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1 Introduction

Sensor networks consist of a large number of small devices, each containing one or
more sensors, a processor, a radio transmitter, memory, anda limited amount of energy
generally given by a battery, whereas each node merely measures the values given by
its sensors. They communicate with each other via exchanging messages over their
radio transmitter. Joined together, they build a powerful collective and are able to
solve complex tasks. In the absence of a central control unit, which would enable
access to a global view of the network, the necessary information has to be gathered
by carrying the local information of each node together. Dueto the restrictions in
energy consumption, there is a need of a special kind of algorithms with a main focus
on energy efficiency.

In general, the nodes are distributed randomly in a given region, so that algorithms
must be self-organizable and scalable. In addition, localization hardware like GPS is
too expensive and energy wasting to equip many nodes, or eveneach one with it. There
are approaches to solve this with localization algorithms to enable a global position
awareness on each node, but depending on ranging errors the results are imprecise and
not satisfying so far. As a consequence it is preferable to make use of the benefits of
strict local algorithms. In such an approach, the sensor nodes are not aware of their
position, neither in an absolute nor in a relative global coordinate system, and merely
use the information of the contiguous neighbors.

Sensor networks can be used, for example, for animal observation in large areas,
movement analysis of fire fronts in forest fires, traffic supervision, habitat monitoring,
or flood protection.

This thesis shall deal with the latter case. The sensors are therefore inserted into
sandbags and measure the actual wetness of the surrounding sand. With this informa-
tion the network is able to build a general view of the moisture penetration the sandbag
structure is exposed to. There are three avenues of approachconceivable. Either a base
station requests a status report of the nodes in the sandbag structure, or they report their
state in periodic intervals independently, or potential leaked sections are announced.
Such information must be routed through the network which reduces the overall energy
level of the nodes.

By assuming that nodes below the waterline are no longer ableto communicate with
their neighbors, it is preferable to route messages especially over nodes in the near of
the waterline. Those nodes run the risk of losing their ability to communicate in the
foreseeable future, and thus can be exhausted instead of ones that are supposed to be
part of the network over a longer period. The communication loss can be assumed,
for example, in the consequence of physical restrictions ofradio wave propagation
through wetted sand on the one hand, or nodes that are not water resistant on the other
hand.

However, the construction of such a communication backbonecan be divided into
multiple tasks. Firstly, the waterline must be identified byfault-tolerant techniques
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1 Introduction

that are robust against measurement errors. Secondly, in the consequence of the lack
of position awareness, the nodes must be able to coordinate themselves. Thirdly, the
communication backbone is built in the near of the identifiedwaterline, and must pro-
vide a continuous connected structure that also recognizespotential missing parts in
the topology. Finally, a routing algorithm that uses the backbone structure must be
designed.

Chapter 2 describes the related work which has already been done in the context of
this thesis. In Chapter 3, a general overview of sandbaggingand dikes in the sense of
flood protection is given. Chapter 4 presents the designed algorithms. Chapter 5 intro-
duces the used simulation environment and illustrates the idea of the implementation.
In Chapter 6, the results of the simulations are shown. At last, Chapter 7 summarizes
this thesis and gives a short forecast.
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2 Related Work

This chapter gives an introduction to the related work covering the basic objectives
of this thesis. At first, selected routing algorithms for sensor networks are presented,
followed by approaches of organizing and coordinating a network. Then, literature
about general as well as moisture measurement techniques ispresented. At last, a
basic overview of floods, dikes, and the usage of sandbags is given.

Intanagonwiwat et al. [CIE00] describe theDirected Diffusion, a data-centric rout-
ing algorithm which implies that the generated data is namedby attribute-value pairs.
For example, a node starts an interest which again is diffused throughout network. The
requested data in turn is sent back to that node by the use of multiple paths and addi-
tional data caching. Hence, there are methods for the propagation of requests as well
as ones for the aggregation of data.

Johnson et al. [JM96] present theDynamic Source Routing. If one node sends a
message to another one, it starts a route request that is flooded over the network. If the
request reaches the destination, or a node is aware of an already known cached route,
a route reply message is sent back to the initiator. A route contains the addresses of
the nodes through which the message can be forwarded. In addition, the maintenance
of cached routes is handled.

Nieberg et al. [NDH+03] have designed theCollaborative Algorithms for Commu-
nication. The basic idea is to cluster the network whereby the clusterheads form a
dominating set. The non-clusterheads in turn act as gateways. To allow the routing
of messages, the already above mentionedDynamic Source Routingis adapted to fit
the clustered structure of the network. For an additional improvement of reliability,
messages are sent on multiple paths as well as divided into several packets on demand.

EQos[SCC04] is a two phase protocol, whereby the first phase creates a virtual
communication backbone, turn the radios of some nodes off and let the nodes learn
their rough coordinates. In the second phase redundant sensors turn their hardware off
due to information of the rough coordinates and the local neighborhood.

ASCENTby Cerpa et al. [CE04] has been designed for energy efficiencyreasons.
The basic idea is to have only a few nodes active routing the messages through the net-
work to perform multihop routing. The other ones are passiveand check periodically
if they should wake up and become active. If an active node recognizes that too many
messages getting lost, it sends aneighbor announcement messageto wake up passive
node to be integrated into the backbone. All things considered, there are four different
states a node could take:sleep, passive, testandactive.

Another very simple approach isSPAN[CJBM01] which elects coordinators ran-
domly. It ensures that there are enough coordinators, rotates the coordinators due to
energy efficiency, attempts to minimize the number of coordinators, and elects the
coordinators using only local information.

Youngis et al. have designed the clustering algorithmHEED [YF04] that periodi-
cally selects cluster heads according to their remaining energy level and a variable sec-
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2 Related Work

ond parameter such as the neighborhood density. Unlike other clustering algorithms
such it does not need any location information.

Another general problem in sensor networks is the appearance of measurement er-
rors that must be recognized by the nodes. Krishnamachari etal. [KI03] present a
Bayesian fault-recognition algorithm that considers the own reading as well as the
ones of the neighborhood. In contrast, Ishar et al. [IPPR03]discuss methods of fault-
tolerant feature extraction in sensor networks at a centralunit which receives the read-
ings of multiple nodes. In a more general manner Chugh et al. [CDA03] present a
cluster-based method for event notification in appropriateregions. A similar subject
is described by Koushanfar et al. [KSPSV02] who present an error-tolerant fusion of
sensor data.

An overview of measurements in general is given in [PP92] that is an introduction
in basic measurement techniques, theoretical fundamentals, and causes of potential
errors. The latter is described in detail by Grabe [Gra05]. In addition, there is also
specialized literature about moisture measurement, and can be found in [Kup97], for
instance.

However, this thesis presents algorithms for sensor networks potentially used in
flood protection. There is much basic literature about floodsavailable. In [Fle02],
an overview of the flood risk in the UK is given. Ohlig [Ohl04] presents historical
observations with a focus on flood protection at the Elbe. Theproblems of floods with
respect to seepage and stability reasons of dikes are presented in [Dav64], which in turn
leads to the demand on the use of sandbags. Different application areas can be found
in [Bra03], whereas Kobayashi et al. [KJ85] as well as Gadd [Gad88] have analyzed
the stability and construction issues of sandbags for slopeprotection, but with a main
focus on coastal regions. A more general idea is given by Burnett et al. [BW99] who
have filed a patent on additional fill material for sandbags toreduce the leakage. A
detailed overview of flood protection is given in the next chapter.
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3 Flood Protection

River flooding is a natural disaster that can cause very costly damage by destroying
human life, buildings, villages, or even whole districts. In the consequence of exces-
sive rainfall or melting snow, and if the land is no longer able to drain the present
amount of water due to a saturated ground, a river can overwhelm its banks and flood
the bordering areas.

There are several examples of such disasters in history and recent time, respectively.
For example, in Easter 1998 a flood affected an area in the United Kingdom from
Worcestershire to Cambridgeshire for six days and caused a damage of£500-700 mil-
lion [Fle02]. In Autumn 2000 there was the most intensive rainfall since records began
over 270 years ago. In October, for instance, the rainfall was four times the average for
a month. The related flood caused a damage of£1 billion [Fle02]. Another example
occurred in Germany is the Elbe flooding in August 2002. More than 100 people died
and the caused damage exceeded 15 billion Euro [RMS03].

To protect an area against flooding, a widely spread defense strategy is the building
of dikes. Other methods are described in detail in [Fle02], for instance, but are beyond
the subject of this thesis. However, a basic overview of dikes and potential problems
of moisture penetration is given in [Dav64]. Figure 3.1 shows a simplified example.

Landside
River

Dike
1:3

1:3
s

1:2

Figure 3.1: Example of a Dike.The figure shows an example of a dike which has been
built to protect an area against flooding, and is a simplification of an illustration that
can be found in [Dav64]. On an increasing waterline, the structure runs the risk of
getting soaked. Such a situation is indicated by the dashed line s that is also called
a saturation line. If the end of the line is located at the landside of the dike instead
of the ground, there is a leakage at the according position, and a dike breakage can
occur.

There are several reasons that can cause a risk for the dike. For example, in the con-
sequence of the mentioned problem of moisture penetration,the dike runs the risk of
breakage which in turn causes essential danger for the bordering regions. Furthermore,
it is possible that the water level overtops the height of thedike in the foreseeable fu-
ture, and would also result in flooding the concerning areas.Such situations require
additional methods of dike defense. A widely spread practice is the usage of sandbags.
Figure 3.2 shows potential application areas for sandbagging, and can also be found in
[Bra03].
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3 Flood Protection

River

Sandbags

(a) Sandbagging against Overwhelming

River

Saturation Line

Seepage

Sandbags

(b) Sandbagging due to Seepage

River

Saturation Line

Seepage

Sandbags

(c) Sandbagging at the origin of the Seepage

Figure 3.2: Potential Applications of Sandbagging.The figure shows different applica-
tions for sandbagging in the sense of dike defense. In (a), the dike is protected against
overwhelming. That is, the increasing water level is assumed to get greater than the
height of the dike. Subfigure (b) shows the problem of moisture penetration of the dike.
In the consequence of a leakage at the landside, the sandbagsare put on the appropri-
ate position. In contrast, Subfigure (c) shows the positioning of sandbags at the origin
of the seepage to avoid an ongoing moisture penetration.
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4 Algorithms

This chapter presents algorithms for solving the mentionedproblems of managing a
dike of sandbags which protect an area against flooding. Firstly, the preliminaries
and assumptions of the environment are presented. Secondly, different methods of
the identification of the waterline are shown, depending on the equipment of the used
nodes. Then, solutions for some rough coordination to enable the decision, in which
direction an incoming message must be sent, are given. Finally, different algorithms
for building a reliable and energy efficient communication backbone are presented,
each combined with a special routing process.

4.1 Preliminaries

On developing algorithms for sensor networks, some preliminaries and assumptions
must be taken. Hence, this section gives an overview of the behavior of the nodes on
which the below presented algorithms are based on.

To simplify the communication model, it is assumed that there are only bidirectional
connections. If nodeu is able to communicate with nodev, nodev in turn is able to
communicate with nodeu. Furthermore, nodes communicate only via broadcasting
messages, and thus there are no unicast connections. Consequently, if a node sends
a message, each of its neighbors receive it. This abstraction can be used for a simple
recognition of message loss by sending and forwarding messages. Thus, if a node
broadcasts a message, it should receive the same one again when the neighbors in turn
broadcast the message.

To allow for a definite identification of nodes, each node in the network is equipped
with an unique ID. Furthermore, by taking this assumption into account, the sent mes-
sages can also be made unique, at least by identifying them over the ID of the initial
sender and a consecutively numbered value.

Although each node can be uniquely identified, it is not assumed that one sends
a message to an arbitrary other one. Instead, it must only be assured that messages
can be sent to a given base station. This is essential for the routing process inside
the communication backbone, because the main focus is set onthe construction of the
backbone and the routing of messages along the structure.

