while executing the application under attack.

To demonstrate the effectiveness of AsyncShock, two different kinds of synchronization
bugs were successfully exploited. The paper shows how a use-after-free bug in an example
application that only exists due to missing synchronization can be exploited to allow redi-
recting the control flow of the enclave to another function inside the enclave. This attack
was tested on two machines multiple times and AsyncShock had a 100% success rate in
exploiting the enclave. The second bug, a Time Of Check To Time Of Use (TOCTTOU)
bug, was harder to exploit as it relied on exact timing. AsyncShock, however, was able to
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Figure 4.1: Memory access permission checks on an enclave page. Permissions are checked and
managed twice: once by the MMU (page table) and once by SGX (EPCM).
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achieve a near 100% success rate in this case.

In conclusion, AsyncShock shows that under the new threat model of TEEs synchro-
nization bugs need to be taken serious as their exploitation can lead to an attacker gaining
control of the enclave.

4.2 Related Work

While synchronization bugs with security implications have existed before SGX, their use-
fulness as an attack vector was typically low as the threat model does not include an at-
tacker that has control over the thread scheduler. Such an attacker would basically have
control over the operating system and therefore would have much more potent attack
vectors at their disposal. Nevertheless, there exist studies on synchronization bugs and
their security implications. Dean et al. [31] have shown that a TOCTTOU attack vector
exists in the Linux kernel when performing file system access control decisions, how to
exploit it and propose countermeasures. Borisov et al. [18] defeated the proposed coun-
termeasures and Tsafrir et al. [88] improved the proposed countermeasures to make ex-
ploitation harder. As can be seen, fixing synchronization bugs is hard, especially when the
Application Binary Interface (ABI), here in form of the system call interface, must not be
modified to preserve backwards compatibility.

A more general study by Yang et al. [101] identified concurrency attacks and their risk
on real-world systems. They identified that the exploitability of a concurrency error is
dependent on the size of the timing window in which the error occurs, and that attackers
might be able to enlarge that window through specially crafted inputs. Especially memory
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races have small attack windows at the level of nanoseconds. AsyncShock is able to widen
the attack window significantly to enable reliable exploitation. Yang et al. propose solu-
tions for better detection of such bugs in static analysis tools. They also analysed exploit
defence techniques proposed by other authors that only assumed sequential execution
and concluded that some simply fail to work under multithreaded execution or require
potentially performance degrading changes.

AsyncShock’s approach is similar to that of Xu et al. presented in Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems [100]. Here, page faults
are used to trace enclave execution by removing enclave page permissions, recording page
faults, briefly allowing execution and removing permissions again. This produces a trace
of page fault addresses that can reveal what the enclave is working on when the enclavized
software is known which in turn can reveal secrets. Xu et al. demonstrated their attack by
enclavizing open source software for text and image processing and showed that they were
able to reconstruct both secret text and images simply by observing page accesses. This is
possible because the enclavized software uses different page access patterns depending on
the input. AsyncShock uses the same technique of removing page permissions and utilizes
it to enforce a certain thread schedule instead of tracing page accesses. This modified
approach only requires modifying page permissions of a few pages near the critical section
instead of the whole enclave.

Both AsyncShock and Controlled-Channel Attacks are limited by the page fault mecha-
nism’s granularity of 4 KiB pages of memory. This makes it hard to accurately stop execu-
tion on an enclave within a page. SGX-Step [9o] circumvents this limitation by proposing
anew way to interrupt an enclave: Timer interrupts. When an enclave is executing, inter-
rupts still need to be handled. To achieve this, SGX can perform an AEX that leaves the
enclave to handle the interrupt, see Section 2.1. SGX-Step works by configuring a timer
inside the Advanced Programmable Interrupt Controller the delivers a high number of
interrupts to the system. This continuously interrupts the enclave allowing SGX-Step
to effectively single-step on an instruction level through the enclave and allows for fine-
grained control over enclave execution.

Interrupting an enclave through page faults or timer interrupts is a disruptive process
that slows down enclave execution. If only data exfiltration is needed and no control flow
management, then a different page table based approach is possible. In Telling Your Secrets
without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Execution [93] together with
Jo Van Bulck we have shown that the access and dirty bits of the page table can be used to
trace enclave execution similarly to Controlled-Channel Attacks. Again, data exfiltration
was shown to be possible, this time from a cryptographic library, because the library did
use different page access patterns when operating on key material.

There also exist potential countermeasures against AsyncShock. The most obvious one
is to make sure that the enclave does not contain synchronization bugs. This might be
achievable by utilizing tools such as ThreadSanitizer [81] to detect data races. Volp et al. [94]
propose a different solution to guard against a malicious OS that interrupts enclave ex-
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ecution at arbitrary times. They propose to utilize delayed preemption, inspired from the
L4-family of microkernels, inside an enclave. This technique allows an enclave to disable
preemption during execution of'a critical section by deferring the preemption until after
the critical section has completed execution. For AsyncShock, this would imply that it is
no longer possible to preempt a thread at will. However, the proposed solution would
require Intel to built it into the hardware which makes it a nice idea, but ultimately not
possible to actually use.

There has also been work in the direction of static analyses and verification to prove
that an enclave is not capable of leaking secrets. Moat [85] proposes to verify enclave code
to be unable to disclose secrets by using static analyses and “ghost variables” to track the
secrecy of sensitive data, similar to taint tracking. As the paper shows, the approach is
promising, but their implementation does not take multithreaded enclaves into account.

A more realistic defence is proposed in Haven [16]. Haven proposes a library OS to run
unmodified Windows applications inside SGX enclaves coupled together with a shield
module. The shield module manages synchronization primitives to ensure correct be-
haviour which can help but still requires the application to actually use them correctly.
Haven also proposes to decouple hardware threads from application threads and to switch
to user-level scheduling inside the enclave. While this makes it harder to enforce a certain
thread schedule, it does not make stopping user level threads impossible as AsyncShock
can still interrupt them. Ifit were possible for a hardware thread to recover a stopped user-
level thread by transferring its context to another hardware thread, AsyncShock would be
unable to stop user-level threads. Haven, however, does not propose a user-level thread
recovery mechanism, possibly because building such a mechanism might be too complex
or even impossible with the state of SGX at the time.

In 2023, Intel released a new SGX extension called Asynchronous Enclave Exit Notify [41]
based on the work on Constable et al. [29]. This extension allows an enclave to modify
the behaviour of an AEX by changing how ERESUME is executed. An enclave thread that
requests AEX-Notify set via a flag, will resume execution not at the point of interruption
but instead again at the entry point defined in the TCS. The entry point can check whether
it was invoked via EENTER or ERESUME and react accordingly. Constable et al. [29] use this
new mechanism to defend against the aforementioned SGX-Step [9o]. The possibility of
changing ERESUME to restart at the predefined entry point, however, could make it possible
to implement a user-level thread recovery mechanism. Despite that, the feasibility of this
endeavour is out of scope for this thesis but should be explored in the future.

(Publication starting next page)
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Abstract. Intel’s Software Guard Extensions (SGX) provide a new hard-
ware-based trusted execution environment on Intel CPUs using secure
enclaves that are resilient to accesses by privileged code and physical
attackers. Originally designed for securing small services, SGX bears
promise to protect complex, possibly cloud-hosted, legacy applications.
In this paper, we show that previously considered harmless synchroni-
sation bugs can turn into severe security vulnerabilities when using SGX.
By exploiting use-after-free and time-of-check-to-time-of-use (TOCTTOU)
bugs in enclave code, an attacker can hijack its control flow or bypass
access control.

We present AsyncShock, a tool for exploiting synchronisation bugs of
multithreaded code running under SGX. AsyncShock achieves this by
only manipulating the scheduling of threads that are used to execute
enclave code. It allows an attacker to interrupt threads by forcing seg-
mentation faults on enclave pages. Our evaluation using two types of Intel
Skylake CPUs shows that AsyncShock can reliably exploit use-after-free
and TOCTTOU bugs.

Keywords: Intel Software Guard Extensions (SGX); Threading; Syn-
chronisation; Vulnerability

1 Introduction

Recently, Intel’s Software Guard Extensions (SGX), a new hardware-supported
trusted execution environment for CPUs, has reached the mass market!'. Sim-
ilarly to previous trusted execution environments such as ARM TrustZone [1],
SGX allows the execution of applications inside secure enclaves, without trusting
other applications, the operating system (OS) or the boot process. Unlike previ-
ous solutions, SGX supports hardware multithreading, which is a fundamental
requirement for modern performant applications.

Secure enclaves reduce the overall trusted computing base (TCB) to essen-
tially the TCB of the enclave. SGX by itself, however, cannot prevent vulnera-
ble enclave applications from being exploited. Although it was initially assumed
that only small tailored applications would be executed inside enclaves [11], a

! https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/
PCN114074-00. pdf
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recent trend is to consider enclaves as a generic isolation environment for arbi-
trary applications: VC3 [21] uses enclaves to secure computation for the Hadoop
map /reduce framework; Haven [2] places a library OS inside an enclave for run-
ning unmodified Windows server applications.

This trend towards more complex, multi-threaded applications inside en-
claves opens up new attacks. In particular, existing applications are designed
to protect against a threat model that is not the same as the one for enclave
code—traditional applications assume that the OS is trusted. As recent work has
shown, an untrusted OS enables powerful side channel [28] and Iago [5] attacks.

In this paper, we explore a new angle for mounting attacks against SGX en-
claves. We show that synchronisation bugs that are unlikely to be exploitable out-
side of SGX become reliably exploitable by carefully scheduling enclave threads.
We achieve this by manipulating the page access permissions of enclave pages to
force segmentation faults that interrupt enclave execution. Through this method,
we are able to widen the traditionally small attack window of synchronisation
bugs and increase the chances of a successful exploit.

Typically, the impact of such concurrency attacks [29] is to prevent or slow
down certain activities in favour of others, create inconsistencies, extract data,
bypass access control, or hijack the control flow of the attacked program (e.g.,
CVE-2009-1837, CVE-2010-5298, CVE-2013-6444). In the case of SGX, the im-
pact of controlling code execution within an enclave is higher. At the time of
writing, Intel only licenses the creation of SGX production enclaves after ex-
amination of the software development practices of the licensee?. Controlling
enclave code execution would be a way to circumvent this practice, similarly to
how “jailbroken” iPhones can execute non-Apple approved applications.

The contributions of the paper are:

— we show that synchronisation bugs are easier to exploit within SGX enclaves
than in traditional applications. This is partly because, by design, the at-
tacker can control thread scheduling of enclaves in the SGX attacker model;

— we describe AsyncShock, a tool that facilitates the reliable and semi-auto-
mated exploitation of synchronisation bugs in SGX enclaves. AsyncShock
leverages the ability of the untrusted OS to arbitrarily interrupt and re-
schedule enclave threads. AsyncShock is designed to target enclaves built
with the official SGX Software Development Kit (SDK) for Linux?;

— we explain how to track enclave execution near critical sections by removing
permissions from pages, which triggers notifications when enclave execution
has reached a particular point;

— we show how use-after-free and TOCTTOU |[3] bugs can be exploited by
AsyncShock; and

— we provide evaluation results of attack success rates by AsyncShock on cur-
rent Intel Skylake CPUs, exploring a variety of different implementations of
the attack.

2 https://software.intel.com/en-us/articles/intel-sgx-product-licensing
3 https://software.intel.com/en-us/blogs/2016/04/11/
intel-software-guard-extensions-sdk-for-linux-availability-update



PROCEEDINGS OF THE 21ST EUROPEAN SYMPOSIUM ON RESEARCH IN COMPUTER SECURITY (2010)
45

Application
bp I:] trusted

D untrusted
> Execute
Create enclave @D D enclave entry point
@ @
Execute
Execute

’ Privileged system code ‘

l Hardware ‘

Fig. 1. Basic enclave interaction showing an Ecall (1) into an enclave, an Ocall (2)
and the return 3) to the untrusted application. (The enclave entry points are shown
in yellow.)

The paper is structured as follows: §2 provides background on SGX, the
assumed attacker model and the impact of synchronisation bugs when using
SGX; §3 describes our forced segmentation fault approach and the AsyncShock
tool; §4 gives evaluation results and discusses protective measures; §5 surveys
related work on SGX and similar attacks; and §6 concludes the paper.

2 Background

First, we give a brief introduction to trusted execution as implemented by SGX.
After that, we present an attacker model that is tailored towards typical usage
scenarios of SGX. Finally, we discuss the impact of synchronisation bugs.

2.1 SGX in a Nutshell

SGX allows developers to create an isolated context inside their applications,
called a secure enclave [18, 12]|. Enclaves feature multiple properties: (i) enclaves
are isolated from other untrusted applications (including higher-privileged ones)
through memory access control mechanisms enforced by the CPU; (ii) memory
encryption is used to defend against physical attacks and to secure swapped
out enclave pages; and (iii) enclaves support remote attestation at the level of
enclave instances.

