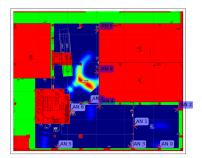


Institute of Operating Systems and Computer Networks



No-Cost Distance Estimation Using Standard WSN Radios

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf , April 14, 2016

Indoor localization

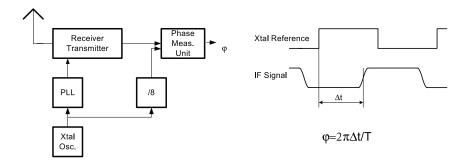
- Use cases:
 - Health care
 - Logistics
 - loT
- Many systems need special hardware
- Distance estimation is a base technology for localization

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 2 No-Cost Distance Estimation Using Standard WSN Radios

Provides distance estimation

- Provides distance estimation
- Utilizes phase measurement unit of AT86RF233
- Present in many WSNs

- Provides distance estimation
- Utilizes phase measurement unit of AT86RF233
- Present in many WSNs
- No additional hardware

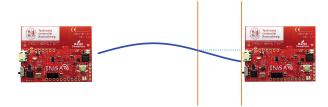

Atmel RTB

- Reference Implementation
- Utilizes phase measurement unit of AT86RF233
- Closed source
- Few documentation
- No integration

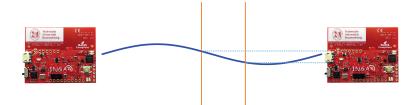
Phase Measurement Unit

Atmels Active Reflector method overcomes synchronization

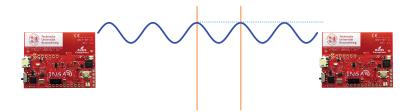
Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 5 No-Cost Distance Estimation Using Standard WSN Radios


Basic Phase Measurement

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 6 No-Cost Distance Estimation Using Standard WSN Radios

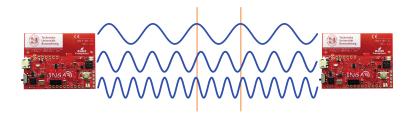

Basic Phase Measurement

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 7 No-Cost Distance Estimation Using Standard WSN Radios


Basic Phase Measurement

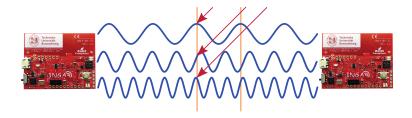
Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 8 No-Cost Distance Estimation Using Standard WSN Radios

Phase Measurement at 2.4GHz

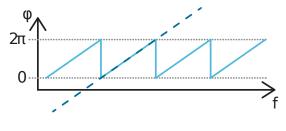


wavelength 12.5 cm at 2.4 GHz

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 9 No-Cost Distance Estimation Using Standard WSN Radios

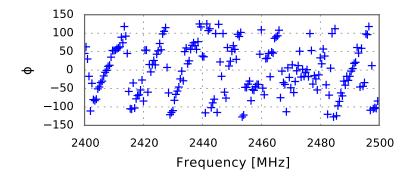

Multiple Phase Measurements

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 10 No-Cost Distance Estimation Using Standard WSN Radios


Multiple Phase Measurements

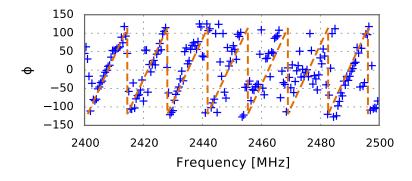
Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 11 No-Cost Distance Estimation Using Standard WSN Radios

Distance Estimation on Phase Response Φ

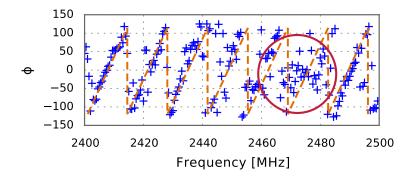


Distance *d* is proportional to slope $m = \frac{\Delta \varphi}{\Delta f}$

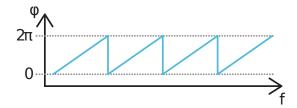
Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 12 No-Cost Distance Estimation Using Standard WSN Radios


Real Phase Response

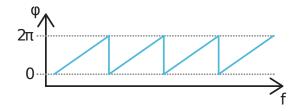
Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 13 No-Cost Distance Estimation Using Standard WSN Radios


Real Phase Response

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 14 No-Cost Distance Estimation Using Standard WSN Radios


Real Phase Response

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 15 No-Cost Distance Estimation Using Standard WSN Radios

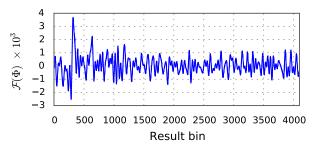

Distance Estimation on Phase Response Φ

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 16 No-Cost Distance Estimation Using Standard WSN Radios