Moreover, the nodes are not aware of their global position, so that the designed
algorithms must operate in a strict local manner. This is assumed, because equipping
the sensor nodes with localization hardware like GPS is bothtoo expensive and energy
wasting. Also the use of only a few position aware nodes and well known localization
algorithms is not a suitable option, because by reason of ranging errors in distance
measurement the results are imprecise and not satisfying. In addition, that would cause
an unnecessary message overhead and thus an avoidable wasteof energy.

The nodes themselves can have two different behaviors in thematters of soaked
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sandbags. On the one hand, in an absence of water resistance,they malfunction by the
first occurrence of wetness. On the other hand, if they are watertight, they survive the
wetted sand, but just have a very limited communication range in the consequence of
physical restrictions.

4.2 Waterline Identification

The first discussed problem is the identification of the waterline. Depending on the sort
of used sensors, there are different approaches for solvingthis problem. If the nodes
are equipped with appropriate sensors like wetness or temperature ones, they are able
to handle the resulting readings. Otherwise, in case of the absence of such sensors, the
decision must be taken without any information about the environment. That can be,
for example, the consideration of the characteristic of a limited communication range
due to soaked sandbags or the enclosing waterline.

4.2.1 Neighbor Loss

This approach assumes that the nodes are not equipped with any sensoring hardware,
and either malfunction or lose their communication abilityon soaked sandbags. Es-
pecially the former assumption can be reasonable for energy-saving causes, because
each type of sensor consumes energy and can be seen as an expense factor.

The basic idea is indicated in Figure 4.1. A node which is ableto identify the
waterline has lost the connection to at most 50% of its neighborhood.

(a) Cross Section (b) Front View

Figure 4.1: Cross Section and Front View of a node identifying a neighbor loss.The
above Figures show a typical situation of an arbitrary node that should identify a
noticeable neighbor breakdown. Due to the fact that the waterline has not yet reached
the appropriate node, there are obviously less than 50% of the neighbors below the
waterline.

Taking this information into account, one must elect a valuable threshold for the
decision whether a node is near the waterline or not. On the one hand, if the threshold
is too high, a node runs the risk of getting soaked itself, andthus is no longer able to
communicate with its neighbors. On the other hand, in case that the threshold is chosen
too small, the decision process is very fault-prone due to malfunctions of actually
healthy nodes, and a consequently false positive identification of the waterline.

The idea is to strike a balance between these two alternatives, set the threshold to
30%, and establish additional constraints which are presented below.

8



4.2 Waterline Identification

Eliminating probably Fault-Prone Nodes The first restriction is defined by the
assumption that a node loss in consequence of an increasing waterline occurs in a
much smaller time interval than a node loss due to arbitrary malfunctions. A node loss
in turn is recognized, if the last activity of a neighbor is greater than the given time
periodtmin(LA). Hence, it is required that each node guarantees a maximal idle time
with respect to the sending of messages, and thus sends dummymessages in case of
need. After that, a value for the time periodtmax(LA) must be given, which defines a
maximal limit for the elapsed time since the last activity ofa node. Both thresholds
tmin(LA) as well astmax(LA) depend essentially on the assumptions of the terms and
conditions of the environment. The former value can be linked to the given maximal
idle time tidle, and thus a node is assumed to be dead iftmin(LA) > 2 · tidle. The
latter threshold,tmax(LA), depends on the mean alteration rate of the water level for a
certain period during a flood, and thus can not be given exactly in this part. Of course,
choosing this threshold too small would lead to rejecting regular malfunctioned nodes
by a medium-term established water level. Otherwise, by allowing too wide space of
time, this restriction would have no effect.

The second restriction takes the problem of a node loss due toa lack of energy into
account. It is obvious that a node which is run out of energy can be taken for one
below the waterline. For this purpose the thresholdemin is adopted, in order that all
malfunctioned nodes for which a lower last energy level is known, are ignored in the
decision process. Due to the definition of the energy level aswell as the chosen value
of the above mentioned idle timetidle, it is set to 10% of the mean initial energy level
of the sensor nodes.

Relationships of Lost Nodes As already mentioned above, nodes can not dis-
tinguish between an arbitrary malfunction and a wetness based node loss. The next
idea to scale the probability of false positives down is to consider relationships be-
tween fancy nodes. That is, if one node gets lost, in all probability at least one of its
neighbors gets lost, too. The idea is indicated in Figure 4.2(a).

(a) Relationships of Lost Nodes (b) Neighborhood-Based Decision

Figure 4.2: Waterline identification with the aid of the neighborhood.The left Figure
shows the idea of “Relationships of Lost Nodes”. Nodes belowthe waterline should
have the characteristic that a certain number of their neighbors are below the wa-
terline, too. Taking this information into account, an upside node can differentiate
between an arbitrary malfunction and wetness based node loss. The Figure on the
right shows another approach, namely “Neighborhood Comparison”. That is, a node
recognizing a noticeable node loss should verify that othernodes in its neighborhood
have also recognized a similar breakdown.

9
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Hence, assuming a relatively small neighborhood density ofabout 15 to 30, the
threshold must be chosen rather reserved. Thus, a positive decision with respect to a
near waterline requires at least two neighbors which in turnhad got at least one lost
node as a neighbor, too. Additionally, all considered nodesmust be different. For
example, if a node has the connected neighborsp1 andp2, as well asq1 andq2, which
have all got lost, it is{p1, p2} ∩ {q1, q2} = ∅.

Neighborhood Comparison The next restriction regards neighbors which are
still alive. The basic idea is that if a node decides to be nearthe waterline, some of its
neighbors should have done so, too. An indication is shown inFigure 4.2 (b).

Again, the appropriate threshold must be chosen reserved. It is required that at
least two neighbors have identified a significant node loss inthe consequence of the
above mentioned restrictions, too. In addition, two of the considered neighbors must
be located on different sides. This is approximated by the requirement that two nodes
are not allowed to be in the neighborhood of the respectivelyother one.

In general, theNeighborhood Comparisonneeds the adoption of an additional tem-
porary state. At first, all nodes have not identified the waterline. If the former men-
tioned restrictions are fulfilled, a node changes to be a temporary accepting one, and
only if the here described comparison succeeds, the waterline is finally identified.

Characteristics TheNeighbor Lossmethod is a very simple one. There are only
a few requisites needed, such as a nearly reliable losing of communication ability to
nodes below the waterline and the knowledge of the 2-hop neighborhood. Moreover,
the nodes do not need any type of sensor which would lead to a relevant energy con-
sumption.

Nevertheless, the approach has some mentionable drawbacks. First, the requirement
of the knowledge of the 2-hop neighborhood leads to a significant message overhead
as well as additional memory consumption. Moreover, the nodes decide only locally,
which could lead to false positives and should be taken into account in the below
described backbone algorithms.

4.2.2 Local Measurement

The idea of this approach is that the nodes are equipped with capable sensors to identify
a nearby waterline. Like the previous methodNeighbor Loss, theLocal Measurement
decides only locally whether to be near the waterline or not,and works as follows.

Each node measures periodically its surrounding environment, and compares the
results to the definition of a nearby waterline. If the given parameters match, the wa-
terline is identified and the node notifies its neighbors by broadcasting an appropriate
message. Due to the probable occurrence of measurement errors, the decision process
must handle those uncertainties by taking only the local available information into ac-
count. On the one hand, nodes which had not identified the waterline although they
should do so, must recognize this and set themselves to be near or below the waterline.
On the other hand, false positives must be eliminated as reliable as possible.

The nodes compare the own measurements with the ones of theirneighborhood and
accept the waterline only if certain conditions are fulfilled. For this purpose each node
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is able to accept the waterline temporarily before the decision process is finished. The
ideas are presented in detail below.

States of the Nodes For enabling a temporarily acceptance of the waterline, each
node can take the three different statesRejected, Interim, andDetectedwith respect
to the identification of the waterline. In the beginning all nodes start asRejected. If
one measures a nearby waterline, it sets itself to be anInterim and checks its local
neighborhood. If the conditions for an acceptance are fulfilled, it changes to the state
Detected.

Neighborhood Matching As mentioned above, a node decides only locally whether
to accept the waterline or not, and analyzes therefore the own state as well as the ones
of its neighborhood. The decision process must handle two potential types of errors.
First, false positives, that are nodes identifying the waterline although they should not,
must be detected and avoided. Secondly, nodes below the waterline must recognize
this albeit their sensor has not detected such a situation.

Figure 4.3 shows an example of a node below the waterline. Dueto the already
passed water level, the node itself and at least 50% of its neighbors should have iden-
tified the waterline, which again can be used in the decision process.

(a) Cross Section (b) Front View

Figure 4.3: Cross Section and Front View of a node which measures a nearby wa-
terline. The above Figures show a typical situation of an arbitrary node that should
identify and accept the nearby waterline. Due to the fact that the waterline has reached
the appropriate node, there are obviously more than 50% of the neighbors below the
waterline, too.

At first, the situation of nodes below the waterline is described. There are two differ-
ent possibilities to be handled. If the node has identified the waterline itself and has set
its status toInterim, there must be a minimal amount of neighbors which have done so,
too. As shown in Figure 4.3, in theory there are at least 50-60% positives in the local
neighborhood. Depending on the assumed fraction of faulty sensors, the threshold for
an acceptance of the waterline must be reduced. Thus, the minimal fraction ofInterim
for an appropriate node is set to 30%.

The other situation for nodes below the waterline is that onehas not identified this
event itself, but should do so. This case is handled by a relatively high threshold of
neighboring nodes which have already changed their status to Interims. The require-
ment for the high threshold is based on the situation, that a node above the waterline
changes its status due measurement failures in its neighborhood, or a nearby location
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to the actual water level. Especially the latter case can be seen in Figure 4.1 by swap-
ping the lost nodes withInterim ones. Thus, to avoid such a situation, the appropriate
threshold should be set to at least 60% of the neighborhood. Here, a fraction of 75%
is required for an acceptance of the waterline without having measured an appropriate
occurrence.

Secondly, there are the opposite cases of nodes above the waterline, which should
not identify it in the consequence of a concentrated occurrence of measurement errors.
Such a situation is covered by the above given thresholds, but is repeated and discussed
shortly from the other point of view. Hence, if the node is located above the waterline,
but has a positive sensor return value, it needs at least 30% of the neighboring nodes
which have identified the waterline, too. Otherwise, if the local sensor has not given a
wrong measurement, a node would need 75% of neighboring nodes with an appropriate
state.

Both cases, especially the former one, can lead to false positives primarily in the near
of the waterline. Such a situation can be ignored, because anappropriate false positive
would be at least in communication range to the accurate identifying ones. Otherwise,
such wrong detections are accordingly improbable due to theneed of a deep sensor
malfunction density, and should be considered by the constitutive algorithms.

At last, the idea is summarized in Table 4.1 by showing only the relevant attributes
and thresholds.

Sensor State Minimal fraction of positive neighbors
INTERIM 30% of the neighborhood
REJECTED 75% of the neighborhood

Table 4.1: Decision thresholds for changing the state to DETECTED.

Example Application: Wetness Measurement The previous description has
assumed an appropriate sensor for an identification of the waterline. That can be, for
example, a wetness measuring which returns the actual relative moisture content of the
surrounding sand.

Characteristics The decision of a nearby waterline is again taken strict locally, but
unlike the previous approach there is only the 1-hop neighborhood needed, which in
turn causes a smaller amount of messages that need to be sent for coordination issues.
Moreover, methods using sensoring hardware should be safer. One drawback is the
decreasing communication ability by an increasing moisture. Another drawback is the
error-proneness in the sense of local failures (1-hop neighborhood).

4.3 Rough Location Awareness

For building a communication backbone and a consequential routing method, the
nodes must dispose of a rough localization awareness. In consequence of the men-
tioned lack of the knowledge of either a relative or absoluteglobal coordinate system,
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the localization procedure must be done distributed. As a result of the potential appli-
cation area, the primary requirements on such algorithms are robustness and simplic-
ity, whereas precision can almost be neglected. This can be postulated, because the
later discussed backbone and routing algorithms should be as reliable as possible, and
thus do not require an exact coordination system. Moreover,energy efficiency reasons
by means of preferably a small amount of messages, and the occurrence of hardware
failures, especially by measuring distances, come to the front.

However, the localization awareness is divided into two parts, that are described
below. At first, the adjustment at the long side of the dike is presented, followed by the
adjustment in the cross section.