Programming Model. A typical workflow for using SGX with the support of
the SGX SDK [13] starts with creating an enclave as part of an application.
The necessary instructions for creating an enclave are only callable from kernel
mode (ring 0) and thus require kernel support. Once successfully performed, the
application can issue Ecalls @ to enter an enclave as seen in Figure 1. Inside the
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Fig. 2. Mutex lock/unlock operations provided by the SGX SDK may exit the enclave.

enclave, input parameters passed with the call can be processed, and enclave code
is executed. Developers specify the enclave interface and the direction of data
with a SDK-specific file written in the Enclave Description Language (EDL) [13].
The SDK handles data movement across the enclave boundary by performing the
necessary memory copy operations. However, this is only supported for primitive
data types and flat structures. Data structures with pointers are not deep-copied
and therefore expose the enclave to TOCTTOU attacks.

Ocalls (2) may be performed to leave the enclave and execute untrusted
application code before an Ecall returns @ to the enclave. While the enclave
has access to inside and outside memory, the untrusted application is not allowed
to access memory inside the enclave: any attempt to read enclave data results
in abort page semantics, i.e. reading OxFF; write attempts are simply ignored.

Memory Management. Enclave creation and its memory layout are handled by
an SGX kernel module. During enclave creation, the enclave code and data are
copied page-by-page into the Enclave Page Cache (EPC), which is protected
system memory. Mapped pages and their permissions are saved in the Enclave
Page Cache Map (EPCM). Enclave page permissions are thus managed twice,
once through the OS page table and once through the EPCM. Accessing an
enclave page also leads to two permissions checks: once by the Memory Man-
agement Unit (MMU) reading the permissions from the page table, and once by
SGX reading them from the EPCM. While it is possible to restrict page table
permissions further using mprotect, it is not possible to extend them because
the EPCM cannot be modified. The possibility of removing page permissions is
important for AsyncShock—it means that an attacker can mark pages and get
notified when they are used.

Support for Multithreading and Synchronisation Mechanisms. Each enclave must
have at least one entry point that defines an address at which the enclave may be
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entered. The SDK implements a trampoline to allow multiple Ecalls through a
single entry point. Multithreading is supported by having multiple entry points
and permitting multiple threads to enter them concurrently. Similar to regular
applications, interrupts may occur during enclave execution and must be han-
dled. SGX achieves this by performing an Asynchronous Enclave Exit (AEX),
which saves the current processor state into enclave memory, leaves the enclave
and jumps to the Interrupt Service Routine (ISR). Enclave execution is resumed
after the ISR finishes, restoring the saved processor state.

The SGX SDK offers synchronisation primitives such as mutexes and con-
dition variables. These primitives do not operate exclusively inside the enclave:
for instance, thread blocking requires a system call that is unavailable inside
enclaves. Furthermore, managing a lock variable outside of the enclave is not ad-
vised because an attacker could change it. A hybrid approach has been adopted
by Intel in which the lock variables are maintained inside the enclave whereas
system calls are issued outside. Therefore, using synchronisation primitives may
result in enclave exits. Figure 2 shows this behaviour for a mutex lock operation.

2.2 Attacker Model

We consider a typical attacker model for SGX enclaves: an attacker has full
control over the environment that starts and stops SGX enclaves. They have
full control of the OS and all code invoked prior to the transfer of control, using
Ecalls, to the SGX enclave, and also when an enclave calls outside code via
Ocalls. More specifically, the attacker can interrupt and resume SGX threads
(see §2.1), which is the main attack vector exploited in this paper.

The attacker’s goal is to compromise the confidentiality or integrity of the
SGX enclave. For example, they may want to gain the ability to execute arbitrary
code within the enclave. Note that we ignore availability threats, such as crashing
an enclave: the untrusted OS can simply stop SGX threads.

2.3 Synchronisation Bugs in Software

Synchronisation bugs are caused by the improper synchronised access of shared
data by multiple threads, and previous studies have shown that they are a
widespread issue [15, 27|. A large number of tools were proposed to help develop-
ers find different kinds of synchronisation bugs, such as atomicity violations |6,
8, 16], order violations [9, 17, 32] and data races [20, 31]. These studies, however,
do not explore the security implications of discovered bugs—in most cases, the
discovered bugs lead to memory corruption or crashes. Although such bugs may
seem benign and unlikely to occur, synchronisation bugs are likely to lead to
exploitable security vulnerabilities [26, 7, 23].

Unlike traditional applications, in the context of SGX, enclave code is trusted
both by its developper and Intel to run untampered on untrusted machines (e.g.,
hosted at an untrusted cloud service provider). Memory corruption inside an en-
clave may therefore be used to hijack execution of the enclave, potentially leading
to the disclosure of enclave cryptographic keys. In addition, such vulnerabilities
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Fig. 3. Simple use-after-free. Thread one frees pointer but is not able to set it to NULL
because thread two is scheduled in.

may be used by malicious attackers, e.g., botnet herders, to bypass Intel’s vet-
ting process and design rootkits that run inside the enclave and are undetectable
by security software running in the OS: by design, the OS cannot introspect an
enclave running in production mode. Therefore, vulnerabilities in enclaves are
worrisome to enclave developpers, enclave hosters, and Intel.

In the following, we show that synchronisation bugs are a real security threat
to enclave developers by exploiting two examples of the common atomicity-
violation bugs: a use-after-free bug as well as a TOCTTOU bug.

3 Exploiting Synchronisation Bugs with Scheduler Control

Exploiting synchronisation bugs inside an SGX enclave can be broken down into:
(i) finding an exploitable synchronisation bug; (ii) providing a way to interrupt
and schedule enclave threads; and (iii) determining experimentally when to inter-
rupt and schedule enclave threads. Next we describe each of these steps through
the example of a use-after-free bug. In addition, we describe the AsyncShock tool,
which generalises this approach and allow the easy adaptation of these steps to
other vulnerabilities. We explain how AsyncShock exploits a TOCTTOU bug.

3.1 Exploiting Synchronisation Bugs inside an Enclave

We focus on the atomicity-violation class of bugs and show how such a bug can
be exploited. Figure 3 shows an example of an atomicity violation. A possible
use-after-free bug occurs if the first thread is interrupted directly after the free
but before the assignment. The second thread performs a NULL check during this
time, which succeeds even though the pointer has been freed. The call to free
and the assignment were intended to be an atomic block by developer, but this
is not reflected in the implementation.

During execution, such an interruption is a scheduling decision by the OS,
and the probability that the interruption occurs at the right point is low. Fur-
thermore, the thread itself is not paused but is scheduled again later while the
second thread is still executing. The second thread may thus be interrupted
during its execution before the freed pointer can be used.
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Fig. 4. Memory access permission checks on an enclave page. Permissions are checked
and managed twice: once by the MMU (page table) and once by SGX (EPCM).

As shown in the litterature [29, 25|, the attack window for memory races is
small in practice. In some cases, the attacker may only have a single chance to
exploit the vulnerability. Even if an attacker can execute the application many
times, it may still take a long time until the interruption occurs at precisely
the correct time. Being able to increase the attack window would thus help
exploit such bugs more effectively. The AsyncShock tool aims to help exploit
synchronisation bugs that are present inside an enclave by pausing and resuming
threads during execution, which is possible when threads are inside an SGX
enclave. We explore two techniques for interrupting threads, as described in the
following sections.

3.2 Interrupting Threads via Linux Signals

One approach to interrupt threads is to leverage the Linux signal subsystem.
Handling a signal interrupts the thread and redirects control to the signal han-
dler. We therefore register a signal handler for the SIGUSR1 and SIGUSR2 signals.
We use the SIGUSR1 signal to pause a thread and the SIGUSR2 signal to resume it
again. A control thread sends these signals to specific threads based on a config-
urable delay. Elapsed time since the application start is measured and compared
to the delay in a loop. When the delay is reached, a signal is issued. The signal
is sent by the pthread_kill function provided by pthreads.

Pausing the thread is performed by using a condition variable to wait inside
the signal handler that suspends the thread. Sending the resume signal causes a
second signal handler invocation, which in turn uses a condition variable signal to
resolve the wait in the first signal handler’s invocation. Each thread has its own
condition variable, facilitating the pausing and resuming of multiple threads.

While this approach works, it is unreliable and depends on the specifics of the
Linux task scheduler. We experimented with different delays for the same exploit
but observed the same success rate regardless of the delay. We suspect that the
signal dispatching is too slow, leading to inaccurate interruptions. Furthermore,
this approach requires a deterministic runtime of the program because the delay
is fixed—mnon-deterministic execution inside the enclave defeats this approach.
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3.3 Interrupting Threads via Forced Segmentation Faults

We explore another approach based on interrupting threads to force segmen-
tation faults. Using mprotect, we remove the “read” and “execute” permissions
from enclave pages, i.e. marking the page. As soon as an enclave page with
stripped permissions is accessed, a SIGSEGV signal is dispatched by the kernel
as a response to the fault generated by the MMU, notifying the attacker of the
page access.

This approach exploits the fact that memory access checks with SGX are
performed twice, as shown in Figure 4. The call to mprotect changes the per-
missions inside the page table, but not inside the EPCM. Therefore the access
fails at the page table check, even though the real permissions are unchanged.

We install our own signal handler, as described in §3.2, but this time for
SIGSEGV. Inside the handler, we can restore the page permissions, start a timer
with a configurable delay and resume execution. If a timer is started, it can
remove the permissions upon expiration. This leads to another SIGSEGV, which
again invokes our handler. We can now employ the same thread stopping mecha-
nism described for the signal approach using condition variables. The mprotect
approach is more reliable than the signal approach because page permissions are
changed instantaneously.

3.4 AsyncShock Tool

AsyncShock incorporates the described approaches into an easy-to-use tool. It is
implemented as a shared library, which is preloaded using the LD_PRELOAD mech-
anism of the dynamic linker. To interact with the target application, AsyncShock
provides its own implementation of certain functions that shadow their real im-
plementations. An example is pthread_create, which is normally provided by
the C standard library. AsyncShock provides its own implementation that ob-
serves thread creation and takes actions upon the creation of specific threads.

To use AsyncShock, an attacker must know how the scheduling needs to
be influenced to successfully trigger an exploit. They then must transform the
attack into a series of actions in reaction to certain events. Possible events in-
clude thread creation, segmentation faults and timer expirations; possible actions
include pausing or resuming a thread, starting a timer or changing page permis-
sions. We call this series of actions the attack playbook. AsyncShock enforces
that the targeted application behaves according to the playbook while also ma-
nipulating the environment.

A textual representation of a playbook for the use-after-free bug from Figure 3
is given in Listing 1.1. It includes the definition of four reactions to events: on
thread creation of the first thread, an enclave page (enclave base address +
0x5000) is stripped of its read and execute permissions. By using objdump, we
find that the free function is located on this code page, and we mark it to
get notified when it is called. As soon as a thread calls the free function, a
segmentation fault occurs, which is handled by the signal handler registered by
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on thread creation "threadl":
remove read,exec on enclave+0x5000

on thread creation "thread2":
pause thread this

on segfault 1:
set read,exec on enclave+0x5000
remove read,exec on enclave+0x1000

on segfault 2:
set read,exec on enclave+0x1000
resume thread thread2
pause thread this

Listing 1.1. Example playbook for the use-after-free bug from Figure 3.

AsyncShock. It reapplies the removed permissions and removes the permissions
at another page. The marked page contains the calling function that we mark
to get notified when free finishes.

The resulting segmentation fault is again handled by AsyncShock. This time,
the faulting thread is paused, and the second thread is allowed to continue. As
a result, the attack window has been widened for the second thread to exploit
the bug.

3.5 AsyncShock in Action

We use AsyncShock to successfully exploit a use-after-free bug inside an en-
clave and take control of the instruction pointer. Listing 1.2 shows the exploited
enclave code.

The code contains two Ecalls, one set-up Ecall only executed once and
another Ecall. While the enclave contains no threads, the second Ecall is used
by two untrusted threads to enter the enclave simultaneously. However, a syn-
chronisation bug exists between lines 26 and 27 if multiple threads execute the
Ecall function in line 19. glob_str_ptr is a shared variable between all execu-
tions that is freed inside the Ecall and set to NULL. The bug triggers if a thread
has just executed the free but not yet the assignment, while a second thread
enters the Ecall function. Due to the nature of the memory allocator provided
by the SDK, the malloc call (line 20) provides the old glob_str_ptr address,
which leads to glob_str_ptr and my_func_ptr pointing to the same memory.
The second thread passes the NULL check and copies the user provided input
to glob_str_ptr, which sets my_func_ptr. The function call in line 25 now re-
ceives its address from the user-provided input and can be given the address of
another enclave function, thus hijacking the control flow inside the enclave.