Distance Estimation on Phase Response Φ

Distance *d* is proportional to frequency of phase response (f_{Φ})

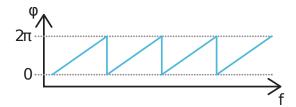
Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 16 No-Cost Distance Estimation Using Standard WSN Radios


Determine f_{Φ} with Fourier transformation

The highest peak in $\mathcal{F}(\Phi)$ Fourier-transformation of Φ is f_{Φ}

Determine f_{Φ} with Fourier transformation

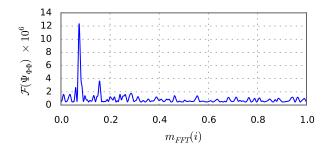
The highest peak in $\mathcal{F}(\Phi)$ Fourier-transformation of Φ is f_{Φ}



$\mathcal{F}(\Phi)$ still too noisy to find f_{Φ}

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 17 No-Cost Distance Estimation Using Standard WSN Radios

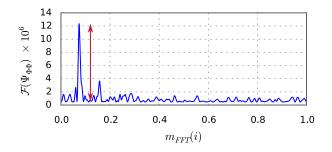
Auto correlation suppresses noise in periodic signals



Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 18 No-Cost Distance Estimation Using Standard WSN Radios

Determine f_{Φ} with Wiener-Khintchine

The highest peak in $(\mathcal{F}(\Psi_{\Phi\Phi}))$ Fourier-transformed auto correlation of Φ is f_{Φ}



Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf Page 19 No-Cost Distance Estimation Using Standard WSN Radios

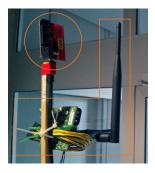
Determine f_{Φ} with Wiener-Khintchine

The highest peak in $(\mathcal{F}(\Psi_{\Phi\Phi}))$ Fourier-transformed auto correlation of Φ is f_{Φ}

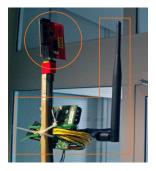
Height of peak at f_{Φ} is DQF

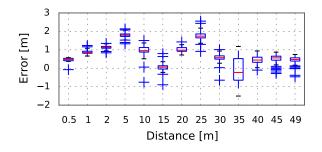
Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf |Page 20 No-Cost Distance Estimation Using Standard WSN Radios

Evaluation


- Four evaluation scenarios
 - Basement
 - Park
 - Apartment
 - Office Corridor

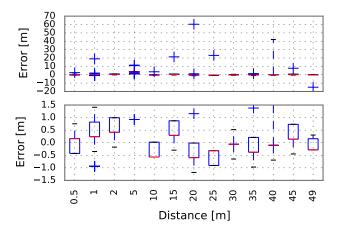
Evaluation


- Four evaluation scenarios
 - Basement
 - Park
 - Apartment
 - Office Corridor
- Evaluation against Atmel RTB
- Laser distance measurement as ground truth



Evaluation

- Four evaluation scenarios
 - Basement
 - Park
 - Apartment
 - Office Corridor
- Evaluation against Atmel RTB
- Laser distance measurement as ground truth
- All calculations performed on senor node



RTB median errors below 1.5m

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 22 No-Cost Distance Estimation Using Standard WSN Radios

Office Corridor Evaluation

InPhase median errors below 0.5m

Georg von Zengen, Yannic Schröder, Stephan Rottmann, Felix Büsching and Lars C Wolf | Page 22 No-Cost Distance Estimation Using Standard WSN Radios

	InPhase	RTB
Median Error	0.40 m	0.59 m
# Measurements	2172	1931

- Both systems calculate a DQF
- DQF give the quality of a measurement
- Drop measurements with a DQF lower than threshold

Overall Median Error with DQF filtering

	InPhase	RTB
Overall Median Error	0.30 m	0.45 m
% accepted		
measurements	68.55 %	70.64 %
% gain		
with DQF	25.00 %	23.73%

Conclusion

Novel distance estimation method

- Novel distance estimation method
- Decreased median error by 33%

- Novel distance estimation method
- Decreased median error by 33%
- More reliable DQF

- Novel distance estimation method
- Decreased median error by 33%
- More reliable DQF
- Sufficient accuracy at no additional costs

- Novel distance estimation method
- Decreased median error by 33%
- More reliable DQF
- Sufficient accuracy at no additional costs
- Documentation and implementation of distance estimation based on phase measurements

Georg von Zengen Technische Universität Braunschweig vonzengen@ibr.cs.tu-bs.de