4.3.1 Adjustment at the Long Side of the Dike

By routing messages through the dike or along the waterline inside the communication
backbone, nodes must be able to forward an incoming message to proper neighbors.

For this purpose, there are so calledRelative Reference Pointsbuilt, to which the
nodes are able to orientate themselves. A reference point inturn preferably is a base
station, but can also be an arbitrary node in the network. Theorientation is done on the
basis of the minimal hop count to such references by considering the fact that there are
neighbors with a lower hop distance on the one side, and ones with a greater distance
on the other.

Initial Coordination Phase

In the initial phase each base station sends aCOORDINATION message which contains
the unique ID of the station, the information that the flooding has been started at a
base station, and a hop count of0. A node that receives such a message increments the
hop count by one, and forward it, only if there is no earlier hop count known for this
base station, or the received one is smaller than the existing one. Additionally, in case
of forwarding the message, it stores the incremented hop count as the distance to the
reference point.

Moreover, each received message is used for updating the minimal hop distances
of the local neighborhood. Thus, the hop count of the appropriate neighbor to the
reference point is set, if it is either not already known or smaller than the existing
one. This case must be mentioned separately, because in caseof a forwarding of the
message there are nodes whose minimal hop count is greater than the own one, but can
not be ignored. Figure 4.4 shows an example of the initial coordination phase.

In general, there should be only a few base stations existentin the network. Espe-
cially short after the construction phase of the dike it is even possible that there is no
base station available. In the consequence of the simple procedure of the coordination
process it is also supposable to elect an arbitrary node in network to act as a reference
point. For this purpose an additional threshold is introduced. Each node is required to
know at leastMIN REF POINTS reference points. If not reached, a node can start the
flooding of aCOORDINATION message by its own.

Such a case requires the use of two additional thresholds. First, the probability of
doing so must be defined, followed by setting the interval forchecking the threshold
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1−hop 2−hop 3−hop

Base−

Station

(a) Flooding started at a base station

C
A B

Base−

Station

A

C

C

(b) Rough direction awareness of
nodes

Figure 4.4: Relative Reference Points.The left Figure shows an example of a base
station that starts the flooding of a coordination message. Each receiving node stores
the minimal hop count, and forwards the message if needed. Onthe right Figure the
nodes are already configured. If nodeB receives a message from one of theAs, it can
easily forward the message to one of theCs. Nevertheless, there are also nodes which
cannot be allocated.

MIN REF POINTS. The former one is chosen by keeping in mind that the network con-
sists of at least tens of thousands of nodes, and that the average connectivity should be
between 10 and 20. Hence, it is set to110000 in the beginning, but is doubled after each
step of the check to avoid a hardly ever selected reference point in possibly smaller
areas. The other threshold that defines the interval of the check, is set relative to the
time, a potentialCOORDINATION message would take to reach nodes in a distance of
30 hops.

Selection of Reference Points

If a side decision is taken, one of the collected reference points must be selected. There
are two criterions that affect the result. On the one hand, the number of neighbors
knowing a reference point has an influence, because the number of eligible alternatives
is greater the more nodes take part in the decision process. On the other hand, the hop
distance to the reference point is essential as shown in Figure 4.5.

4321

Message

Figure 4.5: Direction Decision in the near of Reference Points. The figure illustrates
the problem of direction decision in the near of a Reference Point. Assuming that a
potential message should be routed along the Reference Point, a decision that involves
only the hop count is problematic, because the routing process can not be done.
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Depending on the height of the dike and the location of the reference point, an ade-
quate thresholdmin ref point distancefor the minimal distance to a potential reference
point that is taken into account may vary. Here, it is set to 10hops. However, all refer-
ence points that have a smaller hop distance thanmin ref point distanceare dropped
from the decision process. The remaining ones are ordered bythe number of neigh-
bors that know the appropriate reference point, and the one with the highest number
of neighbors is selected. In the probable case that there areidentical results, the hop
distance comes to the front again by selecting the referencepoint with the greatest hop
count. At last, if there are still identicals, the higher ID wins.

Characteristics

The rough localization by reference points is a very simple,but also robust and en-
ergy efficient method, and thus fulfills the given requirements. It does neither need
any global localization information nor a base station, because the nodes are able to
coordinate themselves. Furthermore, there are only the coordination messages needed
which are flooded over the network once per reference point. Additionally, the mes-
sage overhead is limited by the given flood limit.

4.3.2 Adjustment in the Cross Section

In contrast to the previously discussed adjustment at the long side of the dike, the nodes
should also be able to coordinate themselves in the cross section of the dike. Again,
robustness, simplicity, and energy efficiency are much moreimportant than precision.

Taking the Waterline into Account

In the consequence of the requirement for an strict local adjustment that works without
any localization hardware, it is useful to take an external reference point into account,
so that the nodes do not need to perform a boundary detection that would even have
the demand for operating in the three-dimensional space. Thus, a simple but sufficient
idea is to perform the adjustment with the aid of the waterline, and is indicated in
Figure 4.6.

In general, each node determines the minimal hop count to thewaterline, but there
are two additional restrictions that must be considered. Onthe one hand, a potential
false positive in the means of the waterline identification can occur, and thus could
influence the adjustment. On the other hand, a possibly fallen waterline would lead to
a need for incrementing the minimal hop count.

However, nodes that have identified the waterline start witha hop count of 0, and
send aWL HOP COUNT message by setting the appropriate value. A neighbor that
receives the message stores the included hop count as well asthe ID of the sender.
Analog to the description in theNeighbor Lossmethod in Section 4.2.1, the lowest
hop count that has been sent by at least 30% of the neighborhood is accepted, followed
by the broadcasting of a newWL HOP COUNTmessage.

Moreover, in case of a fallen waterline, nodes that had already identified the water-
line and an appropriate hop count of 0, can not identify it anymore. Thus, those nodes
will update their hop count to 1 in due time, and again broadcast aWL HOP COUNT
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Hop−DistanceDike
Sandbag

Figure 4.6: Adjustment in the Cross Section.The figure shows the cross section of a
potential sandbag dike and the idea of the adjustment. By taking the waterline into
account, the nodes are able to determine the minimal hop count, and thus build the
appropriate relationship to each other.

message. The receivers only update their neighborhood, andthe overall minimal hop
count is incremented by and by.

Refinement of Hop Count

So far, the adjustment has only be done by means of the hop distance to the water-
line of the 1-hop neighborhood. Additionally, by taking theinformation of the 2-hop
neighborhood into account, the adjustment can be stated more precisely. Figure 4.7
illustrates such a situation.

A
B

C

n+1 hops

n hops

n−1 hops

Waterline

Figure 4.7: Closeness decision by 2-hop neighborhood.The figure shows a potential
situation of a closeness decision by taking the informationof the 2-hop neighborhood
into account. NodeA is able to differentiate between the nodesB and C, that have
both a hop distance to the waterline ofn. Hence, nodeC has a greater number of
neighbors with a hop count ofn + 1 than nodeB. The other way around, nodeB is
located nearer to the waterline than nodeC in the consequence of a greater number
of neighbors with a hop count ofn − 1.

Characteristics

The adjustment in the cross section by taking only the waterline into account takes
advantage of its robustness as well as simplicity. In addition, the message overhead
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can be significantly reduced, because the only sent information is the hop count, and
thus can also be added to messages sent anyway.

4.4 Communication Backbone

This section presents algorithms for building a communication backbone near to the
waterline, which should be done as reliable as possible on the one hand, and in a mostly
energy efficient manner on the other hand. It is assumed that the waterline has been
successfully identified, and a rough location awareness with respect to the direction
decision is available.

4.4.1 Stripe next to the Waterline

The idea of the stripe next to the waterline is to build a roughcommunication backbone
by a very simple election process, and improve and maintain the existing one in the
ongoing iterations.

Building the Backbone

Each node decides strict locally, and thus without any communication overhead, whether
it belongs to the backbone or not. The decision is taken only on the basis of the dis-
tance to the waterline measured in hops. So, given a minimal as well as a maximal hop
distance to the waterline byMIN WATERLINE HOPS andMAX WATERLINE HOPS, each
node between these thresholds sets itself as a part of the communication backbone, and
broadcasts an appropriate notification to its neighbors. Furthermore, all nodes doing
so set their internal state toPURE BACKBONE STATE, which is used later in the de-
scription ofDynamics. The thresholds define the closeness to the waterline as wellas
the thickness of the backbone. Figure 4.8 indicates a situation as a part of the network
in the near of the waterline.

0 hops

1 hop

2 hops

3 hops

4 hops

Waterline

Figure 4.8: Stripe: Hop distance to waterline.The figure shows a cutout of the network
in the near of the waterline. Each node has received the minimal hop count to the
waterline, and thus is able to decide whether it is part of thebackbone or not.

As shown, nodes in 1-hop range to the waterline are in the verynear, and run the risk
of a lose of the communication ability accordingly. Hence,MIN WATERLINE HOPS is
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set to 2 hops to offer a sufficient closeness to the waterline as well as enough reliability
due to malfunctions in the routing process. Furthermore,MAX WATERLINE HOPS is
set to 3 hops, resulting in a tolerable small backbone.

In the consequence of potential irregularities in the topology, the resulting backbone
could contain holes, and thus may not be continuously connected.

Closing Holes

Either the strict definition of the backbone affiliation by the hop distance to the wa-
terline, or sparse connected parts of the topology linked toclose-by thresholdsMIN

WATERLINE HOPS andMAX WATERLINE HOPS can lead to so called holes. That is,
there are multiple parts of the backbone that are not connected to each other. Thus,
additional rules must be defined to avoid such situations.

For this purpose, each node needs a given minimumBACKBONE CONNECTIVITY

on successors and predecessors which are neighbors of that node, and also part of the
backbone. If a node do not fulfill the above requirement, it must start a request in the
appropriate direction. Choosing a too great threshold forBACKBONE CONNECTIVITY

would lead to plenty of request messages, because the nodes hardly satisfy the wanted
connectivity. Hence,BACKBONE CONNECTIVITY is set to 2, so that each node should
have at least two successors as well as two predecessors.

There are two supposable situations. On the one hand, a node in the near ofMAX

WATERLINE HOPSmay know nodes in the local neighborhood that are not alreadypart
of the backbone. On the other hand, in case of unavailabilityof such a neighbor, a
potential connection must be requested. Both cases are described separately.

Local Request At first, it is assumed that there are neighbors available which are
not already part of the backbone. Each node checks in given periods of timeBACK-
BONE CONNECTION CHECK, which is chosen in subject to the average lifetime of the
sensor node, the amount of successors and predecessors. If one is missing (in case of
an absence of more than one, the procedure is repeated automatically until the given
amount is reached), the appropriate node starts aBACKBONE JOIN REQUESTto the
wanted direction. The request is sent to exactly one neighbor that does not already
belong to the backbone, has a greater hop-distance to the waterline thanMIN WATER-
LINE HOPS, and is located as near to the waterline as possible. Of course, the value
could also be set toMAX WATERLINE HOPS, because nodes between these thresholds
are part of the backbone. Furthermore, the selection of nodes that are preferably near
to waterline is done in two steps. At first, all nodes with the minimal hop-distance are
elected. Second, if there is more than one in the resulting set, the appropriate nodes
run through an additional election process. Hereby is the one selected that has the most
neighbors with a minimal hop-distance. Thus, the neighbor that is the closest to the
waterline is chosen. The node that receives aBACKBONE JOIN REQUESTsets itself as
a part of the backbone, and broadcasts a notification of its joining.

Furthermore, all nodes doing so set their internal state toREQUESTED BACKBONE

STATE. In case that the actual hop-distance to the waterline changes, and is between
the thresholdsMIN WATERLINE HOPS andMAX WATERLINE HOPS, it changes to the
state toPURE BACKBONE STATE. As already mentioned above, the sense of doing so
comes to the front later.
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Global Request In case that there is no eligible neighbor available to extend the
backbone structure as needed, a request must be started which is able to cover multiple
hops.