We use AsyncShock with a playbook similar to the one shown in Listing 1.1
to exploit the bug. Figure 5 shows how AsyncShock exploits the bug in detail.
AsyncShock lies dormant until one of its overwritten functions are called. The
application first creates a thread that is paused immediately by AsyncShock (D).

51
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char *glob_str_ptr;
int other_functions(const char *c) { X
int puts(const char * c) {

printf ("%s", c);
return O0;

0 N oG A W N

}

-
o ©

struct my_func_ptr {

int (#*my_puts) (const char *);
12 char desc[8];
13 |} my_func_ptr;

-
.

15 void ecall_setup() {
16 glob_str_ptr = malloc(sizeof (struct my_func_ptr));
17 |}

19 void ecall_print_and_save_arg_once(void *str) {

20 struct my_func_ptr *mfp = malloc(sizeof (struct my_func_ptr));
21 mfp->my_puts = puts;

22 if (glob_str_ptr != NULL) {

23 memcpy (glob_str_ptr, (char *)str, sizeof (glob_str_ptr));
24 glob_str_ptr[sizeof (glob_str_ptr)] = ’\0’;

25 mfp->my_puts (glob_str_ptr);

26 free(glob_str_ptr);

27 glob_str_ptr = NULL;

28 }

29 free(mfp);

30 |}

Listing 1.2. Example enclave containing a user-after-free bug.

A second thread is created that is allowed to execute (2). At this point, the
“read” and “execute” permissions are removed from the code page containing
the free function. The second thread enters the enclave and begins execution.
When it calls free (3), an access violation occurs, resulting in an AEX and a
segmentation fault caught by AsyncShock @ The permissions are restored for
this page, but removed for another before the thread is allowed to continue.

When the next marked page is hit @, resulting in another AEX and seg-
mentation fault @, we know that free has returned. In the signal handler, the
permissions are restored again. We stop the thread and signal the sleeping thread
to execute (7). This concludes the successful exploit.

3.6 AsyncShock and a TOCTTOU Bug

To show how AsyncShock can be adapted to a different type of bug, we exploit
a TOCTTOU bug. Listing 1.3 shows an enclave with three Ecalls: two threads
enter the enclave, the first through the ecall_writer_thread and the second
through the ecall_checker_thread Ecall. The second thread checks (line 20)
if the shared variable data contains the string "bad data" and, if so, does not
access it. Other content leads to a successful check and results in the second use
of the variable. The first thread writes to the shared variable after executing a
non-deterministic amount of time.
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Fig. 5. AsyncShock exploiting the synchronisation bug from Listing 1.2

A TOCTTOU bug exists in lines 18 (check) and 19 (use). AsyncShock ex-
ploits this bug by delaying the writer thread, interrupting enclave execution after
the check and then letting the writer thread proceed with the write to the shared
variable. Interrupting between the check and the use in this example is challeng-
ing because the code pages containing strncmp and memcpy also contain some
frequently called methods of the SDK. We therefore opt to start a timer right
before entering the enclave, which expires between the check and the use. The
timer has a configureable delay that postpones its execution. The correct delay
must be determined empirically by observing the behaviour of the application
with different delays. In our example, we observe the most successful exploits by
choosing delays between 80000 and 120000 cycles, as described in §4.3.

4 Evaluation

To show the effectiveness of AsyncShock, we evaluate it by exploiting two atom-
icity violation bugs. First, we describe our evaluation set-up. After that, we
present the results of exploiting a use-after-free bug and a TOCTTOU bug in-
side an enclave. We finish with a discussion of possible defenses.

4.1 Experimental Set-up

We evaluate the effectiveness of AsyncShock by exploiting a use-after-free bug,
as well as a TOCTTOU bug, on real SGX hardware. We used a Dell Opti-
plex 7040 with an i7-6700 Intel CPU and 24 GB of memory. We also evaluate
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1 | static char datall = {’g’, ’0’, ’0’, ’d4’, ’ 2, ’d’, ’a’, ’t’, ’a’, ’\0’};
2 static int random_wait = 0;

3

4 |void ecall_setup() {

5 random_wait = get_random_int ();

6 | X

7

8 |void ecall_writer_thread() {

=
= o ©

for (int i = 0; i < 100000; ++i);
for (int j = 0; j < random_wait; ++j);
snprintf (data, 10, "bad data");

e
w N

14 |}

15

16 | int ecall_checker_thread () {

17 char *str = calloc(1l, 10);

18 if (strncmp("bad data", data, 9) != 0) {
19 memcpy (str, data, 10);

20 printf ("Access ok: %s\n", str);
21 free(str);

22 return O0;

23 } else {

24 printf ("Sorry, no access!\n");
25 return -1;

26 }

27 |}

Listing 1.3. Example enclave containing a TOCTTOU bug.

AsyncShock on a white-box server with an Intel E3-1230v5 CPU and 32 GB of
memory. Both CPUs have four cores and are capable of hyper-threading, dou-
bling the possible active threads. For our evaluation, hyper-threading has not
been disabled. The desktop machine runs Ubuntu Linux 14.04.3 Desktop with
kernel version 3.19.0-49; the server machine runs Ubuntu Linux 14.04.4 Server
with kernel version 3.13.0-85. The server machine has a lower base load because
fewer processes exist due to the missing desktop environment. All evaluations
use a pre-release version of the SGX SDK which Intel provided to us.

4.2 Exploiting a Use-After-Free Bug

First, we establish a baseline by running the application without AsyncShock.
We execute the application with its enclave one million times without observing
a single successful exploit. We conclude that the attack window is too small to
be exploitable just through controlled input.

We exploit the bug shown in Listing 1.2. Given the playbook from Listing 1.1,
we can reliably exploit the use-after-free bug. We also modify the playbook to
change the function arguments for the second thread so that the use-after-free
results in a control flow modification, i.e. a call to other_function, which is
otherwise not called. We execute the exploit 100000 times on both machines and
observe a 100% success rate.
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Fig. 6. Graph showing the success rate of AsyncShock exploiting the TOCTTOU bug
at different timer delays.

4.3 Exploiting a TOCTOU Bug

To put the high rate chance of exploiting the use-after-free bug into perspective,
we also consider a more difficult bug to exploit reliably: a TOCTTOU bug inside
an enclave. Here we exploit the enclave code shown in Listing 1.3. We also
establish a baseline by executing the application without AsyncShock. As with
the use-after-free bug, we also do not see a single exploit occurring by chance.
The non-deterministic delay in the writer thread is long enough so that the other
thread can always perform the check and the use on the same data.

Next, we try to exploit the bug with AsyncShock. We evaluate a wide range
of delays for the timer, as described in §3.6. Each delay is executed 10000 times.
We record the successful exploits every 100 executions, obtaining 100 result sets
per delay. We report the mean success rate for a given delay, with error bars
representing a 95% confidence interval.

Figure 6 shows the results for the TOCTTOU exploit. As can be seen, the
success rate varies not only with timer delay, but also differs for both machines
with the same delay. We attribute this behaviour to the differences in base load
and active processes on both machines. We are able to achieve near 100% success
rates with timer delays of 80,000 cycles to 120,000 cycles. (As explained in §3.3,
the delay is the time until AsyncShock removes the “execute” permissions from
an enclave page, effectively forcing a stop to execution.) Our goal is to stop the
enclave between the check and the use, which we achieve almost always with the
correct delay.

Table 4.3 shows the results in more detail for selected delays. With a delay of
100,000, AsyncShock can almost always exploit the TOCTTOU bug with a low
deviation. In conclusion, AsyncShock can be used to reliably exploit atomicity
violation bugs with a high success rate.
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Delay Success rate

(cycles) Server ‘ Desktop
80,000 | 98.57% + 0.27| 99.40% =+ 0.17
90,000 | 99.81% =+ 0.08| 99.93% =+ 0.05
100,000 | 99.99% + 0.02| 99.99% =+ 0.03
110,000 | 99.98% =+ 0.03 | 99.99% =+ 0.02
120,000 | 99.98% =+ 0.03| 99.98% =+ 0.03

Table 1. Deatiled success rates for selected delays.

4.4 Protective Measures Against AsyncShock

Our experimental results show that synchronisation bugs can lead to viable
attacks against SGX enclaves. However, there already exist defense mechanisms
for protecting from these attacks.

A first defence against the use-after-free bug is the sanitisation of user input
as AsyncShock changes the Ecall parameters to direct the control flow. In gen-
eral, sanitisation is advisable when unexpected input can be abused in a similar
way to Iago attacks [5]. Enclave code should always check outside input for va-
lidity as an attacker may change the result from Ocalls or the parameters to
Ecalls when using the SDK. In addition, enclave developers should not rely on
the SDK'’s ability to defend against simple TOCTTOU attacks. While the SDK
does copy Ecall parameters into enclave memory before passing them to enclave
functions, it does not deep-copy data structures. Pointers in data structures are
not followed and may lead to an enclave accessed outside memory. This type of
vulnerability has often been exploited in OS kernels (e.g., [14] for Windows, and
in general in filesystems [25]).

Another defense against the use-after-free bug presented here is possible be-
cause the bug relies on the in-enclave implementation of malloc to return re-
cently freed memory. The attack can be mitigated by heap hardening meth-
ods, such as the one recently implemented in Internet Explorer through delayed
free [10], or even with tools such as AddressSanitizer [22] that delay the reuse of
recently freed memory or by changing the behaviour of the in-enclave memory
allocator.

Protection from all synchronisation bugs can be achieved by prohibiting
threading altogether—if only a single thread can enter the enclave at any time,
no inconsistencies are possible due to serial execution. Such a solution, however,
negatively impacts performance. If parallelism is needed, one can also adapt
other techniques to work inside enclaves such as Stable Multithreading [30] or
use tools such as ThreadSanitizer 23] during development in order to find and
eliminate synchronisation bugs.

While many hardening techniques are applicable to enclave code, some tra-
ditional techniques do not work in the context of SGX. For example, the use of
address space layout randomisation (ASLR) [19] is not directly applicable inside
enclaves because any changes of the enclave memory would change the enclave
measurement and therefore fail the signature check.
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5 Related Work

Because SGX is a new technology with limited production use, only few use
cases have been described so far. Haven [2] executes unmodified Windows appli-
cations inside an enclave. To achieve this, the combination of a shield module
and a library OS provides the necessary execution support. The shield module
manages synchronisation primitives and ensures their correct behaviour, simi-
lar to the SGX SDK. Furthermore, Haven tries to defend against Iago attacks
be sanitising and checking the parameters of Ecalls and results of Ocalls.
Haven also proposes a decoupling of enclave threads and host threads via user-
level scheduling to hinder the exploitation of synchronisation bugs. However,
AsyncShock should still be effective as it marks pages in close proximity to the
synchronisation bugs to force an AEX. Thus, it does not necessarily need to
observe the enclave-internal thread scheduling.

Fine-grained page tracking can be used for powerful side channel attacks [28§].
For example, a JPEG image generated inside an enclave could be reconstructed
outside: by paging out enclave pages to repeatedly induce page faults, mem-
ory accesses could be related to certain code paths. In contrast, AsyncShock is
geared towards the exploitation of synchronisation bugs, albeit it can also be
used to extract information from an enclave. However, for synchronisation bugs,
AsyncShock only needs a small number of marker pages to track the enclave
execution close to the critical section.

Yang et al. [29] identify concurrency attacks as a risk to real-world systems.
They classify different types of attacks based on memory access patterns, and
identify the attack window as an important factor for exploitability. Memory
races usually have a small attack window at the level of nanoseconds. Async-
Shock widens the attack window by stopping threads when a critical state is
reached, steering other activities to allow reliable exploitation of memory-based
concurrency bugs.

Synchronisation bugs have also been studied for their security implications.
For instance, TOCTTOU races often affect filesystem-related code, typically
when performing access control decisions. Dean and Hu [7] propose a counter-
measure to alleviate those risks. Borisov et al. [4] show that this probabilistic
countermeasure can be reliably defeated with filesystem mazes. Tsafrir et al. [25]
propose another way to instrument those access checks to make the exploitation
of those races significantly more difficult even against filesystem mazes.

Twiz and Sgrakkyu [26] extensively treat techniques for the exploitation of
logical bugs in OS kernels. Jurczyk and Coldwind [14] describe how to exploit
race conditions via memory access patterns in the Windows kernel. The Windows
kernel copies the arguments to system calls from user to kernel space. However,
the kernel does not copy pointer-referenced data in some cases. The authors
exploit this by using the Bochs CPU emulator to interrupt the kernel, similar to
how AsyncShock swaps out the data between two reads by the kernel—a classical
TOCTTOU attack. However, in contrast, AsyncShock attacks an SGX enclave
and not the kernel, in a setting where the attacker controls the scheduler and
has reliable side channels on a thread’s progress.
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Moat [24] makes a first step towards the verification of SGX enclaves. The
authors propose an approach to verify that enclave code is unable to disclose
secrets. They employ static analysis on the x86 machine code, introducing “ghost
variables” to track the secrecy of data in a manner similar to taint tracking.
With this method, they are able to find occurrences of possible sensitive data
disclosure. While their approach is promising for detecting data disclosure, they,
unlike AsyncShock, do not consider multi-threaded code in enclaves.