An appropriate node therefore sends aBACKBONE EXTENSION REQUESTmessage
that contains the ID of the requesting node, a time to live, a list of node IDs that
contains only the one of the initiator in the beginning, and the actual LOCATION IN-
FORMATION. The latter contains the location of the initiator as well asthe wanted
direction. Table 4.2 gives an explicit overview of the content.

BACKBONE EXTENSION REQUEST

Initiator Node ID
Location LOCATION INFORMATION

Path List<Node IDs>
TTL Integer

Table 4.2: Contents of BACKBONE EXTENSION REQUEST.

The request is flooded over a local area, and the first node which fulfills the given
LOCATION INFORMATION answers an acceptance.

If a node receives a BACKBONE EXTENSION REQUEST, it adds its ID to the path
list in the message, and broadcasts it again. In addition, itstores the unique ID of the
message, and drops all further receiving ones. As already described in Section 4.1, the
message can be identified, for example, by the ID of the initiator and a consecutively
numbered value. Moreover, to avoid an undesirable extension below theMIN WATER-
LINE HOPS threshold, an appropriately located node drops each received request.

In case that a node fulfills the given LOCATION INFORMATION of the message, it an-
swers a BACKBONE EXTENSION FOUND message. This message is routed backwards
to the initiator along the path that is contained in the request. Each node, including the
answering one, sets itself as part of backbone. When necessary, the state is changed
to REQUESTED BACKBONE STATE. Hence, a potential connection from the initiator to
the answering one is assured.

Dynamics

In case that the hop-distance to the waterline changes, the backbone in turn must
change its structure by joining and disjoining of nodes.

At first, the disjoining of nodes is discussed. If a node is already part of the back-
bone, and the thresholdMIN WATERLINE HOPS gets greater than the actual hop-
distance to the waterlineACTUAL WATERLINE HOPS, the node must prepare its leaving
from the backbone. Therefore it broadcasts aBACKBONE LEAVE REQUEST, and stores
the point in timeTIME LEAVE REQ STARTED of that request. Each neighbor that re-
ceives such a request, and knows at least one alternative node that is located on the
same side as the leaving one, answers aBACKBONE LEAVE ACCEPTED. In case, that
one does not belong to the backbone, the request is ignored and not responded. Hence,
if the disjoining request was accepted by each neighbor thatis part of the backbone,
the appropriate node leaves the backbone and notifies its neighbors by aBACKBONE

DISJOINED message, which in turn update their neighborhood. Alternatively, if not
enoughBACKBONE LEAVE ACCEPTED messages arrive, the node disjoins anyway

19



4 Algorithms

after a given time periodTIME FORCE BACKBONE LEAVE which is verified against
the above mentionedTIME LEAVE REQ STARTED. In the consequence of the relative
short amount of time of a potential newBACKBONE JOIN REQUESTat a neighbor, the
thresholdTIME FORCE BACKBONE LEAVE can be chosen comparatively short with
respect to the duration of sending messages. Thus, by keeping in mind that a neighbor
may start a new join request, the thresholdTIME FORCE BACKBONE LEAVE is set to
10 × t msg send.

If a node recognizes an affecting change of the hop-distanceto the waterline at the
upper side of the backbone that requires a disjoining, in other wordsACTUAL WA -
TERLINE HOPS gets greater thanMAX WATERLINE HOPS, and the internal state is
equal toPURE BACKBONE STATE, it prepares for disjoining the backbone. In this case
the difference betweenPURE BACKBONE STATEandREQUESTED BACKBONE STATE

appears, because thepure ones form the primarily backbone structure, whereas the
requestedones connect parts of the core structure, and thus have a different priority of
leaving the backbone. However, in case of the disjoining of apurenode, the process
works identical to the above mentioned method. Again, the appropriate node is broad-
castingBACKBONE LEAVE REQUEST, waits for the replies, and disjoins by sending a
BACKBONE DISJOINED, if eitherTIME FORCE BACKBONE LEAVE is elapsed or all rel-
evant neighbors have answered. Contrary, a node in the stateBACKBONE REQUESTED

is part of an explicitly requested connection between two groups of the primarily back-
bone structure, and thus must ensure the maintenance. It would be problematic, if all
nodes of such a bridge try to take the structure nearer to the waterline concurrently.
Hence, the process is done iteratively. If such a node recognizes a decreasing water-
line by a smaller minimal hop-distance than the actual one, it sets the flagBACKBONE

TRY LOWER which in turn is checked periodically. In case that the flag isset, and the
node has the highest minimal hop-distance to the waterline of all neighbors that are in
the stateBACKBONE REQUESTED, it starts the disjoining phase as already described
above by sending aBACKBONE LEAVE REQUEST, and leaves the backbone in any
case on a run off ofTIME FORCE BACKBONE LEAVE. If two nodes have an equal high
hop-distancen, the one that has more neighbors with a hop-distance ofn + 1 wins
the choice. At last, if also this comparison is equal, the onewith the higher ID starts
the disjoining. All other nodes that dropped out of one of thecomparisons, increment
the number of drop outsDROP OUT CNT, and start the same process at the next check
of the flagBACKBONE TRY LOWER. Finally, in case that a maximal number of trials
MAX LOWER TRIALS is reached, the flag is reset.

The above possibilities have discussed the disjoining of nodes. However, it is also
possible that nodes are going to join the backbone due to an appropriate change in
the hop-distance. This happens if the thresholds get toMAX WATERLINE HOPS ≥
ACTUAL WATERLINE HOPSandMIN WATERLINE HOPS≤ ACTUAL WATERLINE HOPS.
In that case the procedure is very simple, because the concerning node only sets its state
to be part of the backbone, and broadcasts a notification to the immediate neighbors.
After that, the conventional periodical check for the number of eligible successors and
predecessors starts.
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Routing inside the Backbone

The routing process is a very dynamic and on-demand one. For this purpose a node
decides as recently as a message arrives, to which neighborsthe message should be
forwarded. Each forwarding takes the message closer to the sink by selecting an eli-
gible neighbor, and thus makes use of the direction awareness. The election process
is done repeatedly due to the kind of criterion, so that thereare dynamically different
nodes elected. A more detailed description follows below.

General Behavior As already mentioned above, the path of a message is built
completely dynamic and on-demand, respectively. Thus, each time a message must be
forwarded, a node takes into account a list of eligible neighbors, and elects a receiver
by a specified rule. The election process is given in detail later.

Furthermore, to enhance the reliability of the routing algorithm, messages can be
sent on multiple paths. Therefore the initial sender sends the message to a given num-
ber of neighbors, whereas each of these nodes act as a starting point of an individual
path. As a consequence of the multiple paths and the electionprocess, it is supposable
that the same message is sent to one node several times. In such a case the appropriate
node tries to forward the message to different receivers.

The Election Process The election process is responsible for the selection of a
receiver from the list of eligible neighbors given by the direction algorithm. As a result
of afore sent messages, each node is being aware of relevant information about its
neighbors, such as the energy level, the distance to the waterline, or whether a neighbor
belongs to the communication backbone or not. On the basis ofthis information it is
possible to develop different election rules, each with a special priority, depending
on the wanted kind of routing process. If, for example, sensor nodes malfunction on
water contact, each node could elect the nodes which have thesmallest distance to
the waterline, because these are the ones which will get lost. Otherwise, if the nodes
are water resistant, each node could elect the nodes with thehighest energy level to
enable a long-living and dense backbone, which should be still available after a falling
waterline. Table 4.3 presents some simple election rules.

As mentioned above, the NBW can be used, if the nodes are not water resistant
and the backbone should be as close to the waterline as possible to exhaust the nodes
with the highest probability of dying. To apply this rule, the waterline detection must
provide distance measurement.

Instead, the FFW routes messages to nodes that are as far awayfrom the waterline as
possible, but still part of the communication backbone. This can be used if the nodes
are water resistant and takes advantage of the circumstancethat the more soaked a
sandbag is the more unreliable the appropriate communication behavior is.

As a similar rule there is the LM which elects the nodes of the communication
backbone with the lowest measured moisture. Again, this is done to avoid wetness
based message loss.

Otherwise, if there is a certain amount of reliability in message transmission guar-
anteed, one can use the GH to elect the nodes with the greatestmeasured humidity.

To increase the average lifetime of all nodes belonging to the backbone, in case of
the possibility of detecting a falling waterline, one can use the HEL. For this purpose
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Election Rule Acronym Short Description
Near by the waterline NBW Select nodes as near by the waterline as pos-

sible
Far from the waterline FFW Select nodes as far from the waterline as pos-

sible
Lowest Moisture LM Select nodes which have measured the lowest

level of moisture
Greatest Moisture GM Select nodes which have measured the great-

est level of moisture
Highest Energy Level HEL Select nodes having the highest energy level
Lowest Energy Level LEL Select nodes having the lowest energy level
Longest Distance LD Select neighbors with longest distance
Most Neighbors MN Select nodes with the most neighbors
Random RND Select nodes randomly

Table 4.3: Possible Election Rules

the election process chooses the nodes with the highest energy level in each pass, so
that the nodes should keep a similar energy level.

The opposite rule of the HEL is the LEL, which chooses the nodes with the lowest
energy level. Applying only this rule at a pass takes no advantage to the mentioned
rules so far, but it is predestinated as a secondary one in case of applying multiple rules
per pass.

Another approach is to forward messages as fast as possible to the sink, and is
described due to the LD. By choosing the nodes, e.g. neighbors, with the longest
distance, messages arriving at the source should have takenthe smallest number of
hops.

To exhaust the most unimportant nodes, there is the chance toelect the nodes with
the most neighbors (MN), because in case of a loss of those nodes due to too much
energy consumption, there should be enough remaining alternatives.

At last, the random rule (RND) should be mentioned. If one do not want to use
a specific rule, or there is not enough information about the neighbors available, the
appropriate nodes are elected randomly.

As indicated in the description of the LEL, there is no necessity of applying only
one of these rules. On the one hand, multiple rules can be usedone after the other,
for example at first a fixed number of NBWs, and on a given part ofthese ones the
LEL. On the other hand there are weighted as well as random approaches. The latter
means, that a certain probability is assigned to each rule. So, for example, the NBW
is taken with a probability of 60% and the LD with a probability of 40%, whereas
the decision is repeated in every election process. Instead, the weighted approach
assigns a quantifier to each used rule. At first the eligible neighbors are passed through
simple ranking methods, followed by a multiplication of each resulting value with the
assigned weighting. At last, the best rated neighbor is elected.

Maintenance of Multiple Paths As already indicated in the description of the
General Behavior, it is supposable that multiple paths are built over one single node,
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4.4 Communication Backbone

which would lead to overlapping paths, and thus results in a bottleneck of the routing
process. An example for a supposable situation is shown in Figure 4.9.
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(a) Single Overlapping Path
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(b) Multiple Overlapping Path

Figure 4.9: Overlapping Paths in Routing Process.This figure shows the problems of
overlapping paths in the routing process. In both subfiguresthe nodesB1 andB2 send
the same message to nodeC which in turn tries to fork the multiple paths again. In
Subfigure (a) on the left this is done directly by forwarding the message to nodesD1

andD2, whereas Subfigure (b) shows the pass of responsibility to the next node, here
D.

To break up such bottlenecks, each node provides a message history that includes
the message ID, the node ID of the sender, and the timestamp ofthe reception. Fur-
thermore, the neighbor to that the message is routed is stored. Thus, on receiving a
message that must be forwarded, nodes are able search the history for an already sent
message, and exclude the appropriate node from the electionprocess. Only if there
are no eligible alternatives, the message is sent to this neighbor (as had been shown in
Figure 4.9 (b).

In the consequence of the establishment of a message history, it must be defined
how long those messages are stored. By taking into account that the paths are started
almost concurrently, and thus duplicated messages are received in an relatively short
time span, messages in the history can be cleaned quite shortly. Hence, the threshold
MAX HISTORY AGE is set to the time a message would take to cover 5 hops.

Dead End In the consequence of the way of closing holes in the backbonestructure
a node must not have immediate successors, but provides a path to an ongoing location
as described inGlobal Request.

In such a case the message is equipped with the received path,and is routed along
the containing nodes. In addition, if one of those nodes is nolonger available, a new
request can be started that works analogous to the above described one.

Characteristics

The building of a communication backbone as a stripe next to the waterline was de-
signed for providing a preferably simple coordination phase that needs as few as pos-
sible messages to be sent. Thus, the definition of a backbone affiliation depending on
the hop distance to the waterline has been set, by adding simple methods of mainte-
nance. In the consequence of the lack of coordination insidethe backbone, the routing
process has been set up for a load balance of the forwarded messages.
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4.4.2 Short Path Mix Up

The idea of theShort Path Mix Upis to build arbitrary short paths in the near of the
waterline. Each path is thereby connected to at least one other, and thus build the basis
for the routing process, because messages can be sent along the paths. Figure 4.10
indicates the idea of this approach.

Figure 4.10: Example of Short Path Mix Up.The figure shows a potential situation of
already built short paths in a part of the topology. Each end of a path is connected to
at least one other. Thus, the result is one single, continuous connected path.

At first, the basic structure of the paths must be built, followed by a refinement phase
to close potential holes, and the consideration of dynamicsby means of an alteration of
the waterline. At last, the routing process must be described. The details are presented
below.

Building the Backbone

In the beginning the paths must be built from scratch. That means, no node in the
network already belongs to a path in the initial phase. In addition, the coordination
between the nodes must be done strict locally. However, the idea is to build a rudi-
mentary infrastructure in the near of the waterline. Randomly selected nodes start to
build paths that are restricted by a maximal path lengthMAX PATH LENGTH. The re-
finement of the result as well as the closing of holes is described later in the according
subsection.

Election of Initiators At first, the initiators of the built paths must be elected by
appropriate rules. It must be assured that the resulting paths are located relatively
near to the waterline. Furthermore, only a small subset of nodes should initiate a path
building request to reduce the density of created paths, andthus avoid an unnecessary
message overhead in the consequence of the coordination between multiple initiations.

However, each node that is not already part of a path checks ingiven intervalsTIME

CHECK INITIATION , if it fulfills the conditions for the initiation of a new path. That is,
nodes must be located in a given hop distance to the waterline, which is bounded by the
thresholdsMIN WL HOPS andMAX WL HOPS. Furthermore, nodes are not allowed to
have a neighbor that is already part of a path. This is postulated to reduce the number
of initial path requests, and thus to provide only a rough structured backbone in the
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beginning. A refinement as well as the improvement to a continuous connected path is
done later on.

If the conditions are fulfilled, a node starts aPATH BUILD REQUEST with a given
probability that depends onMAX PATH LENGTH as well as the neighborhood density
of each node, and is given byp = 1

MAX PATH LENGTH ∗ density
. If so, the request is sent

to one specified neighbor that is elected by a simple process as follows. At first, all
neighbors that are located between the thresholdsMIN WL HOPS andMAX WL HOPS,
and for which a definitely direction decision can be made1, are taken. Then, one of
those neighbors is selected randomly.

The PATH BUILD REQUEST message contains the unique ID of the initiator, a list
of IDs to which each receiver of the message adds itself in case of joining the path,
the maximal length of the path, and the actual hop count the message has been taken.
The unique ID is used to identify the created path by setting the BB PATH ID to the
one of the initiator. In addition, aLOCATION INFORMATION is given. That can be,
for example, the reference points as described in Section 4.3.1, and the designated
direction the path should take. Table 4.4 illustrates the contents of such a message.

PATH BUILD REQUEST

Initiator Node ID
Location LOCATION INFORMATION

Path List<Node IDs>
Max Length Integer
Actual Hop Count Integer

Table 4.4: Contents of PATH BUILD REQUEST.

At last, after sending thePATH BUILD REQUEST to the appropriate neighbor, the
initiator sets its state toBB TMP PATH that describes a temporary, but not finally ac-
cepted path. The state is changed to the accepted oneBB ACC PATH, if the initiator
receives aPATH BUILD ACCEPTED. In addition, the node stores the timestamp of the
path request. Thus, to avoid that it stays in that temporary state in case of a malfunction
on another node, the initiator resets the state, if the giventime TIME WAIT REQ ACC

has passed without receiving an acceptance. The threshold is set proportional toMAX

PATH LENGTH, because the potential answer takes at most2 × MAX PATH LENGTH

hops. Finally, the initiator sets its role in the path toBB ROLE ENDPOINTwhich is set
in contrast toBB ROLE LINK on the nodes that connect two endpoints.

Processing the Initial Request If a node receives aPATH BUILD REQUESTthere
are several cases that must be considered. So, for example, depending on the actual
state such requests are either accepted or rejected. Furthermore, an acceptance must
be specified. The cases are described in detail below.

• A node that receives aPATH BUILD REQUEST is not already part of a path,
and consequently its state is neitherBB TMP PATH nor BB ACC PATH. In the
consequence of the fact that the node is not already bound to apath, it accepts

1In case of using theRelative Reference Pointsfrom Section 4.3.1, all neighbors with a different hop
count to one reference point than the own, are elected.
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the request and changes to the stateBB TMP PATH, and sets the path identifierBB

PATH ID to the ID of the initiator that is contained in thePATH BUILD REQUEST

message.

If the maximal path length has not yet been reached, and thereis no endpoint of
a path in the neighborhood, the actual path is extended. Therefore the node adds
its ID to the path in thePATH BUILD REQUEST, increments the actual hop count,
and forwards the message to an eligible neighbor. In addition, the state is set to
BB TMP PATH and the role toBB ROLE LINK, respectively.

Otherwise, if the maximal path length is reached, or the appropriate node has
a neighbor that is an endpoint of a path, the actual path request is finalized.
That means, the node sets its state toBB ACC PATH and the role toBB ROLE

ENDPOINT, respectively. Moreover, the node sends aPATH BUILD ACCEPTED

message back along the temporary path by using the appropriate information
that can be taken from the request message. In addition, the message also con-
tains the above described LOCATION INFORMATION. Each path member that
receives the acceptance changes the state toBB ACC PATH (the role has already
been set toBB ROLE LINK), and forwards the message. Finally, the acceptance
message arrives at the initiator which also changes the state and already has the
role of an endpoint. Hence, the path is created.

• A node that receives aPATH BUILD REQUESTis already part of a path, and con-
sequently its state is eitherBB TMP PATH or BB ACC PATH. Moreover, the role
of the receiver isBB ROLE LINK. Under these circumstances the path request
is rejected by sending aPATH BUILD REJECTEDback to the sender. Thus, the
node that receives the rejection is able to try to find anotherpath. Nevertheless,
the building of the path can be forced, but such a situation isdescribed later in
an extra subpoint.

• A node that receives aPATH BUILD REQUEST is already part of a path, and
consequently its state is eitherBB TMP PATH or BB ACC PATH. Moreover, the
role of the receiver isBB ROLE ENDPOINT. In this case, the behavior depends
on the length of both paths. If the actual path length plus thelength of the
requested path is greater thanMAX PATH LENGTH, and the request contains at
least two nodes, the requesting one is told to finalize its path by sending aPATH

FINALIZE message back. Thus, the result are two endpoints that are already in
communication range.

Otherwise, if the maximal path length is not exceeded, or therequest contains
only one node, both paths are joined. Of course, the latter condition could result
in a path length longer than allowed, but is accepted due to simplicity matters.
However, an endpoint that receives such a request sends aPATH JOINING mes-
sage back by adding the knowledge of the existing path. Furthermore, it sends
a PATH UPDATE along the path it already belongs to, and thus informs the other
endpoint about an update of the path.
Furthermore, the node is going to change its role from being an endpoint to a
link. If there is no other endpoint in the neighborhood, the change of role is
done without further circumstances. Otherwise, if there already is at least one
endpoint connected, the node is a link as well as an endpoint depending on the
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point of view, and fulfills the role of aBB ROLE HYBRID. This is an unfortu-
nately solution. Thus, a node that fulfills both roles, triesto cancel the existing
connections by sending aCANCEL CONNECTION REQUESTto the appropriate
endpoints. Those in turn try to fulfill the request by either simply cancelling the
connection (if permitted by the thresholdMIN CONNECTIONS that is described
later in the subsection aboutClosing Holes) or starting aNEW PATH REQUEST

(that is also described inClosing Holes). If successful, an endpoint answers a
CANCEL CONNECTION ACCEPTEDand cancels the connection. In case that the
initiating node has received the acceptance by all relevantendpoints, all connec-
tions are canceled, and the role is changed to be only a link.

• A node receivesPATH BUILD REJECTED. Here, a node has sent a path build
request to a neighbor that is already part of a path. At first, it marks the neighbor
as a path member. Next, it tries to select an alternative neighbor to send the
build request to. If the latter is not successful in the consequence of a lack
of alternatives, or all potential nodes are already path members, the request is
forced. Therefore the node elects one of the marked neighbors, and send aPATH

BUILD FORCE message. The node that receives such an enforcement, can react
in two different manners depending on the actual situation,as shown in Figure
4.11.
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Figure 4.11: Force a Path Building.The Figure shows the enforcement of a path build-
ing. In Subfigure (a), nodeA sends an enforcement to nodeB which is already part of
a path. On the one hand, if there is an eligible node inB’s neighborhood,B proceeds
the path building request. The result are two paths withB as an cross-over point as
shown in Subfigure (b). On the other hand there is the situation in Subfigure (c). Here,
nodeB joins the two paths, and acts as a branching or merging point depending on
the point view. Hence, all nodes fromB to the endpointE2 are part of two paths.

If the enforced node has at least one eligible neighbor for proceeding the path
building request, it forwards the request to the appropriate neighbor. This is
done by ignoring the maximal path length contained in the message, and thus
can result in a path that is at one greater than the limit. However, the node is part
of both paths and acts as a cross-over point. To distinguish one path from the
other, it stores the appropriate information such as the unique path ID, the role
it takes, and so on, separately.

Otherwise, if the request can not be forwarded in the consequence of a lack of
potential neighbors, the new path is joined to the existing one. Thus, the node
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acts as a branching point, or the other way around, as a merging point of the two
paths. Again, the information about both paths is stored separately. To finalize
the path request, aPATH BUILD ACCEPTED that contains the information about
the already existing path is sent back to the requester. In addition, the appropriate
part of the existing path is updated by sending aPATH NEW OVERLAP message
that contains the information of the requested path. The message is routed along
the path up to the endpoint, and each receiving member creates a separated path
information for the new one.

General Behavior of Forwarding Path Requests In general, there are prefer-
ably neighbors chosen that are located between the thresholdsMIN WL HOPS andMAX

WL HOPS with respect to the hop distance to the waterline. If such a election is not
possible, and there are alternatives with a hop distance greater thanMAX WL HOPS,
the nearest one (with respect to the waterline) is chosen. Otherwise, if the path request
occurs in the near of the waterline, and there are only alternatives with a hop distance
less thanMIN WL HOPS, none of them is chosen due to reliability matters.

Arranging the Endpoints In case that endpoints of different paths are in commu-
nication range, each endpoint must know the direction of theconnected paths. Figure
4.12 gives an overview of the situation.

A

B

C

D

Figure 4.12: Arrangement of Endpoints.The figure shows several paths that are con-
nected over their endpoints. Due to the fact that the other ends of the paths are located
in different directions, it must be decided which connectedpaths are going forwards,
and which ones are directed backwards. Thus, by exchanging the information about
the respective ends of the paths, nodeA is able to decide that nodesB and C are
endpoints of proceeding paths, whereas nodeD is a backward one.

As described in the section about the processing of the initial request, each endpoint
knows the respective location information of the other endpoint of the path. Thus,
if a new endpoint has been recognized, they exchange aPATH TARGET message that
contains the appropriate location information.

As-Is State after Initial Phase After the initial phase has been finished, there are
several paths available, and each node in the given hop distance to the waterline is in
range of at least one path. The paths in turn may not already been connected to each
other, so it is possible that there are endpoints which do notknow any succeeding paths.
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This happens, because the initial phase does not provide a continuous connection, and
thus is discussed in the section aboutClosing Holes.

Moreover, all paths can be identified by a unique path ID that is equal to the one
of the initiator. If the initiator gets lost, or the path is divided in the consequence of a
malfunction of a member, the path must be restructured. Amongst others, such cases
are discussed in the section aboutDynamics.