6 Conclusion

This paper analyses the impact of synchronisation bugs inside SGX enclaves. We
have shown that the impact of synchronisation bugs is greater within SGX en-
claves than in traditional applications, because their exploitation becomes highly
reliable through attacker-controlled scheduling. We described AsyncShock, a tool
for thread manipulation, and showed how it can be used to exploit synchronisa-
tion bugs by widening the attack window through controlled thread pausing and
resuming. AsyncShock operates as a preloaded library without modifications of
the target application or host OS. We demonstrated that synchronisation bugs
can be exploited inside SGX enclaves using AsyncShock for control flow hijacking
or bypassing access checks.
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5 Enabling Secure
Modularity in Enclaves

AsyncShock has shown that the new threat model for enclaves is different enough that
enclave developers need to be aware of previously less important classes of bugs, such as
synchronization bugs. Mitigation techniques are one aspect that can help to harden an
enclave application; however, only shipping an enclave when the code is 100% hardened
is not feasible. Businesses cannot wait until their product is perfect before putting it to
market, especially in a fast moving environment such as the cloud. Traditionally, these
issues are solved by shipping software updates which can fix bugs, enhance performance
and add new features.

Updating software for consumers is usually simple. A new update is installed and, af-
ter the software is restarted, it can be used again in its updated state. For businesses that
provide, e.g., a Software-as-a-Service (SaaS) offering, the reality looks different. Here, the
business critical software, such as database systems, cannot simply be restarted as it would
incur downtime. Usually, this is mitigated by announcing maintenance windows with
scheduled downtime or by replicating the service so that no downtime is needed if pos-
sible. However, if the service is stateful or resources are scarce, downtime or replication
might not be possible.

A third approach is to design the application in such a way, that it supports live patching
its code while the application is running, a technique known as hot-patching. This also
isn’tanew technique and is supported by, e.g., big database systems [61, 69]. Even operating
systems [39, 25] offer hot-patching to enable kernel updates without downtime.

Similar to hot-patching, there exist a technique to enhance an application with new
features so widely used that it’s sometimes forgotten that it can be used for this purpose:
dynamic loading. Dynamic loading is commonly used to externalize parts of an applica-
tion. This saves memory during execution as only those parts that are actually needed
are loaded. It also makes the parts independently updatable from the main application.
Lastly, it can also save space on disk. This is done for libraries that are used by many appli-
cations on a system by only shipping the library once and to make sure all applications are
using the newest possible version. The dynamic linker is responsible for loading all re-
quired libraries at the application start and then link the application and libraries together
in memory. An application, however, can also invoke the dynamic linker directly to load
code after start up, e.g., to load additional features. This is done by database systems [61,
69], webservers [71] and more.

When stepping into trusted execution, however, neither hot-patching nor dynamic load-
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ing were available to developers either due to restrictions of the TEE, such as, e.g.,, no
possibility to include changes into an attestation report, or because no framework existed
that provides these features. Neither SGX nor TrustZone were envisioned with large, ex-
tensible applications in mind which is a use case that has emerged after launch of SGX
when researchers and developers could explore the functionalities of SGX. Only AMD
SEV offered a suitable way which allowed large applications to be launched in a TEE but
SEV had its own issues that made it impractical to use [24].

5.1 sgx-dl: Dynamic Loading and Hot-Patching for
Secure Applications

In sgx-dl: Dynamic Loading and Hot-Patching for Secure Applications[g7] (on page 67) the sgx-
dl framework is presented which provides developers with the ability to enhance their
SGX application with the use of dynamic loading and hot-patching. sgx-dl is not the first
system that enables dynamic loading in SGX enclaves, however, it is the first system that
does it without compromising the security of the enclave.

Existing systems such as SCONE [9], SGXLKL [82] and Graphene-SGX [89] were built on
top of SGXv1 which lacks support for changing page permissions during enclave runtime
as shown in Section 2.1.2. These early systems aim to load unmodified applications into
an SGX enclave and circumvented the SGXv1 restrictions by mapping the entire enclave
address space as read-write-executable to enable code loading after enclave initialization,
which is a dangerous workaround that enables return-oriented programming and arbi-
trary code execution attacks. sgx-dl is built on top of SGXv2 and makes use of the SGX
SDK to load code at runtime securely and also aims to not load complete unmodified
applications but rather enable partitioned application to load dynamic code.

In detail, sgx-dl contains a code leader and a dynamic linker and offers a similar pro-
gramming interface to 1ibdl (dlopen, d1sym). sgx-dl is programming language agnostic
and works by directly operating on Executable and Linking Format (ELF) files. Functions
are first collected from unlinked ELF files and registered inside the enclave to be load-
able. On call, the function is loaded and linked dynamically and then called. Functions
are patched by providing an ELF file with updated code which causes sgx-dl to update the
loaded code and relink the function.

To use sgx-dl, enclave developers need to link their enclave against the sgx-dl library.
Then, three steps are needed to call a dynamically loaded function. First, the build pro-
cedure of the enclave needs to change. Functions that should be loaded later now must
be built into their own unlinked ELF object file. This ELF file is later transferred to the
enclave when needed so to ensure authenticity and integrity, the file should either be en-
crypted and signed or transferred over a protected channel.

Second, the enclave code has to register the dynamic functions by calling d1_add_file
and d1_add_fcts. These functions register the file, possible global variables as well as
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functions and need to be called before any dynamic function can be called. Lastly, all calls
to now dynamic function need to be replaced with calls to d1_begin_call and d1_end_call.
These functions facilitate the loading of the dynamic function with d1_begin_call re-
turning a function pointer that can be called and d1_end_call invalidating that function
pointer. Since replacing function calls like this suffers from code-readability issues, sgx-dl
also offers another way of calling dynamic functions. Similar to how the SGX SDK gener-
ates wrapper functions that represent enclave functions to call from outside the enclave
and vice versa, sgx-dl offers a way to generate wrapper functions for dynamic functions.
This way, developers can still call dynamic functions like they normally would and let the
generated wrapper do the calls to d1_begin_call and d1_end_call.

Hot-patching a function is achieved by calling d1_patch with a reference to the new
ELF file and a short patch description stating which functions to update from the given
file. sgx-dl will then prevent all calls to dynamic functions that are updated or referenced
by other functions, replace the code of the functions-to-patch, relink all loaded functions
that reference a replaced function and then allow calls again. Briefly stopping execution
is necessary to safely replace the code as the code size might have changed and a new place
for the function might need to be found.

To measure the performance impact of having to go through the sgx-dl library to use
dynamic functions, a microbenchmark was used that added 10,000 dynamic functions to
an enclave and loaded those 1,000 times. Both adding and loading function are operations
that are seldom done and were quick with an average time of 229.9 ps and 55.1 ps respec-
tively. Calling a dynamic function also incurs an overhead; however this overhead is not
static but rather scales linearly with every dependency a dynamic function has as sgx-dl
has to check that all dependencies are also loaded. To measure the calling overhead, we
opted to use three macrobenchmarks as those reflect real-world use-cases: (1) STANlite,
an SGX-aware database management system built on SQLite which represents an applica-
tion in which only a small part of the enclave are dynamic functions (the SQL processing
engine); (2) LIbSEAL, a drop-in replacement for TLS libraries such as OpenSSL/LibreSSL
that utilizes application specific auditing modules which represents an application, where
without sgx-dl the whole enclave would have to be tailored to each application to include
the correct audit module but now with sgx-dlI this enclave is generic with the correct audit
module being loaded on demand; and (3) EActors, a secure actor framework that utilizes
sgx-dl to load the actor code dynamically.

The macrobenchmarks show that the performance overhead from using sgx-dl was be-
low 1.5% in all cases. We also show that using hot-patching the SQL processing engine in
the STANLite application was able to cut down application downtime to 4 ms compared to
a traditional state-saving to disk, full enclave restart with new code and loading the state
again. In conclusion, sgx-dl enables dynamic loading inside SGX SDK enclaves and was
the first framework to offer hot-patching support. sgx-dl achieves this while introducing
very little performance overhead to the application and offering a secure way of loading
code that does not compromises enclave security like other systems before it did.



5.2 Related Work

Dynamic linking is commonplace in current operating systems and its applications when
not utilizing trusted execution. It allows developers to decouple common code from their
application into shared libraries to reduce application size and make it easier to update
said libraries. In theory, shared libraries are also only loaded into memory once and
therefore applications can share the memory pages of the library. With today’s storage
and memory sizes, however, the argument for size reduction and page sharing is out-
dated [86]. Updating shared libraries, however, is not always easy as the ABI of the shared
library might change. A good example is the GNU C standard library (glibc), probably
one of the most used shared libraries worldwide, which exports its functions with version
tags [32]. An application linked against an old version of the glibc can still use a newer
version of it even when the used functions have changed with ABI breakage as long as the
new version of the glibc still exports the old version with the appropriate version tag.
This practice, however, requires manual work and is not done by every shared library.

Some programming languages have reduced their usage of dynamic linking for their
applications. Go by default tries to produce statically linked libraries which succeeds when
the application does not require some functionality, e.g., name resolution via the net pack-
age. If it does, go instead creates a dynamically linked binary. The go documentation
doesn’t actually state this directly, but it’s a well known and accepted fact [87]. Neverthe-
less, go can still be forced to produce statically linked binaries with the right linker flags
in such cases. For sgx-dl, however, where dynamic loading is used together with dynamic
linking for loading modules at runtime, this trend has little relevance as using the dynamic
linker for modularization is still a valid use case [86].

Compared to dynamic linking, hot-patching, however, is still an active area of research
even without trusted execution. Katana [21] is a programming language agnostic system
that operates on ELF files and enabled hot-patching a running application. It introduces
the Patch Object data structure which contains the difference in code and data between
two versions. Katana leverages DWARF debugging information to gather type data to al-
low automatic transformation of changed data structures. The authors, however, concede
that this is actually very limited. Automatic patching of data structures is impossible in
the general case and the authors advise that “[t|he general solution to all of these type
problems is to ask the programmer for routines which perform the application-specific
work” [21]. sgx-dl achieves the same goal with different approaches. Instead of'a new Patch
Object data structure, sgx-dl operates on unlinked ELF files plus a patch description which
makes it more flexible as the same ELF file with different patch descriptions can be used,
depending on the loaded modules which is contrary to Katana which assumes an appli-
cation that does not load modules at runtime which could be patched. Also, instead of
trying to automatically patch data structures, sgx-dl does exactly what Katana proposes
and asks the developer to write a transformation function instead of trying to guess how
to do it. Lastly, sgx-dl works with the restrictions imposed by utilizing SGX, such as using
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the SGX mechanism for changing page permissions.

Hot-patching is not only applicable on the application level but also at the kernel level.
Systems that can hot-patch a running Linux kernel such as Ksplice [10], kpatch [72] or
kGraft [30] are specialized to that task and utilize mechanisms not available in SGX such
as stopping all processor cores at will to apply an update in kernel space.

While sgx-dl is the first framework that offers dynamic loading and hot patching for
partitioned applications, there have been other related approaches in the past. Microsoft’s
VC3 [77] was the first system that enabled dynamic loading in a partitioned MapReduce
application. It offers modularity by dynamically loading map and reduce functions but
no hot-patching support. A difterent approach is taken by Intel’s Protected Code Loader
(PCL) [44). It works together with the SGX SDK and offers a generic loader enclave that in
turn loads the actual encrypted enclave code after launch to hide the enclave code. This
approach always loads the whole, statically linked enclave at launch and does not offer
true dynamic loading at runtime nor does it offer hot-patching. SGX-Shield [8o] and SGX-
Armor [83] follow the PCL'’s design and add Address Space Layout Randomization (ASLR)
to defend against, e.g., controlled-channel attacks [100]. With ASLR, the location ofloaded
code is randomized to make it harder for an attack to infer the location of certain code
pieces, but this randomization only occurs at load time.

DynSGX [84] comes close to sgx-dl but uses a different architecture: a client-server sys-
tem that performs remote function calls. Functions are loaded over the network into a
remote enclave (the server) and then called from the client. Linking is done completely
on the client before transmitting the function to the server. Hot-patching is not stated to
be supported, but could be emulated by unloading a function and loading a new version
of it. With DynSGX, the enclave cannot execute on its own and the calling application has
to make network round-trips to the remote enclave to call its functions.

Other systems [55, 20] also exist, but they are variants that don’t support dynamic linking,
Instead, they just copy a statically linked blob into an enclave and can jump to it. Hot-
patching is not directly supported but can, again, be emulated by unloading one blob and
loading another.

(Publication starting next page)
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ABSTRACT

Trusted execution as offered by Intel’s Software Guard Extensions
(SGX) is considered as an enabler to protect the integrity and con-
fidentiality of stateful workloads such as key-value stores and
databases in untrusted environments. These systems are typically
long running and require extension mechanisms built on top of
dynamic loading as well as hot-patching to avoid downtimes and
apply security updates faster. However, such essential mechanisms
are currently neglected or even missing in combination with trusted
execution.

We present sgx-dl, a lean framework that enables dynamic load-
ing of enclave code at the function level and hot-patching of dy-
namically loaded code. Additionally, sgx-dl is the first framework
to utilize the new SGX version 2 features and also provides a ver-
sioning mechanism for dynamically loaded code. Our evaluation
shows that sgx-dl introduces a performance overhead of less than
5% and shrinks application downtime by an order of magnitude in
the case of a database system.
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1 INTRODUCTION

Trusted execution is considered as a solution to improve the ruptured
reputation of cloud infrastructures [20, 23, 52] as it partly shifts
the needed trust from the cloud infrastructure and its provider to
the hardware and its manufacturer. It can protect the integrity and
confidentiality of applications even against privileged software. To
this day, Intel SGX, which is the most studied Trusted Execution
Environment (TEE), has been adopted by various cloud vendors
such as Alibaba cloud [17], Microsoft Azure [1] or IBM [28].

Trusted Execution benefits applications that store and process
confidential data such as databases [10, 46, 48] or web servers [6,
61]. These complex applications are usually dynamically linked
and often feature extension mechanisms to load additional code
on demand. This reduces start-up costs as initially only the core
functionality of an application needs to be loaded, but also paves
the way for hot-patching. Fast (re-)starts are important as users of
cloud applications expect them to always be available, despite the
need for updates to add new features, fix bugs and address security
vulnerabilities. The latter especially applies for stateful services that
serve multiple tenants where downtimes due to restarts are difficult
to coordinate and provisioning of another copy of the service would
require a costly state transfer. Hot-patching can prevent downtime
and performance disruption due to a cold restart, enables faster bug
and security vulnerabilities fixes, and makes new features available
sooner. Especially the faster deployment of security critical bug
fixes has made hot-patching a key feature for databases and virtual
machines. In distributed systems, hot-patching can prevent the
degradation of a high-availability setup or cluster when one replica
has to be restarted. Major commercial softwares such as Windows
Server VMs on Azure [2], Canonical Livepatch [4], Azure SQL
Database [37] and Oracle Database 11g [41] support hot-patching.
Even more, it is intensively used in the cloud, with millions of SQL
servers hot-patched every month [3].

Unfortunately, the support for dynamic loading and hot-patching
in TEEs, and especially Intel SGX, is limited. Partly this was caused
by restrictions of the first version of SGX. To protect an applica-
tion with SGX, an enclave, resembling a trusted execution context,
has to be instantiated. With the first version of SGX, enclave ini-
tialization required a sequential page-wise loading of the binary
with the enclave page layout being immutable after creation. This
property prevents any extensibility at runtime, including security
patches. So far a number of systems [6, 33, 61] circumvented these
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restrictions by mapping the entire enclave address space as read-
write-executable to enable code loading after enclave initialization,
which is a dangerous workaround that enables return-oriented
programming and arbitrary code execution attacks.

This leaves an entire application restart as the only security-
sensible option to add new functionality and to patch vulnerabilities.
For large enclaves, required for stateful applications, this results
in a prohibitively long start-up time, due to size restrictions of the
protected memory. To illustrate this problem, we have extended the
STANlite [48] secure database with support for state transfer and
have measured the throughput over time in an experiment where a
new, updated enclave is created and state transfer is executed. In
our evaluation (see §5.5), we show that such a restart with a state
that fits into protected memory causes a downtime of = 1.20 s in
a best-case scenario. Even with an efficient state transfer between
the old and new instance of the application, the restart can be quite
costly and take much longer for larger application states. On top of
that, it is necessary to prevent rollback attacks on the saved state
via a suitable mechanism [11, 35, 57], which further increases the
full restart duration. The alternative of starting a new instance in
the background to hide the start-up process is also not suitable
as this would double resource demand as now two enclaves are
running side-by-side.

In essence, to match the functionality and performance of un-
secured stateful cloud applications while also preserving security,
a new foundation and framework are necessary. With SGX ver-
sion two (SGXv2), a foundation now exists as it offers support for
sensible memory-access management that can be used to devise
dynamic loading and hot-patching support. In this paper we pro-
pose sgx-dl, a novel framework for dynamic code loading and the
first framework supporting hot-patching in Intel SGX enclaves. In
particular, sgx-dl makes the following three contributions:

(1) sgx-dl enables dynamic loading based on the plain support
of the Intel SGX Software Development Kit (SDK) and it’s
SGXv2 capabilities while being minimally invasive. sgx-dl
thereby implements a minimal-Trusted Computing Base

(TCB)-centric and efficient dynamic loading approach while

preserving W & X semantics at all times.

sgx-dl features function-level hot-patching to apply updates

at runtime without requiring a restart. Furthermore, com-

pared to other hot-patching systems, sgx-dl actively removes
outdated and stale code and data to increase security.

(3) sgx-dlintroduces a novel versioning mechanism that enables
version reporting of the dynamic enclave code. This enables
enforcement of a specific version of dynamic code even after
updates, which previous dynamic loading systems for SGX
did not provide.

(2

~

To evaluate sgx-dl, three applications have been extended: the
STANLite [48] in-enclave database; the LibSEAL [8] auditing li-
brary and the EActors [47] trusted actor framework. Our evalua-
tion shows that applications utilizing sgx-dl can easily benefit from
dynamic loading of code while impacting their performance by less
then 5% and reducing downtime when patching to about 4 ms.

The remainder of the paper is organized as follows: First, in §2,
we briefly introduce Intel SGX and detail the current state of the art
regarding dynamic loading of functions in traditional systems and
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inside SGX enclaves. In §3, we present the design of sgx-dl with
details on its interface in §4. Lastly, we evaluate sgx-dl in micro-
and macrobenchmarks in §5 and conclude the paper in §6.

2 BACKGROUND AND RELATED WORK

This section is subdivided into five parts. First, we give an overview
about hot patching in commodity systems. Second, a compact
primer about SGX is provided. Third, we show the evolution of
dynamic loading in SGX systems. Fourth, we describe our assumed
threat model and lastly, we present existing dynamic loading sys-
tems and their shortcomings.

2.1 Dynamic Loading and Hot-Patching in
Traditional Systems

Most of today’s applications are dynamically linked: They do not
link their dependencies into the binary but instead reference them
as individual libraries that are installed on the system. This allows
sharing of libraries between multiple applications which keeps ap-
plication binaries small and allows updating libraries independently
from applications using them.

On application start, the dynamic linker is responsible for resolv-
ing the dependencies by loading the libraries and inspecting the
relocation sections inside the application binary (on Linux systems
inside the Executable and Linking Format (ELF) file) to figure out
which symbols need to be linked to which libraries, at which po-
sition inside the application’s code this linking should take place,
and what type of linkage it is. Additionally, with library functions
like dlopen, the application can decide during runtime to load a
specific dynamic library. This is usually done to enable modularity.

When a library gets updated, the application has to be restarted
to pull in the new code during the next linking phase at relaunch.
However, restarting the whole application might not be desirable
due to the cost of restarting it: the application might need to save
its in-memory state to disk first, which then has to be reloaded
when starting again and cannot reply to requests during that time.

Therefore, systems exist to update code during application run-
time without restarting the application, a practice known as hot- or
live-patching. Examples of such systems are the language-agnostic
Katana [13] for ELF binaries, Kitsune [22] for applications written
in C, and Pymoult [34] for Python applications. Languages that run
on top of a virtual machine, e.g., Java, can often utilize the code load-
ing functionality of the virtual machine to implement hot-patching.
Hot-patching can also be performed on the underlying operating
system, e.g., with Ksplice [7], a system that allows patching parts
of the Linux kernel without rebooting it. Open source systems with
similar approaches are kpatch [45] and kGraft [18] which differ in
the way they ensure runtime consistency of the updated code. The
ideas of all these systems are not directly applicable to SGX as they
are either language dependent or use mechanisms not available in
SGX, however, they can serve as a basis for a hot-patching system.

2.2 Intel Software Guard Extensions (SGX)

At the end of 2015, Intel released processors of their Skylake mi-
croarchitecture which was the first to incorporate support for the
Intel Software Guard Extensions (SGX). SGX allows the creation of
so-called enclaves which are parts of normal user-space applications
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that are executed in a secure execution mode and reside in a special
memory area called the Enclave Page Cache (EPC). This enables
SGX to act as a TEE as the new execution mode and EPC guarantee
that i) enclave data is always encrypted and integrity protected
inside the EPC, ii) each enclave can only access its own data and
non-enclave data in unencrypted form and iii) enclave execution is
isolated and hidden from other processes and privileged software
such as the operating system. The EPC is part of the Processor
Reserved Memory (PRM) that also hosts other SGX-specific data
structures. On current! commercially available SGXv1 systems, the
PRM typically has a size of 128 MiB with the EPC portion being
93 MiB big while SGXv2 machines can go up to 256 MiB PRM.
Nevertheless, this is more than an order of magnitude less than
the amount of available main memory and will for larger enclaves
still result in costly enclave paging which can decrease enclave
performance drastically [6, 14].

Intel SGX offers a new set of instructions to create and manage
enclaves and multiple approaches to develop enclaves have emerged
during the last years. Intel’s own SGX SDK [26] can be used to
either integrate an enclave into an existing application, assuming
one has access to the source code, or to build new applications
from scratch. These SDK applications are commonly known as
partitioned applications. Another approach is to use third-party
SDKs [21, 66] or to embed additional code inside the enclave, up
to a library OS, to offer standard functionalities to applications
executing inside it [10, 33, 61]. In this paper, we focused our work
on the official Intel SDK because it is the most common way to
secure applications via SGX but the design can be adapted to other
systems as well.

2.3 Towards Dynamic Code Loading

Library OS-based systems are able to host an unmodified application
inside an SGX enclave. They need to be able to dynamically link this
application inside the enclave which requires the ability to modify
and load code. Normally, this is not a problem as code pages can be
mapped as read-writeable to be modified and then remapped again
as read-executable. However, this raises an important issue for
library OSs running on SGX: after creating an enclave, its memory
layout and page permissions cannot be changed. Therefore, these
approaches have to map the entire enclave as read-write-executable,
which makes them easier to exploit [9].

The authors of Haven [10] therefore proposed an extension of
SGX’s feature set, namely the possibility to add/remove pages after
enclave creation as well as changing permissions of enclave pages.
Intel accepted this idea and developed SGX version two (SGXv2). At
the start of 2018, the first processors? with SGXv2 became available.
Support for SGXv2 also arrived in the SGX SDK with version 2.0 in
November 2017, right when first SGXv2 processors were launched.
With SDK version 2.8, support for an enclave-managed and dy-
namic memory region called reserved memory was added. Reserved
memory is neither part of enclave heap nor stack but has to be
managed by enclave code, sort of like mmaped memory. Permissions
of reserved memory are freely changeable on a page granularity,
with a call similar to mprotect.

1 As of December 2020
2Intel Gemini Lake; Ice Lake-U in 2019
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Being able to dynamically load and execute code not only de-
mands for dynamically adding pages to enclave memory, but also
for a dynamic linker. Inside an SGX enclave, no dynamic linker is
normally available. SGX-LKL [33] and Graphene-SGX [61] do con-
tain one as part of the whole library OS, which is used for the initial
loading of the application. An update, however, of the application
or its libraries with re-linking is not possible without restarting the
whole enclave with those systems. The same is true when devel-
oping an application based on the SGX SDK as a new enclave that
contains the updated code has to be launched.

Both library OS and partitioned applications have their advan-
tages and disadvantages, e.g., the TCB of a partitioned application
is typically smaller compared to a library OS approach whereas the
library OS requires no or only slight modifications to the applica-
tion it should run. Contrary to the presented approaches, sgx-dl
focuses on a as small as possible codebase to reduce the number of
possible bugs while offering dynamic loading and hot-patching.

2.4 Threat Model

In this paper, we assume the following threat model:

We assume that SGX and the cryptography it uses are not bro-
ken, i.e., during enclave execution an attacker is not able to tam-
per with the enclave except calling the enclave’s public interface.
We assume that an attacker has privileged access to the machine
hosting the enclave. Denial-of-Service is not considered a valid
attack as it is always possible to just refuse to execute the enclave.
Microarchitectural side channel attacks against SGX [16, 30, 32,
39, 40, 50, 62, 63, 65] are not considered, as there have been mi-
crocode [25] and SDK [27] updates in the past or they will be fixed
in the future. Application side-channels such as controlled-channel
attacks [64, 67, 68] or others are also not considered. Mitigations
such as Address Space Layout Randomization [12, 51, 53], oblivious
memory accesses [5, 42, 43], constant time programming [15, 56]
and others [54] exist.