Closing Holes

As already mentioned above, the short paths may not be continuously connected. That
can be, for example, because the initial phase only providesa rough structuring to
reduce the number of needed paths. Moreover, the path building starts only in a given
hop distance to the waterline, and in the consequence of potentially missing parts in
the dike structure, there is an appropriate hole in the backbone.

General Process The basic idea is that each endpoint needs at least one other end-
point in its communication range to build an ongoing connection as already described
above and shown in Figure 4.12.

If the required number of connectionsMIN CONNECTIONS is only set to one, the
overall result could be a single path subdivided in short ones. On the other hand, if the
minimum is set to two or greater, there would result too much requested paths. Thus,
each endpoint selects the appropriate threshold randomly.To provide an adoptable
mixture the probability for one and two, respectively, required connections is set to
p = 1

2 each. More than two required connections are not used.
If an endpoint recognizes that the thresholdMIN CONNECTIONShas not been reached,

it elects one neighbor in the appropriate direction, and sends aNEW PATH REQUEST.
The neighbor in turn is a new initiator of a path, and thus the building works as already
described above. TheNEW PATH REQUESTforces a node to initiate a new path. Hence,
the restriction of the given distance to the waterline is notused, and it is possible to
create paths outside the defined area.

Special Case: Path Finding TheGeneral Processassumes that there are neigh-
bors in the direction of a path request. If not, an appropriate node can not extend
the backbone although there may be a possible path. Figure 4.13 shows a potential
situation.

BackboneBackbone

A
Unbounded Nodes

B

Figure 4.13: Dead End of Backbone.The figure shows a supposable situation for the
creation of a communication backbone. If the backbone is built strict locally, that
means it is extended one by one, the structure may be caught ina dead end, although
there would be an alternative path as illustrated by the points A andB.
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Such a situation occurred already in theStripe next to the Waterline, but is repeated
here by reason of completeness. Thus, such a case must be solved by allowing parts of
a path to run in the opposite than the wanted direction. The idea is that an appropriate
node without an eligible successor floods a request over the network. If there is any
node that receives the request and is located in the wanted direction, it answers an
acceptance. The initiator in turn can start a new path build request after receiving such
an acceptance. A more detailed description follows.

If an endpoint wants to extend the backbone due to a lack of connections, it starts a
PATH SEARCH REQUESTby adding its ID and the actualLOCATION INFORMATION.
Moreover, aTIME TO LIVE (TTL) is added as well as the capacity for storing the path
the message has taken. The structure of the message has already been shown in Table
4.2, but is repeated in Table 4.5.

PATH SEARCH REQUEST

Initiator Node ID
Location LOCATION INFORMATION

Path List<Node IDs>
TTL Integer

Table 4.5: Contents of PATH SEARCH REQUEST.

The PATH SEARCH REQUEST is flooded over the network, and each node that re-
ceives the message adds itself to the containing path, before forwarding it. In addition,
such a node stores the ID of the message, and discards every further receiving one. As-
suming that such messages are not sent very often, the TTL andthe timeTIME HOLD

SEARCH REQUESTSof storing the IDs can be chosen relatively high. Thus, the TTL is
set to 100 hops (but depending on the supposed size of the topology it can be chosen
greater, of course), andTIME HOLD SEARCH REQUESTSproportional to the TTL.

In the consequence of the added LOCATION INFORMATION a receiving node is
able to decide whether it is located in the wanted direction with respect to the given
location or not. If so, the backbone can be extended and the appropriate node sends a
PATH FOUND message back to the initiator by adding the so far covered path on which
the message is routed back, and the ownLOCATION INFORMATION. After sending the
PATH FOUND, the node discards all other messages with the same ID.

The first PATH FOUND message that is received by the initiator (there can be more
than one, of course) is used for building an appropriate path, whereas later received
ones are ignored. However, the initiator knows a potential path for extending the back-
bone, and thus sends aPREDEFINED PATH BUILDmessage that contains the received
path of the PATH FOUND message, and is routed over these nodes. Each node that
receives thePREDEFINED PATH BUILDadds itself to the path, and sets the state toBB

ACC PATH.

Dynamics

The case of dynamic behavior in the network can occur in several matters. At first, path
members may malfunction, and thus the broken path must be either fixed or splitted
in two new ones. Then, in the consequence of a variation in thebackbone structure,
endpoints of paths that are connected to each other should check if it is possible to
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join both paths. And lastly, the waterline may vary, and either new nodes must join the
backbone or existing nodes leave.

Malfunction of Path Members At first, the malfunction of path members is dis-
cussed. The basic idea is that a node which recognizes a lost neighbor in the path,
starts a newPATH BUILD REQUEST in the appropriate direction. Such a situation is
shown in Figure 4.14.

(a) Path that loses a member

Request

(b) New request due to a lost member

Figure 4.14: Malfunction of Path Members.If a path member gets lost as shown in
Subfigure (a), both nodes in the path which recognize the malfunction start a newPATH

BUILD REQUEST in the appropriate direction as illustrated in Subfigure (b).

In the consequence of the way creating the path as already described above in Sub-
sectionBuilding the Backbone, each path member knows the nodes as well as the order
of those, and thus send aPATH BUILD REQUESTby adding the nodes of the still exist-
ing path to satisfy theMAX PATH LENGTH. If the malfunction occurs to both sides of
a path member, thePATH BUILD REQUEST is sent in both directions.

In addition, if a endpoint gets lost, the connected ones recognize a missing path, and
thus start aNEW PATH REQUEST.

Path Joining It is not required that a path is composed of exactlyMAX PATH

LENGTH members. Hence, there may be several very short paths that should be joined
if possible.

Each endpoint knows the length of the connected paths. If theadded lengths are
not greater thanMAX PATH LENGTH, the one with the higher ID sends aPATH JOIN

REQUESTmessage to the connected endpoint. The condition of the ID ispostulated to
avoid a concurrent sending of join requests. The node that receives the message, sends
a PATH JOIN ACCEPTback, changes its role to be a link, and starts aPATH UPDATE on
the former existing path. On receiving the acceptance, the appropriate endpoint also
performs the change of role as well as thePATH UPDATE.

In case that a endpoint of the joining process was connected to at least one other
path, it fulfills both rolesBB ROLE ENDPOINT and BB ROLE LINK as already de-
scribed above with respect to the joining of paths after receiving a PATH BUILD RE-
QUEST. Again, aCANCEL CONNECTION REQUESTis sent, by waiting for aCANCEL

CONNECTION ACCEPTED. If the request succeeds, the role changes to be only a link.
Otherwise, the node still fulfills both roles and is called aBB ROLE HYBRID.

In addition, the initiation of a join request must consider two special cases. On the
one hand, an endpoint may have different alternatives of joining the paths. In such
a case, the prospective longer one is chosen, followed by thedecision for the higher
ID on equality. On the other hand, an endpoint may receive more than one request.
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Then, simply the first request is accepted, by rejecting the later ones with aCANCEL

CONNECTION REJECTEDmessage.

Variation of the Water Level The last discussed case of dynamics is the variation
of the water level. In such a case, the minimal hop distance tothe waterline may
change, and thus either existing paths must be canceled or new ones created.

If a node’s minimal hop distance to the waterline was greaterthanMAX WL HOPS,
but changes to be less or equal, it is a potential new path member for the rough back-
bone structure. Thus, if there is no path in the neighborhoodof such a node, it starts
the initial phase as already described above. Otherwise, ifthere is at least on member
in the neighborhood, the node waits for an incomingPATH BUILD REQUEST.

On the other hand, if the minimal hop distance of a path memberchanges to be
smaller thanMIN WL HOPS, it tries to leave the path and consequently the backbone
structure. In the consequence of the assumption that an increasing waterline is noticed
by many path members on the lower side of the backbone, it is omitted to let single
nodes leave a path. Instead, the whole path of such an occurrence is canceled.

However, if a node is below theMIN WL HOPS range, it sends aPATH CANCEL RE-
QUESTalong the path to both endpoints to inform them about the increasing waterline,
and thus the unreliability of the actual path. Of course, if an endpoint recognizes such
a variation, the message is sent to the other one. The endpoints in turn try to cancel
the whole path by sending aFORCE CANCEL CONNECTIONto the connected paths, so
that those ones are also informed about the potential unreliability. In case that there
is an alternative path, an endpoint of the designated canceled path receives aCANCEL

CONNECTION ACCEPTEDby the appropriate connection, and forwards aPATH CAN-
CELED message through the path. A member that has received such a message by both
endpoints, leaves the path.

Routing inside the Backbone

In the consequence of the structure of the backbone, the routing process can be simpli-
fied, because a continuous connection is provided by the short paths. Hence, routing
is done by forwarding a message to the next path member, and from an endpoint to the
appropriate connections.

Nevertheless, in consequence of the path building process there are some special
cases that must be considered. An endpoint is generally supposed to be connected to
multiple paths, and thus messages are branched and merged onthose points. Moreover,
each path member has specified successors and predecessors,so that the reliability of
delivery of messages can be improved. Both cases are described in detail below.

Branching and Merging There are several cases in which a path member is con-
nected to multiple nodes, and thus a node can either receive more than one of the same
message, or must send a message to more than one neighbor. Figure 4.15 illustrates
different examples.

The branching of messages is obvious, because an incoming message is sent to all
connected nodes that are directed in the appropriate direction.

On the other hand, the merging of messages is also a simple andobvious method,
but requires additional resources. Hence, a routing cache is used that stores the ID of

32



4.4 Communication Backbone

E11

E12

E22E21

E31

E32

Branch

Merge

(a) Multiple Connections

E12

E11

E22E21

H

Branch

Merge

(b) Hybrid Path Member

E11

E12

E2

Branch

Merge

L

(c) Overlapping Paths

Figure 4.15: Branching and Merging in Routing Process.Subfigure (a) shows a stan-
dard case of an endpointE12 connected to two paths over the nodesE21 and E31.
Thus, if a message is sent from the left to right,E12 sends the message to both nodes
E21 andE31. The other way around, by sending a message from the right to the left,
the same one is received two times on nodeE12. Hence, by enabling a routing cache of
message IDs, the second one can be discarded. In Subfigure (b)there is an analogous
case, but in contrast to the former mentioned, the appropriate nodeH is a link as well
as an endpoint. At last, in Subfigure (c) the focused nodeL is only a link, but also
connects two paths.

a forwarded message as well as the timestamp of the event. If the ID of a received
message is found in the cache, the message is discarded.

Although the contents of the routing cache are very small, because it contains only
the ID and a timestamp, old ones must be cleared after a given time. By taking into
account the maximal path lengthMAX PATH LENGTH, each content with a timestamp
older than the average time a message is transmitted over2×MAX PATH LENGTH hops
is deleted.

Improving Reliability of Message Delivery For improving the reliability of
message delivery, it is postulated that there are periodic neighbor detection messages
sent. If such a message is no longer received by a neighbor, the appropriate node is
assumed to be dead. Furthermore, the interval is given byNEIGHBOR DETECTION

INTERVAL .
To enable a message cache that contains the forwarded message and the neighbor

to which it has been sent to. If there is another message received by that neighbor,
it is supposed to be still alive, and thus the messages which are associated with the
neighbor are deleted from the cache. Otherwise, if the neighbor is supposed to be dead
after theNEIGHBOR DETECTION INTERVAL, there is a new path built as described
above in the section aboutDynamicsandMalfunction of Path Members. After that has
been done, the cache is cleared and the appropriate messagesare sent along the new
path.

Characteristics

TheShort Path Mix Uphas been designed for reliability reasons on the one hand, and
dynamics on the other. The latter is provided by the shortness of the paths, so that the
maintenance of each path is hold tolerably local to only a fewnodes. The reliability
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on the other hand is assured due to the general path structure. That means, each node
that belongs to the backbone has got at least one successor and one predecessor which
allows for an improvement of the reliability of message delivery. Moreover, messages
are sent over multiple paths to provide additional robustness.
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5 Implementation Details

This chapter presents the used simulation environment as well as implementation
details. At first, the used discrete event simulatorShawn is presented by a short
overview. Then, the additionally implemented visualization framework is introduced,
followed by details about the implementation and environment of the designed algo-
rithms.