2.5 Dynamic Loading in Partitioned Systems

When looking at dynamic loading in SGX, there exist systems that
support it that are not a library OS. Microsoft’s VC3 [49] is a secure
MapReduce [19] framework and uses dynamic loading to load en-
crypted map and reduce functions. However, no generic code can
be loaded, just map and reduce functions. In 2017 Intel released the
Protected Code Loader (PCL) [24] library. It can be used in combi-
nation with the SGX SDK to create generic loader enclaves that can
load encrypted enclave code. At enclave start, the encrypted code is
loaded and decrypted by the loader code. The encrypted code itself
is statically linked, no single functions can be loaded, only whole
enclaves, and the enclave can only contain the PCL loader code,
see Figure 1a. Updates at runtime are not supported. This design is
also utilized by other systems, such as SGX-Shield [51] and SGX-
Armor [53]. They add Address Space Layout Randomization (ASLR)
of the loaded code to defend against, e.g., controlled-channel at-
tacks [68]. Enclave code is randomized when loading the enclave
such that an attacker does not know where code is located.
DynSGX [55] is a framework for dynamically loading encrypted
code into enclaves regardless of their functionality. It utilizes a
client-server model: a generic DynSGX enclave is loaded and a
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Figure 1: Different approaches to dynamic loading: (a) Intel PCL, SGX-Shield, (b) DynSGX, and (c) sgx-dl

secure communication channel is established from the secure client
to the enclave. This hinders its practicality and versatility as the
enclave cannot execute on its own and additional code is required
on the client to be able to communicate with a DynSGX enclave.
Code is sent to the enclave from the client and executed there on
demand, similar to a remote procedure call, see Figure 1b. The
client is doing the dynamic linking on its machine and only sends
linked executable code to the enclave. Hot-patching is not directly
supported, but the client could update its unlinked code before
linking and sending it to the enclave.

Other systems [12, 31] also exist but they are variants that es-
sentially load statically linked code.

In summary, all of these systems allow dynamic loading of code
with varying degree of additional features. None of the systems,
however, support hot-patching the dynamic code after it has been
loaded. With sgx-dl, we propose a novel approach as shown in
Figure 1c by including a linker inside the partitioned enclave to
enable function-level dynamic loading and hot-patching. Compared
to DynSGX, a client is not involved in the linkage and does not need
to handle server communication differently. Furthermore, enclaves
using sgx-dl can also include common base code that is always
present inside the enclave.

3 THE DYNAMIC CODE LOADER SGX-DL

We outline the following requirements a dynamic code loading
system for SGX should fulfill:

R; Load and link possibly encrypted generic code.

Ry Allow hot-patching of code without an enclave restart.

R3 Offer a versioning mechanism that reflects the state of the
loaded code.

In the following we will show how the different requirements are
fulfilled by sgx-dl.

3.1 Loading and Linking Encrypted Code

The core of sgx-dl consists of the dynamic loading and linking of
functions and data in the most flexible way: Instead of only being
able to load whole binary blobs, loading is done on a function level.
This way, the developer can decide very fine-grained how to extend
an application which increases modularity. We call these functions
loaded at runtime dynamic functions. Such dynamic functions have
to be loaded to a location that allows writing code to it. The SGX

SDK provides such a location with the reserved memory which is
used by sgx-dl to store all dynamic functions and data. Loading
code and data is not enough, it also has to be linked. Therefore, a
linker is part of sgx-dl.

Dynamic functions that should be loaded need to come from a
trusted source in some kind of container, e.g., an ELF file. This can
be achieved by compiling, but not linking, the dynamic functions on
the enclave developer’s machine. Then, the enclave can retrieve the
dynamic functions either by reading them from a local encrypted
file or over an encrypted network connection. In both cases the
enclave has to decrypt the code and perform integrity checks, such
as checking a Message Authentication Code (MAC) or a signature.
These mechanisms allow loading of generic code and linking it to
other loaded code, but it is not enough to fulfill requirement R; yet
as shown in §3.2.

3.2 Handling of Enclave Functions

With sgx-dl, dynamic functions should be able to call functions that
were present at enclave launch, e.g., functions of the SDK, standard
library or of the application itself. To achieve this, sgx-dl has to
parse the symbol table from the ELF file of the enclave.

However, when the enclave is loaded, its symbol table is not
present in memory as it is not added to the enclave by Intel’s
SDK. A potential reason for this is to save enclave memory, as
the symbol table is not needed for normal enclave execution. The
SDK could be changed to support this, however, we refrain from
doing so as i) not all applications require dynamic loading and ii)
not changing the SDK maintains sgx-dl’s independence of it. We
propose a different way to obtain the symbol table: The enclave can
open its own enclave file in untrusted memory and copy the symbol
table into the enclave to parse it. This poses a security challenge,
as it must verify that it loaded the correct symbol table belonging
to the current running enclave, which is solved as follows: When
building and signing the enclave, the enclave developer extracts the
symbol table using a tool like readelf and calculates the SHA256
hashsum of it> which we call the Symbol Table Hash (SThash). The
SThash can then be embedded into the enclave and is passed to
sgx-dl on enclave application start. sgx-dl recalculates the SThash
and compares it against the provided one. This ensures that only

3For example: readelf -x .symtab enclave.signed.so | tail -n +3 | head
-n -1 | awk ’{print $2$3$4$5}’ | tr -d "\n" | xxd -r -p | sha256sum
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the correct symbol table is loaded. Embedding the SThash does not
change the symbol table but requires a second compilation step. The
enclave first needs to be compiled with a placeholder value that is
then replaced with the SThash before compiling and signing again.
This is only needed for the enclave file itself, for dynamically loaded
code the ELF is protected as stated in §3.1. With this mechanism,
requirement R; is now fulfilled.

3.3 Updating Dynamically Loaded Functions

As required by Ry, it should be possible to update dynamically
loaded code at runtime. For this, the developer supplies a patch
description and an ELF file containing the actual updated code to
sgx-dL These can be obtained via a secure network connection or
by loading a file. To authenticate a patch, the enclave can check
the patch’s signature, or, if a secure channel is used, the patch
is implicitly authenticated by the channel. The patch description
lists the functions that should be added to, as well as updated in,
the enclave. Removal is done automatically as sgx-dl removes all
functions and data that are no longer needed, i.e., not linked against,
from the enclave after applying the patch. Applying a patch will
stop execution of dynamic functions briefly to ensure safe removal
of the old code. Note that updating a function will cause the old
code to be deleted from the enclave. Applying two patches that
update the same function will leave no trace of the first patch inside
the enclave. With the addition of hot-patching, sgx-dl now fulfills
the requirement Ry.

3.4 Versioning of Dynamically Loaded
Functions

Intel SGX offers an attestation mechanism to verify that the correct
enclave code has been launched. When the enclave is created, a
rolling SHA256 hashsum over all pages added to the enclave is
calculated. This hashsum is called the measurement of the enclave
and is compared against an expected value at launch. Using the
measurement, a remote party can verify the identity of the enclave.

The measurement, however, can not change after enclave cre-
ation. It only represents the state at enclave launch. In case of an
enclave that dynamically loads code, this makes it impossible to
use the measurement to verify which code has been added. We,
therefore, introduce a mechanism into sgx-dl to generate a deter-
ministic hashsum of the dynamically added code and data, called
the Dynamic Code Hash (DChash). The DChash serves as a version
indicator of the currently registered code and data.

To ensure a deterministic DChash of the dynamic content that is
independent of the order in which symbols have been registered, we
propose the following mechanism. The library starts in an empty
state which will always generate the same DChash that is equal
to the SHA256 hashsum of a 0-byte input. After functions have
been added to sgx-dl, the library state changes, containing all added
functions and objects. When creating the DChash, sgx-dl will sort
functions based on the SHA256 hashsum of their code and their
symbol name. The preliminary DChash then consists of the code
hashsum and symbol name of every function.

For data, the same approach is taken, except that sgx-dl differenti-
ates between read-only and writeable data. Both are sorted by their
symbol name which contributes to the DChash. For read-only data,
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such as string literals or constants, we also include a SHA256 hash-
sum of their contents in the DChash. Non-constant values cannot
contribute a hashsum of their content as execution might change
their value and the DChash is intended to reflect the registered code
and data and not the internal application state. The final DChash
then can be used as a version indicator of the registered code and
data. As this value has been generated by sgx-dl inside the enclave,
it can be signed by any in-enclave key whose trustworthiness is
tied to the attestation report of the enclave. Should the library state
change, e.g., because a patch changes a symbol, the DChash will
be recalculated.

This system also ensures that the DChash is not dependent on
the order patches are applied, but on their content. With, e.g., three
patches A, B and C that all change the same symbol, A being the
oldest and C being the newest patch, it does not matter if A is applied
before B (or even at all) as long as C is last because the content of C is
the newest one. Similarly, if those patches would all change different
symbols, than the order is completely irrelevant. In a distributed
system, this property can be used to ensure that all replicas are on
the same version. The presented versioning mechanism integrated
into sgx-dl fulfills requirement Rs.

4 SGX-DL IMPLEMENTATION

In this section, we present how the dynamic loader and hot-patcher
of sgx-dl is implemented.

4.1 Interface of sgx-dl

sgx-dl is designed as two static libraries that are added to the en-
clave and to the untrusted application respectively. We opted to
implement sgx-dl on top of the SGX SDK but it’s techniques and
ideas can also be implemented into library OS systems. The trusted
enclave part contains an ELF-parser, a linker, a function and object
registry, as well as the public interface that developers can use.
The interface for code loading is only available inside the enclave
and resembles an in-enclave dlopen/dladdr. The untrusted parts
contains methods for opening the enclave file in memory for the
trusted part to copy the symbol table so that enclave functions
can be discovered. Figure 2 shows on the left side how the trusted
library is integrated into the enclave build process and which files
will be generated form the source files.

Functions that should be dynamically loaded need to be regis-
tered (added) with the trusted library as dynamic functions. This
creates the necessary management data structures needed for load-
ing the function later and is only needed once per function. The
ELF parser is responsible for parsing ELF files to extract functions
and relocation tables from it. Extracted functions and objects are
registered in the registry. The linker takes the extracted functions
and relocation tables and resolves all symbols.

Similar to Ksplice, sgx-dl operates on the ELF file directly and
is not inspecting any source code. As ELF files do not contain
any information about the functions they contain other than their
symbol name, sgx-dl cannot infer the signature of functions or
their programming language. Fortunately, this allows sgx-dl to
not be restricted to C and C++ code. For example, sgx-dl is able
to load Rust [36] functions, provided they were compiled with
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Figure 2: Overview of sgx-dl. On the left, the different files used and generated by the enclave build process are shown. On the
right, the memory layout of the enclave inside a process can be seen and how it corresponds to the generated files. The green

shaded area is enclave memory.

dl_add_file
dl_add_fcts

Add a file and get back a file handle
Add functions from a file handle
Prepare a function for calling

and return a pointer to it

Mark a function as done calling
Update already present functions

Table 1: API of sgx-dl

dl_begin_call

dl_end_call
dl_patch

[no_std] [58] as our enclaves do not contain a Rust standard li-
brary. However, one could integrate sgx-dl into one of the available
Rust SGX SDKs [21, 66].

4.2 Adding and Loading a Function

To be able to call a dynamic function, it first has to be added and
loaded, similar to calling dlopen in a non-SGX application. How-
ever, sgx-dl is not adding all functions of a library at once but
requires the developer to specify which functions to add to keep
the enclave code at the minimum and to achieve a minimal TCB.
Adding a function registers it with sgx-dl, creates the necessary
management structures and discovers dependencies whereas load-
ing copies the function code, makes it executable and does the
linking. Both of those are depicted in Figure 2 on the right side with
the separate steps explained in the following sections. The API is
shown in Table 1 and also explained in the following sections.

Adding a function. Adding a dynamic function is done using the
dl_add_fcts method inside the enclave. The developer specifies
an array of symbol names to be loaded and provides a file handle for
each symbol name that represents a pointer to the ELF file contain-
ing the symbol. The file handle is obtained by calling d1_add_file.
It is expected that the pointer to the ELF file points to in-enclave
memory and has been checked for integrity. The library requires
the underlying application to verify that the correct ELF file is

provided. Integrity verification can be achieved, e.g., by checking
hashes embedded inside the enclave or verifying signatures of the
loaded ELF file. The ELF file could also have been encrypted or
received over the network.

When calling d1_add_fcts, for each symbol, sgx-dl extracts
the machine code and seals it outside of the enclave with only a
hashsum of the code being held inside the enclave in the functions
management structure. This hashsum is verified when the code is
loaded. While the sealing mechanism of SGX already has integrity
protection, we use this additional hashsum as rollback protection.
The code is sealed outside to save on EPC usage when a function is
not loaded. Note that we seal not to disk, but to untrusted memory.