5.1 Simulation Environment

The algorithms were implemented and simulated using the discrete event simulator
Shawn, which has been designed for simulating large wireless sensor networks on an
algorithmic point of view. For portability reasons it is written in Standard C++, which
in turn allows the usage on different platforms, but at leastUN*X and Windows sys-
tems providing a recent compiler version. Moreover, the object-oriented design struc-
ture leads to an easy extensibility, and thus a comfortable possibility of implementing
the designed algorithms.

However, as already mentioned above, the central point ofShawn is the simulation
of very large sensor networks containing up to hundreds of thousands of nodes, as well
as the principal functionality of conceptualized algorithms. This means that there is
less focus on representing the physical layers of sensor nodes, or the support of real
time applications. Instead, an abstraction of the design and functionality of algorithms
comes to the front. The simulation process is divided into multiple iteration steps, each
allowing a sensor node to do its work, send messages, and receiving messages which
have been sent in previous iterations.

As a rough description of the representation of the simulated world inShawn, the
topology consist of a given number of nodes. Each node in turnis able to contain
multiple processors, which are able to execute distributedalgorithms on the network.
In addition, it is possible to implement so calledsimulation tasksthat allow a central
point of view onto the network, and can be executed either once or repeatedly on given
points in time.

When the simulation is started, the boot method of each node is called, which in
turn let the associated processors start their initialization phase. The same process is
done in each iteration step by executing the working phase ofthe nodes, and thus the
appropriate procedure of the processors. In addition, it ispossible to send messages
that are broadcasted, and received by each neighbor which islocated in the given com-
munication range. The decision whether a neighbor is in range can be done by several
communication models which are available in the core library. Message delivery in
turn is simulated by different transmission models. The available models vary from a
reliable one that delivers each sent message, over a random drop model that simulates
a random packet loss, up to several MAC layer models.
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In contrast to the simulation of the nodes in each iteration,it is also possible to
execute simulation tasks. They are started either before orafter one step, and can
additionally be added to the repeatedly executedpre-or poststep-tasks. Such a task has
access to the whole simulation environment, and can be used,for example, to iterate
through all nodes and collect wanted information or elect ones for special purposes.

The simulation environment provides additional features that can be used for the
assistance of added extensions. With respect to the implementation that has been done
for this thesis, a short description of the most important ones follows.

In the consequence of the general and basic interface that isprovided by the classes
of the core library, ataggingconcept has been realized. This concept allows each class
derived from theshawn::TagContainer to store additional arbitrary data. One
can therefore add aTagto such a class. TheTag is identified by its name, and contains
an integer, a string, a reference to ashawn::Node, and further information. Each
other class is now able to read the stored data, without knowing who has written the
content.

Next, there are theReadings. A reading returns a defined value such as an integer or
a double value for a given position in the simulated world. That can be, for example,
the current temperature at the appropriate position, or with respect to this thesis the
moisture penetration in a dike. In addition, a reading can also be used for computing
the height at a given 2D-coordinate.

The logging ability is the feature presented at last. Selected classes such as a
shawn::SimulationTask, shawn::Processor, and so on, are able to use
additional logging libraries, and are associated with an own logger object. This leads
to the possibility of customizing each logger separately. For example, a logger of an
implemented processor can be completely disabled, or set toa wanted logging level.

The structure of the source code can be divided into two different parts. On the one
hand, there is the core library which provides access to the whole simulation and is
responsible for the fundamental functionality such as message transfer, execution of
the iteration steps, and so on. On the other hand, there are different applications, or,
as better said, modules, which can contain implementationsof algorithms, separate
extensions of the core library, or the like. By building the binary, each module must
be enabled on purpose to be compiled. Hence, especially extensions that use external
libraries should be implemented as modules.
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5.2 Visualization Framework

For debugging purposes on the one hand, and the possibility of an appealing demon-
stration of the used algorithms on the other, the discrete event simulatorShawn needed
to be extended by an visualization framework that allows a three-dimensional view on
the simulations as well as running in real-time with respectto the current simulation
instance. Thus, the issue was divided into three different tasks. At first, an adequate
library for the visualization itself had to be selected and integrated into the simulator.
Second,Shawn had to be extended to be able to allow multi-threaded applications.
At last, a general and mostly simulation independent possibility of displaying different
scenarios inShawn had to be realized. A rough design overview is given in Figure
5.1.

Concurrent Adapter

<<interface>>

ConcurrentAdapter

ConcurrentAdapterProvider

TaskSupplyConcurrentAdapter

TaskAddConcurrentAdapter

OpenSG Adapter

OpenSGAdapter OpenSGRuleset

TaskAlterOpenSGRuleSet

OpenSG Visualization

OpenSGScenegraph

OpenSGSceneManager

GlutOpenSGWindowGlutOpenSGMaster

<<interface>>

OpenSGBasicMaster
<<interface>>

OpenSGBasicWindow

<<supplies>>

<<uses for visualization>>

Figure 5.1: Visualization Overview.The visualization framework consists of three
different parts, each performing a separate function. TheConcurrent Adapter,
which is responsible for a multi-threaded, parallel execution of applications, is shown
on the top left. TheOpenSG Visualization at the bottom acts as an interface to
OpenSG by implementing an own scene manager. TheOpenSG Adapter enables
the network topology ofShawn to be visualized by OpenSG, and is shown on the top
right.

The design goal of this solution was an almost independent realization of the sev-
eral parts. Hence, the only purpose of theConcurrent Adapter is to provide an
easy to use interface for enabling an arbitrary applicationto be executed in parallel
to the simulation. Furthermore, theOpenSG Adapter connected with theOpenSG
Visualization has been designed to allow to be easily replaced or appended by
other graphic libraries.

A more detailed description of the different parts follows below.

37



5 Implementation Details

5.2.1 Concurrent Adapter

As already mentioned above, the responsibility of theConcurrent Adapter is a
multi-threaded execution of tasks. For a realization of this objective, there are gen-
erally two different basic concepts which have both its advantages and disadvantages.
On the one hand, the core library ofShawn can be extended to handle multiple threads,
that have all access to all the available data in every point in time. Such an approach
would result in a very powerful, flexible, and almost unrestricted solution, but would
also require a deep intrusion intoShawn’s system libraries. On the other hand, the
multi-threading ability can be implemented as an additional module, which would be
the more restrictive solution, but would also not need any change in the core library.

The decision has been made for the latter concept of implementing concurrency as
a module, and is based on the following reasons. The most important argument is the
requirement of an optionally use of the multi-threading functionality due to the need of
an inclusion of an additionally external library for multi-threading support in C++ that
also provides portability, by a coexistent lack of importance of concurrency in most
simulations. Furthermore, as already mentioned in Section5.1, the simulations run in
multiple steps, which would require a synchronization of all threads at the end of each
iteration by use of the concept of an integration in the core library. Additionally, it
should be defined what happens on an alteration of the same data of multiple threads
during one iteration. However, the module concept is the better one for this purpose,
and is designed as follows.

At first, the multi-threading ability itself must be provided by a portable solution.
For this purpose, there is the chance to implement this functionality either from scratch
or to use an external library. Due to stability reasons, as well as not to reinvent the
wheel, the latter has been done. Hence, by selecting a portable library for C++ that also
provides object-oriented support, the decision has been made for ZThread1,that is, for
example, well documented in [EA03]. The most important class isRunnablewhich
provides an interface to enable inherited classes to be executed as a thread. Those
classes can be either run separately by creating a newThread object, or handled by
so called executors. Executors are responsible for the management of created threads,
and thus reduce the coding overhead as well as acting as a supervisor. Furthermore,
the ZThread library offers different types of mutexes and conditions for controlling
the access of multiple threads on the same resource. Especially the usage of mutual
exclusions is provided by an additional feature calledGuard, which allows a safer
as well as simpler handling of mutexes. The library offers much more possibilities of
implementing multi-threaded applications such asThread Local Storage, several types
of executors, and so on, but the most important features are indicated above.

However, using the ZThread library, a multi-threaded extension forShawn had to
be written, and designed to be an optional module. As mentioned above, a simulation
in Shawn is composed of multiple iteration steps, each allowing the nodes in the
network to work, as well as sending and receiving messages. Hence, the idea is to
create ashawn::SimulationTask that can be added to the simulation as a so
calledpre- andpoststep-task, respectively, which is run before, or after, each iteration.
This task in turn contains a provider that is maintaining theseveral applications. Figure
5.2 shows a class diagram of the implementation.

1http://zthread.sourceforge.net/
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Concurrent Adapter

<<interface>>

ConcurrentAdapter

+boot(shawn::SimulationController&)

+notify(shawn::SimulationController&)

ConcurrentAdapterProvider

-adapter_: std::map<std::string, ConcurrentAdapterHandle>

-wakeup_condition_, fin_condition_: ZThread::Condition

-wakeup_cond_mutex_, fin_cond_mutex_: ZThread::FastMutex

-fin_mutex, adapter_mutex_: ZThread::FastMutex

+run(): void

+wakeup(): void

+wait_for_finish(): void

+add_concurrent_adapter(const std::string&,
                        add_concurrent_adapter): void

TaskSupplyConcurrentAdapter

-concurrent_adapter_provider_: ConcurrentAdapterProvider

-executor_: ZThread::ConcurrentExecutor

+run(shawn::SimulationController&): void

+concurrent_adapter_provider_w(): ConcurrentAdapterProvider&

+concurrent_adapter_provider(): const ConcurrentAdapterProvider&

TaskAddConcurrentAdapter

+run(shawn::SimulationController&): void

ZThread

<<interface>>

Runnable

+run(): void

+~Runnable()

ConcurrentExecutor FastMutex Condition

0..*

<<add implementations of ConcurrentAdapter>>

<<wake up and let sleep>>

Shawn

SimulationTask

Figure 5.2: Class diagram of the Concurrent Adapter.This class diagram demonstrates
the functionality of the Concurrent Adapter. TheConcurrentAdapterProvider
maintains implementations of theConcurrentAdapter, which acts as an in-
terface for potential applications. Furthermore, it is supplied by the simula-
tion task TaskSupplyConcurrentAdapter. That means, each time this
task is started, it calls theConcurrentAdapterProvider to wake up,
which in turn notifies the appropriate applications. At last, the simulation task
TaskAddConcurrentAdapter is supposed to add those applications to the
provider.

Considering the above description, a potential application must implement theCon-
currentAdapter, and add the result to the provider with the aid of theTaskAdd-
ConcurrentAdapter. Moreover, theTaskSupplyConcurrentAdapter
should be added as a pre- or poststep-task.

5.2.2 Visualization Library

By selecting a capable library for the visualization process, the decision had to be made
out of several libraries. One of the most significant rating values was the demand
on portability, so that the library can be used at least on Windows as well as Linux
systems. Further important requirements were an Open Source license like the GPL,
a relatively easy to use but potent interface, preferably a stable release, and a well
documentation.
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OpenSG

The choice had been made for OpenSG2, a portable and Open Source scenegraph
system using OpenGL, that provides a fully object-orientedC++ interface, and was
designed, in contrast to other scenegraph systems, for multi-threading support. The
advantage of scenegraph systems compared to other graphic libraries is the internal
organization of the drawable components in a graph of connected nodes building a
tree structure, which in turn allows a rise of performance indisplaying scenes due to
the efficient possibility in optimizing the data passed to the underlying OpenGL layer,
as well as an easy handling of the data that should be shown by adding, removing,
or modifying appropriate nodes in the graph. Especially thelatter characteristic can
be directly used for visualizing a simulation inShawn, and is described in detail in
Section 5.2.3.

However, OpenSG, in always the same manner like other scenegraph systems, hold
the whole scene in a graph structure that allows multiple parents for nodes. An example
is shown in Figure 5.3.
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(b) Graph Structure of OpenSG

Figure 5.3: Graph Structures of Scenegraphs.Subfigure (a) shows a typical graph
structure of scenegraphs with multiple parents per node. For example, by representing
a car that is built of a body and four wheels, the geometry of the wheels can be stored
only once. By keeping the multiple graph structure in mind, OpenSG uses a more
complex structure that is shown in Subfigure (b) on the right.Nodes are used only for
a representation of the hierarchy of the graph, and contain potential children as well
as a core in any case. The core in turn is the most important structure, and can contain
the geometry, transformations, and so on.