Next, sgx-dl extracts the relocation table of the symbol. The relo-
cations have to be resolved so that during execution all references
to other functions and objects can be linked to their corresponding
addresses. This is done by looking at all added functions and objects:
sgx-dl iterates through all known functions and their relocation
tables. Using this information, sgx-dl builds dependency lists for
all dynamic functions by recording all caller functions.

Whenever an ELF file is added, all objects, e.g., global variables,
contained in the file are also registered and loaded into the enclave.
These objects are always present inside the enclave and are initial-
ized with their respective values. After all dynamic functions from
the ELF file have been added, it can be removed from the enclave.

Loading a function. Loading a dynamic function consists of three
steps: i) unsealing the code into free memory, ii) loading all depen-
dencies, and iii) replacing all relocations. Dynamic functions are
loaded automatically when they or any of their parent functions
are called.

The actual code is unsealed to the reserved memory area pro-
vided by the SGX SDK. As this area is not managed by the SDK
heap memory allocator, we use our own memory allocator to fit
dynamic functions into these pages. After the code has been un-
sealed, sgx-dl compares the hashsum of the unsealed code with
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the saved hashsum. In case of a mismatch, the code is removed
and an error is returned. Otherwise the code has been loaded suc-
cessfully and dependencies will be loaded. As every function has a
list of all its direct dependencies (functions called by itself) as well
as indirect dependencies (functions called by functions called by
itself) sgx-dl can simply load all dynamic functions from that list
to load the full dependency graph. Afterwards, all relocations are
linked to addresses pointing to the correct functions and objects
making the dynamic function callable. Note that sgx-dl ensures
that the reserved memory area is always either read-writable or
read-executable but never writable and executable at the same time,
thereby preserving W @ X semantics.

4.3 Calling a Function

To call a dynamic function, the enclave developer has two options:
manual and transparent. The manual option is to call into sgx-dl
directly using d1_begin_call. This method just requires the name
of the function and returns a function pointer to that function.
That function pointer is valid until a call to d1_end_call and must
never be stored by the application after the corresponding call
to dl_end_call. The transparent option is calling the dynamic
function directly like any other function. However, this would
normally result in an undefined symbol, which is why sgx-dl needs
to generate wrapper code that defines the symbol. The wrapper
code internally uses d1_begin_call and d1_end_call to call to
the function. This mechanism is similar to the sgx-edger8r of the
SGX SDK that generates the wrapper code for the enclave interface.
To generate the wrapper code, sgx-dl needs a list of all functions
with their signature which it then turns into a C source and a C
header file. The source file is then compiled and linked into the
enclave application.

Calling a dynamic function first makes sure that it and all its
dependencies are loaded. If the function or one of its dependencies is
not loaded, they are loaded automatically in this step. The dynamic
function and all its dependencies are marked to prevent them from
being unloaded during execution. Then, the dynamic function is
invoked and a possible return value is saved. Lastly, the dynamic
function and all its dependencies get their marks removed.

The first call to any dynamic function after a new function has
been added to sgx-dl causes an internal clean-up of all registered
functions and objects. Unreferenced functions and objects might
appear after an ELF file was added but not all of its contents were
added, e.g., when only one ELF file is used for all dynamic code
but not always all code is needed. All unreferenced functions and
objects are unregistered to ensure that creating the DChash always
represents all the reachable functions and accessible data and does
not include any functions or data that is unreachable. The overhead
for the first call is therefore increased compared to subsequent calls
but this increases security by removing unused code.

sgx-dl supports multithreaded execution of dynamic functions.
During execution of dynamic functions, the library is in a read-only
state which only allows other threads to execute dynamic functions.
Only when no execution is in progress, hot patching, adding and
loading functions is done.
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4.4 Hot-Patching a Function

Hot-patching a dynamic function is also supported and can be sum-
marized as unloading, replacing and re-loading a dynamic function.
In detail, updating works as follows: First, the developer provides
a patch description to sgx-dl as described in §3.3. Together with
a pointer to the new ELF, d1_patch is called. Then, all functions
that should be newly added are added as described in §4.2. For all
functions that should be updated, the given ELF binary is parsed
in the same fashion as adding a dynamic function with the same
information being extracted.

Next, the dynamic functions are marked for updating, similar
to the execution mark. This is done to ensure that other threads
trying to call them or other dynamic functions that depend on
them are stopped right before execution. The updating thread then
waits for all threads to finish execution in dynamic functions before
unloading the functions. The old sealed machine code residing in
untrusted memory is then replaced with the new version.

Lastly, the update marks are removed and execution can continue.
Lastly, a clean-up routine removes all unneeded functions from the
enclave to create a deterministic state for versioning, see §3.4. The
next call to the updated function will then automatically load the
updated version.

Compared with the existing Ksplice, this differs in a few key
points: Ksplice retains the old code and loads the new code to
another location. It then inserts a jump to the new code at the start
of the old code. sgx-dl does not retain a copy of the old code to
save enclave memory and to not increase the TCB with old code.
Therefore, sgx-dl also has to relink all dynamic code instead of just
changing a jump target.

4.5 Using sgx-dl in an Application

Using sgx-dl in an enclave is simple: the enclave developer builds
the enclave as usual and additionally statically links our library into
it, see Figure 2. All dynamic functions are then compiled separately
into unlinked object files. If code confidentiality is required, these
object files can be encrypted. Otherwise, signing or just hashing
them is sufficient. When enclave functions should be called from
dynamic functions, the SThash of the enclave needs to be embedded
into it (see §3.2).

Inside the enclave, the dynamic functions need to be added before
they can be called. A minimal code example is shown in Listing 1. In
this example, a pointer to the ELF file containing the dynamic func-
tions is returned by the custom load_and_verify_elf function
which obtains the ELF, loads it into enclave memory and verifies its
integrity. The file is added to the dynamic linker in line 6. Then, the
functions foo and bar from this file are added in line 8. Afterwards,
foo is called using d1_begin_call and d1_end_call in line 13.
bar is called in line 16 using the generated wrapper code. Note
that bar calling foo does not need to use sgx-dl API as calls inside
dynamic functions can be resolved at runtime.

To hot-patch a function, a pointer to the new ELF file has to be
provided as well as a patch description to the d1_patch method as
shown in Listing 2. sgx-dl will add and update functions from the
new ELF file and remove old ones according to the patch description.
Afterwards, the updated functions can be called as before.
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1 // dlwrapper.h -- generated wrapper code header
2 #define foo(a, b) __dynamic_bar(a, b)

3 int __dynamic_foo(int a, int b);

4 #define bar(a, b) __dynamic_bar(a, b)

5 int __dynamic_bar(int a, int b);

1 // code.c -- dynamically loaded code

2 // Function to load

3 int foo(int a, int b) {

4 return (a + b) * 2;

5 }

6

7 int bar(int a, int b) {

8 // No sgx-dl API calls necessary here!

9 return foo(a * 5, b / 2);

10 3

1 // enclave.c -- static enclave code

2 // elf points to the ELF file containing the dyn functions
3 #include "dlwrapper.h"

4 void *elf = load_and_validate_elf();

5

6 // Add the ELF file

7 sgx_dl_file_hndl_t *file = dl_add_file(elf);
8

9 // Register (add) functions, order does not matter
10 dl_add_fct("foo", file);

11 dl_add_fct("bar", file);

12

13 int returnvalue = 0;

14 // Call the function like this

15 int (*p_foo) (int, int) = NULL;

16 dl_begin_call("foo", &p_foo);

17 returnvalue = p_foo(21, 42);

18 dl_end_call("foo");

19

20 // Or like this

21 returnvalue = bar(21, 42);

Listing 1: Minimal example for using sgx-dl.

// update.c -- patch code
int bar(int a, int b) {
return (a - b) * 4;

PR

3

// enclave.c -- static enclave code

dl_patch_desc_t my_patch = {
.add_symbols = NULL,
.update_symbols = "bar"

¥

void *elf = load_and_validate_elf();
// for pachting no file handle is needed
dl_patch(elf, my_patch);

e N T S

Listing 2: Hot patching code with sgx-dl

4.6 Restrictions for Dynamic Functions

As with other hot-patching systems, sgx-dl is not able to patch
code that is currently executing. This entails that no long-running
dynamic functions should exist to ensure an update is eventually
applied. The dynamic functions need to return at some point back
to the base enclave such that patching can commence. One way
to solve this is to implement an explicit signaling mechanism, e.g.,
a global variable which is periodically checked by the executing
dynamic functions. This variable can, e.g., be set when receiving a
specific request, to a specific value indicating the dynamic functions
should exit.

Weichbrodt et al.

When updating functions, the developer has to be aware of
symbol-name conflicts and dependencies to previously loaded func-
tions and objects. The provided ELF file should not contain redefi-
nitions of already loaded objects (e.g., global variables) as they will
be added and loaded again as a second independent copy. This new
variable is then only referenced by the updated function.

This mechanism can be used to change the size of objects by
updating all functions accessing the object and redefining it with
the new size. A state transfer from an old object to a new object
can be achieved by executing the following steps: (1) add a function
S that serializes the object state into a given buffer; (2) call S and
give it a buffer of sufficient size; (3) update all functions accessing
the object to new versions; (4) add a deserialization function D that
deserializes and converts the old state into the new object from a
given buffer; and (5) call D with the buffer from step (2). After this,
the enclave now has successfully completed a state transfer for the
object. S and D can now be removed, as they are no longer needed.

5 EVALUATION

To evaluate the performance impact of sgx-dl, we design two sets
of benchmarks: i) A microbenchmark to show the performance
cost of adding and loading functions, and ii) benchmarks in which
we integrate sgx-dl into different, SGX-enabled applications to
show the real-world performance impact of calling dynamically
loadable functions as well as to evaluate the impact of hot-patching
a dynamically loaded function. Furthermore, we discuss the security
implications of using sgx-dl.

5.1 Test Environment

sgx-dl requires an Intel SGXv2-capable processor. To our knowledge,
SGXv2 is only available in Intel’s Gemini Lake and Ice Lake-U series
of processors and currently no cloud provider offers machines with
SGXv2 capabilities. Our SGXv2 test machine is a Dell XPS 13 7390
laptop with an Intel Core 17-1065G7 quad-core CPU (1.3 GHz fixed
frequency) and 16 GB of dual-channel LPDDR4-3773 memory. This
machine has 188 MiB EPC memory available for enclaves. We use
Ubuntu Linux 18.04.4 with kernel version 4.15.0-88. The microcode
package is the newest available version* which contains fixes for
most microarchitectural side-channels against SGX. We use Intel’s
SGX SDK version 2.8 in all measurements ans always use SGX
hardware-mode. For benchmarks that require a network client, we
use a dual socket AMD EPYC 7281 machine with 32 cores connected
via a switched 1 GBit/s network to the SGX machine.

5.2 Security Discussion

With sgx-dl, enclaves gain a way to load code into themselves after
creation. On first look, this might enable attackers to intercept and
replace the to-be-loaded code with their own malicious code. To
defend against this attack, the sgx-dl library expects a pointer to
an ELF file that lies in enclave memory. The enclave first has to
load it into enclave memory, after which it can calculate a hash-
sum and compare it against a known value that is either embedded
into the enclave or delivered via a secure channel. If the hashsum
comparison fails then the ELF file is not accepted and unloaded
from the enclave memory. Instead of a hashsum, the ELF file could

43.20201110.0ubuntu0.18.04.2
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also be signed with a matching public key embedded into the en-
clave. Encrypting the ELF file is also possible, if confidential code
is needed. To add trust into the source of the ELF file, it can be
obtained via a secure network connection established between the
enclave and a trusted third party (such as a client or another server).
The TLS protocol, with the use of certificates on both sides of the
connection, provides strong security guarantees and with remote
attestation [29], trust in the enclave can be established.

When wanting to call static enclave functions from dynamic
functions, sgx-dl needs to inspect the enclave file itself. This is
protected by the mechanism presented in §3.2 in which the SThash
is backed into the enclave and provided to sgx-dl before loading
it. Before calling a function and after patching, sgx-dl makes sure
to delete all added functions and objects that are not referenced
in any way. This is done to clean out any unused code to reduce
the TCB of the enclave. Furthermore, this ensures that superseeded
patches are no longer present inside the enclave. An enclave that has
been patched multiple times with patches only changing existing
functions will not have old copies of those functions and is identical
to an newer enclave that only applied the latest patches. Using sgx-
dlinside an enclave increases its TCB slightly as the in-enclave part
adds 4143 lines of C code®.

5.3 Microbenchmarks

To measure the overhead of sgx-dl, we evaluate the performance of
adding and loading functions into an enclave. Our microbenchmark
adds 10,000 functions to an enclave. All added functions are identical
except for their name and consist of the C code shown here:

void *__funcWXYZ(void xargs) { return NULL; }

We use rdtscp inside the enclave to measure elapsed cycles and
convert them to time using the base frequency of our processor. We
execute this measurement 1,000 times, which results in an average
time of 229.7 us to add one function to an enclave. Adding functions
is not done often so this is an acceptable overhead. After adding the
functions, we load all 10,000 functions as our next measurement in
the same way. This measurement, also executed 1,000 times, results
in an average time of 55.1 ps to load one function into an enclave,
which is also an acceptable overhead. Calling a function loaded by
sgx-dl incurs an overhead that scales linearly with the number of
dependencies it has as sgx-dl has to check that all dependencies are
loaded before calling.

5.4 Macrobenchmarks

To evaluate the overhead of sgx-dl with real workloads, we integrate
sgx-dl into different SGX applications: The database management
system STANlite [48], the data audit and leakage prevention system
LibSEAL [8], and the actor framework EActors [47]. All benchmarks
were run without pre-loading the dynamic functions: the first in-
vocation of the dynamic function during the benchmark will load
the function. Functions are, however, added before the benchmark
starts. We also evaluate the hot-patching functionality of sgx-dl by
replacing a function during enclave execution.

The applications represent three different ways on how sgx-dl
can be used to enhance secure cloud applications. With STANlite,

5 All numbers were obtained using David A. Wheeler’s SLOCcount.
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sgx-dl is used to make the main SQL processing engine updatable,
which shifts the main processing to dynamic code. In LibSEAL, a
module is loaded which contains the main functionality, but the
bulk of the request processing is done by the base enclave. Lastly,
in EActors, all business logic is dynamically loaded and only actor
scheduling is left to the base enclave. While none of our evaluated
systems are distributed, there is no restriction on using sgx-dl in
a distributed system. With the versioning mechanism in sgx-dl, a
cluster can ensure all enclaves are on the same code version.

5.5 STANIlite

STANlite [48] is an SGX-aware database management system build
on SQLite®. It uses a custom Virtual Memory Engine to externalize
the data stored by the database from the small EPC to the normal
main memory of the system. The data is transparently encrypted
and hashed to ensure confidentiality and integrity which makes
STANlite suited for use on untrusted cloud platforms.

We integrate sgx-dl into STANlite and turn the SQL VM (»
43 KiB compiled) of SQLite into dynamic functions. The SQL VM is
responsible for executing parsed SQL statements and is the core of
the sqlite3_step function that evaluates SQL statements’. This
allows updating the SQL VM to fix bugs without having to restart
the enclave. In total, ten functions and six objects are dynamically
loaded with a combined size of 44347 and 70 bytes, respectively.

Figure 3 shows the execution time of each test in the SQLite
Speedtest1® test suite. The baseline is the unmodified STANlite run-
ning with the --I configuration (see §4.B in [48]). For Speedtest1
we used the default payload of SQL records with a relative test size
value of 2000, same as in the STANlite paper. All measurements are
executed five times and the average is used to calculate the execu-
tion times. The measurement error is negligible and not shown. As
can be seen, in a macrobenchmark scenario, sgx-dl does not impose
significant overhead: the maximum execution time increase is of
only 4.7%, in test 140%; the average overhead is 0.5%.

Hot-patching in STANlite. To show the applicability of sgx-dl
for code updates, we take our modified STANlite and build a small
application that issues SELECT queries on a table with 10,000,000
rows. The benchmark works as follows: The application enters the
enclave once and then issues queries as fast as possible. After each
successful query, a global counter outside the enclave is increased.
A thread outside of the enclave is recording the counter value
difference periodically every 1,000,000 cycles.

After some time, the enclave is stopped and replaced by a new
enclave. For this, we implement a state saving and loading mech-
anism for STANlite: We save a pointer to the untrusted memory
hosting the database data together with some meta-data and a MAC
over the memory and the meta-data. The application enters the
new enclave, retrieves the pointer and meta-data and verifies the
MAC to complete the state transfer. Afterwards, it again issues
queries as fast as possible. From a database perspective this can be
equated to a cold-restart. For sgx-dl, no state saving and enclave

Chttps://www.sqlite.org/

https://www.sqlite.org/c3ref/step.html

8STANIite is based on SQLite 3.18.2 which provides that speedtest1 version.
910 SELECTS, LIKE, unindexed
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Figure 4: Updating the SQL VM in STANlite by restarting the

enclave versus hot-patching with sgx-dl.

restart is needed as the SQL-VM is hot-patched between the pro-
cessing of two queries. The hot-patch replaces the 42 KiB byte big
sglite3VdbeExec function with a new version of similar size.

Figure 4 shows the number of executed queries (y-axis) plotted
against time (x-axis). We aligned both approaches on the start of the
enclave stopping and the start of the hot-patching. As can be seen,
the dynamic code loaded by sgx-dl achieves a similar number of
queries per sample rate compared to the baseline. Furthermore, in
the case of the baseline, the enclave has to be stopped and restarted.
The performance thus drops to zero during this process. From last
execution in the old enclave to first execution in the new enclave
it takes = 1.56 billion cycles, or = 1.20 s on our 1.3 GHz processor,
whereas the hot-patched code is ready after ~ 4 ms. In conclusion,
sgx-dl makes hot-patching possible with negligible overhead and
downtime compared to the baseline.

5.6 LibSEAL

LibSEAL [8] is a drop-in replacement for TLS libraries (such as
OpenSSL/LibreSSL). It implements a non-repudiable audit log inside
an enclave to detect violations of the integrity of internet services.
For example, LibSEAL can help clients of a cloud storage service

600
450 1= - -
300
I I

I
100/0  100/1  10/10  25/100

Clients / Response Size [KiB]|

Throughput [req/s]

I
10/1024

Figure 5: Performance comparison between unmodified Lib-
SEAL and LibSEAL with dynamic loading with Apachebench
for various response sizes and client counts.

to detect and prove the corruption of their online data. LibSEAL
allows developers to implement application-specific audit modules
and therefore has to provide a tailored enclave for each application.
We integrate sgx-dl into LibSEAL to turn the LibSEAL enclave
into a generic enclave that can load arbitrary auditing modules. In
our evaluation, we use LibSEAL in combination with the Apache
HTTPD web server [60]. The implemented module prevents data
disclosure by inspecting the returned traffic from the web server
and consists of five functions that are dynamically loaded with a
total size of 600 byte. We measure the number of answered requests
per second with ApacheBench [59] for responses of different sizes:
0 B, 1 KiB, 10 KiB, 100 KiB and 1024 KiB (excl. HTTP headers).
Figure 5 shows the results of our evaluation for LibSEAL with our
audit module statically linked into the enclave versus LibSEAL with
the audit module dynamically loaded. We measure various response
sizes and include error bars that show the standard deviation over
five measurements. We only show the peak performance that was
achieved and the respective client count. Performance stagnates
while latency increases when increasing the number of clients
above this number. As can be seen in the figure, performance of the
baseline is comparable to our modified version with a maximum
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overhead of less than 1% in all cases. The main reason for this
behavior is that most of the work during a request is done by the
TLS part of LibSEAL and not by the auditing module. As only
that module is dynamically loaded, the overhead of using dynamic
loading on the module is negligible.

Figure 6 shows the throughput development when increasing
the number of clients for a response size of 1 KiB. As can be seen,
with 125 clients the throughput peaks at 464 req/s. Latency rises
with increasing number of clients. In this scenario, the processor is
the bottleneck. With sgx-dl, the throughput develops the same as
the baseline when increasing the number of clients.

5.7 EActors

EActors [47] is a framework that enables use of the actor pattern in
SGX. Actors are small, stateless execution units that communicate
via message passing. With EActors, actors can be distributed over
multiple enclaves. EActors targets highly parallel and performant
cloud applications such as a message broker or a chat server.

We integrate sgx-dl into EActors to load the actual actor code
dynamically instead of it being statically built into the enclave.
This allows the generation of a generic enclave that can load the
specific actor code on demand. The base enclave only contains the
actor scheduler and message passing framework. Furthermore, with
sgx-dl, the first step for dynamic reconfiguration of the system is
made, i.e., moving actors from one enclave to another, similar to the
concept of mobile agents [44]. In total eight functions and twelve
objects are dynamically loaded with a combined size of 3938 and
99 bytes, respectively.

For our evaluation, we choose the XMPP benchmark presented
in the original EActors paper: An XMPP server implemented as
actors and a client application based on [libstrophe [38]. We use
the EA/3 case of the original benchmark, that is three actors: one
trusted XMPP actor with its own worker thread as well as two
untrusted network reader/writer actors with one worker. We eval-
uate different numbers of clients exchanging messages through the
server. Each test is run ten times for one minute each.

Figure 7 shows the results of the base system compared to a
system in which the XMPP actor loads its code dynamically. As can
be seen, with increasing client numbers, the throughput first goes
up and peaks for 30 clients and then goes down due to increased
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Figure 7: XMPP throughput in messages per second for vari-
ous client numbers. Error bars show standard deviation over
ten runs. Higher is better, y-axis is log scale.

load on the system. However, the overhead of using sgx-dl to dy-
namically load the actor code is again small, ranging from 2.7% (100
clients) to 0.4% (30 clients) with an average of 1.3%.

6 CONCLUSION

In this paper, we presented sgx-dl, a novel system for dynamically
loading and hot-patching code in Intel SGX enclaves with version-
ing support. sgx-dl is the first system to utilize SGXv2 features for
adding code safely to an enclave. Furthermore, sgx-dl is the first
system to enable hot-patching of code in an enclave for restart-
less updates. Dynamically loaded and hot-patched code can be
attested through sgx-dl’s versioning mechanism. Our evaluation
shows that sgx-dl adds an overhead of less than 5% on average in
our use-cases. Furthermore, hot-patching a stateful database sys-
tem with sgx-dl reduced the outage time to 4 ms compared to 1.2 s
when restarting it. The source code of sgx-dl is publicly available
at https://github.com/ibr-ds/sgx-dl.
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6 Conclusions

At the time of writing, Intel has dropped support for SGX on desktop platforms and 11th
(Rocket Lake) generation processors and newer are not capable of launching SGX enclaves
any more. At first glance, this seems to invalidate the work presented in this thesis as SGX
is used in all the work presented here but in reality, SGX was never a good fit for the client
side. When Intel released SGX, it provided a few sample application ideas on how SGX
can be used to secure client side applications. However, academia and the adoption by
companies [28, 79] have shown that SGX should have never been a client side technology
to begin with and with the release of the Ice Lake-SP platform Intel has finally brought
SGX to its datacenter line of processors.

The work shown in this thesis all focuses on applications running on the server side, e.g,,
the cloud, on which SGX is now available. With sgx-perf'a performance profiling frame-
work has been presented that lends itself perfectly to analyse server-side applications and
helps developers optimize their software on the next generation of processors. While the
low EPC limit is a thing of the past, ECall and OCall performance is still a metric impor-
tant for optimization, especially when new p-code versions that change the performance
will be released.

One way to increase application performance, is to parallelize workloads, e.g. by uti-
lizing multiple threads. AsyncShock has shown that multithreading is now a potential
threat vector as it can be used to break or exfiltrate data from SGX applications. Being one
of the first attacks on applications running on top of SGX, it has shown that mitigating
not only microarchitectural side-channels but also application side-channels is impor-
tant. Furthermore, even though the implementation of the EPC has changed, AsyncShock
still works as the underlying mechanism of how page faults are handled has not changed.

One way to harden against novel threats in the cloud is to ship frequent application
updates. With sgx-dl a novel framework for dynamic loading and hot-patching has been
released which is optimal for use in the cloud. sgx-dl enables dynamic applications in
the cloud with low latency and with hot-patching sgx-dl helps to keep the application
downtime minimal.

6.1 Outlook

With only having been available since 2016, Intel SGX is still a young technology. Intel has
already extended the capabilities of SGX quite a bit in the past, but it has shown no signs of
stopping yet in the confidential computing area. The latest SGX extension AEX-Notify [29,
41] shows a promising way for enclaves to defend against attackers trying to single-step
enclave execution. With Total Memory Encryption (TME) and Total Memory Encryption
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- Multi-Key (TME-MK) [46], Intel has already presented its version of AMD’s SME and
as soon as it’s released, a new target for microarchitectural side-channels will exist. Fur-
thermore, Intel has also presented its version of AMD’s SEV, namely Intel Trust Domain
Extensions (TDX) [47] but nothing with regard to its availability is known yet. AMD has
enhanced SEV with SNP [3] but still focuses on securing whole virtual machines instead
of partitioning applications. ARM is also working on Confidential Compute Architec-
ture (CCA) [8] which combines TrustZone and virtualization with memory encryption in
its Armvg-A architecture. Judging by these announcements of upcoming features, trusted
execution should be viewed as an important aspect of general purpose computing as Intel,
AMD and ARM all invest in the enhancement of their respective technologies.
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