The scene in turn is maintained by a scene manager that holds the root node of
the graph structure, and thus all geometries, transformations, and so on. Furthermore,
lights and cameras, a navigation for an interaction with theuser, and a window with
an assigned viewport should be provided. In OpenSG there is theSimple Scene
Manager that is designed for a simple beginning, and manages all the above men-

2http://www.opensg.org
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tioned things. Nevertheless, in the consequence of the simplified design there are only
the basic features provided, e.g. one single viewport per window.

For a more flexible usage of the available features, it is of course also possible to
implement an own scene manager to avoid the above mentioned restrictions. For this
purpose, one must create an own window and add one or more viewports, create lights
and a camera, integrate a navigator, and enable the interaction between those.

However, the used window, either in theSimple Scene Manager or a self
created scene manager, is generally based on an external library such as GLUT3 or
QT4. The former one is the simple alternative, but widely available and portable. It
only manages a window in which the scene is drawn, and can handle user input via
mouse or keyboard. The latter, QT, is a common and platform independent GUI toolkit
that can be used for developing an interactive user interface.

Integration in Shawn

The integration of OpenSG in the discrete event simulatorShawn has been done by
implementing an own scene manager, and additional classes for representing the scene
itself as well as different windows that can be used for the visualization process. A
class diagram of the implementation is shown in Figure 5.4.

The center of the integration process is theOpenSGSceneManager that holds all
the important information for displaying a scene. Thus, it creates aosg::WindowPtr
and connects a viewport to it, provides a camera and lights, and has access to the graph
of the scene that contains the drawable objects like geometries, lines, and so on.

TheOpenSGScenegraph in turn provides access to the scene, and thus can be
used for adding objects that are supposed to be shown in the visualization. The ap-
propriate methods use the structure of the underlying scenegraph, and hold references
to the important nodes in the graph. For example, if one want to add a node to the
scene, there is a group as well as a geometry needed. The grouprepresents the parent
in the scene graph, and the geometry is the object that is drawn. Both are identified by
their name and are looked up in the appropriate data structures. Hence, before adding
a node, the required information must be added. In general, the whole access to the
important information is done by the identification by names, and thus can be easy
handled.

Moreover, theosg::WindowPtr that is provided by theOpenSGSceneManager
must be shown on the screen. This is done, as already above mentioned, by an addi-
tional library. For this purpose, GLUT and QT are supported.The basic classes are
OpenSGBasicWindowandOpenSGBasicMaster, and both are implemented for
one of those libraries separately.

The window acts as an interface between the scene manager andthe used library.
The main purpose, beside the display on the screen, is the handling of user input. On
the one hand, the scene manager must be notified if the user is moving the mouse,
and thus changes the view of the scene. On the other hand, keyboard input can be
forwarded and processed somewhere else. In this case, inputis transformed in a
TransferMessage, and added to the message queue of the connected master which
in turn processes the messages in given points in time.

3http://freeglut.sourceforge.net
4www.trolltech.com
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OpenSGScenegraph

-groups_: std::map<std::string, osg::NodePtr>

-geo_cores_: std::map<std::string, osg::GeometryPtr>

-geometries_: std::map<std::string, struct Geometry>

+root_w(): osg::NodePtr

+init()

+add_node(const std::string&,const std::string&,
          double,double,double,const std::string&): void

+add_group(const std::string&,const std::string&): void

+add_material_group(const std::string&,const std::string&,
                    const osg::Color3f&,osg::Real32): void

+add_sphere_geo(const std::string&,osg::UInt16,
                osg::Real32): void

+add_line(const std::string&,const shawn::Vec&,
          const shawn::Vec&): void

+contains_drawable(osg::NodePtr): bool

+clear_graph(): void

#clear_nodes(osg::NodePtr ): void

#clear_geometries(): void

#create_node(const std::string&,double,double,
             double,const std::string&): osg::NodePtr

OpenSGSceneManager

-root_, scene_: osg::NodePtr

-camera_: osg::PerspectiveCameraPtr

-viewport_: osg::ViewportPtr

-window_: osg::WindowPtr

+set_window(osg::WindowPtr): void

+window_w(): osg::WindowPtr

+set_scene(osg::NodePtr): void

+scene_w(): osg::NodePtr

+show_all()

+redraw()

+idle()

GlutOpenSGWindow

-mgr_: OpenSGScenemanager*

GlutOpenSGMaster

<<interface>>

OpenSGBasicMaster

-cond_: ZThread::Condition

-init_mutex_, cond_mutex_, message_mutex_: ZThread::FastMutex

-message_queue_: std::queue<const TransferMessage*>

+run(): void

+aspect(): osg::UInt32 

+begin_update(): void

+end_update(): void

+process_messages(shawn::SimulationController&): void

+add_message(const TransferMessage*): void

+has_message(): bool

+next_message(): const TransferMessage*

<<interface>>

OpenSGBasicWindow

-master_: OpenSGBasicMaster*

+manager(): OpenSGScenemanager*

+aspect(): osg::UInt32

+begin_update(): void

+end_update(): void

+add_message(const TransferMessage*): void

+set_master(OpenSGBasicMaster*): void

+master_w(): OpenSGBasicMaster&

+master_w(): const OpenSGBasicMaster&

QtOpenSGMaster

QtOpenSGWidget

-mgr_: OpenSGScenemanager*

TransferMessage

-type_: TransferMessageType

-content_: std::string

+TransferMessage(TransferMessageType)

+~TransferMessage()

+type(): TransferMessageType

+set_content(std::string): void

+content(): const std::string&
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0..*

0..*
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+TMUnlock

+TMShowTagInfo
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Figure 5.4: Classes of OpenSG Visualization.The main classes of the in-
tegration of OpenSG inShawn are the OpenSGSceneManager and the
OpenSGScenegraph. The former one manages the whole visualization process by
proving a window that displays the scene, creating a camera and lights, connecting the
window to a viewport, and holding the scene that represents the simulated data. The
scene in turn can be handled by the already above mentionedOpenSGScenegraph
that provides methods to add nodes, geometries, lines, and so on. Moreover, different
windows that are associated with an appropriate master can be created, either using
GLUT or QT. In the consequence of the functionality of GLUT and QT, the master runs
in an own thread, and provides access for a message queue thatis responsible for the
handling of user input.

The master is responsible for mainly two kinds of functionality. At first, it is able
to process the current message queue and the correspondingTransferMessages.
This is done on calling the method

process_messages(shawn::SimulationController&)

which provides access to the actual running simulation inShawn. Consequently, it has
been realized that moving the mouse pointer on a node in the visualization associated
with an appropriate keyboard input, shows either the actualstate, or the received and
sent messages of the node. Moreover, the current simulationcan be paused for taking
screenshots of the shown scene.

The second responsibility of the master is the management ofthe associated win-
dows as well as initializing and running the main application of the used library. Both
alternatives, either theglutMainLoop() in GLUT orQApplication->exec()
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in QT do not return after calling. Consequently, the master is also a thread by deriving
it from ZThread::Runnable.

5.2.3 Visualization of Simulations

The visualization of simulations uses both above describedapproaches, and provides a
customizable control for the user. An overview of the classes and associations is given
in Figure 5.5

OpenSG Adapter

OpenSGAdapter

-executor_: ZThread::ConcurrentExecutor

-master_: OpenSGBasicMaster*

-scenegraph_: OpenSGScenegraph

-ruleset_: OpenSGRuleset

+boot(shawn::SimulationController&): void

+notify(shawn::SimulationController&): void

OpenSGRuleset

-node_rules_: std::list<NodeRule>

-conn_rules_: std::list<ConnRule>

-topo_rules_: std::map<std::string, TopoRule>

-scenegraph_: OpenSGScenegraph*

+apply_rules(const shawn::Node&): void

+apply_topo_rules(const shawn::SimulationController&): void

+add_node_rule(*): void

+add_conn_rule(*): void

+add_topo_rule(*): void

+set_scenegraph(OpenSGScenegraph&): void

TaskAlterOpenSGRuleSet

+run(shawn::SimulationController&): void

+name(): std::string

+description(): std::string

OpenSG Visualization

OpenSGSceneGraph

<<uses for visualization>>

<<applying rules>>

<<adding and modifying rules>>

OpenSGBasicMaster

ZThread Shawn

Runnable SimulationTask

Concurrent Adapter

ConcurrentAdapter

+boot(shawn::SimulationController&): void

+notify(shawn::SimulationController&): void

Figure 5.5: Classes of OpenSG Adaption.The class diagram shows the idea of a
customizable control of the integrated OpenSG. TheOpenSGAdapter implements
theConcurrentAdapter, and thus is notified in each iteration step as already de-
scribed above. In addition, it is connected to the implementedOpenSGScenegraph,
and is able to add drawable objects to the displayed scene. The configuration of the
visualization is done by rules which are provided by theOpenSGRuleset. A rule in
turn defines, if and how parts of the simulation are drawn.

At first, the OpenSGAdapter implements theConcurrentAdapter for en-
abling the multi-threading support, and is added to the provider that in turn is supplied
by the appropriate task as already described above in Section 5.2.1.

In addition, the adapter uses the integration of OpenSG as illustrated in Section
5.2.2. The important associations are theOpenSGScenegraph and the appropriate
implementation of theOpenSGBasicMaster. The latter manages the display on the
screen, and is told on each iteration to process its message queue. The scene graph in
turn holds the data that is supposed to be shown, and providesmethods to add objects
to the graph.
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Basic Concept

The objective is to display a running simulation inShawn with the aid of the inte-
grated OpenSG library, and hence enable a three-dimensional view on the simulated
network. The main design goal was the realization of a solution that is completely
independent of the used simulation scenario, and can be usedby each implementation
without modifying the source code for the visualization process. For this purpose, two
conditions must be fulfilled. At first, the visualization of special properties of nodes is
only allowed to use information that is provided by the core library ofShawn. Second,
the customization must be done by a configuration file that is loaded when a simulation
is started.

The idea is to manage the visualization by so calledRuleswhich are used to de-
cide whether an object is drawn or not. Furthermore, there are three different kinds
of Rules: First, there areNode Rulesthat are applied on eachshawn::Node which
in turn represents a sensor node in the simulator. The secondone,Connection Rules,
are used to describe relationships between two nodes, or a node and its neighbor-
hood. At last,Topology Rulesrepresent structures in the network, and work with a
shawn::Reading. Each type ofRuleis described in detail later in this section.

The basic container is theOpenSGRuleset in which all used rules are stored.
Moreover, the class got a reference to theOpenSGScenegraph for adding appro-
priate objects to the displayed scene, which in turn is done if one of theRulescan be
applied.

For enabling the possibility of a flexible configuration, thecontents of theOpenSG
Ruleset are controlled by the simulation taskTaskAlterOpenSGRuleset that
allows the conception and modification ofRules. Thus, a customized visualization can
be completely controlled by an appropriate configuration file.

However, to provide an insight into the functionality of therule concept, and a rough
overview of how they are used, a more detailed description ofeach kind of rule as well
as the idea of integration follows.

Building a Graph

As already indicated above, theRulesare used to decide, whether an object is drawn on
the screen or not. But before thoseRulescan be applied, it must be defined what kind
of object is supposed to be drawn on success. Again, the idea is to allow a maximal
amount of flexibility to the user by a concurrently increasing complexity.

All available data is hold in a graph structure that corresponds to the one that is
used by OpenSG. Hence, the user is able to create different types of nodes that are
identified by their name, and are supposed to have an existingparent in the graph. A
typical node can be, for example, a group node or a material. Group nodes are only
used to enable the possibility of creating a hierarchy in thegraph, but are not needed
in the visualization process. In addition, the user can alsocreate material nodes. These
ones define the used material of a drawable object, for example the color and level of
transparency. At last, there is also an existing root node that must be used for creating
the whole graph structure.

In addition, it must also be possible to draw different kindsof objects. Remember,
OpenSG distinguishes betweennodesandcoresin its internal structure. Acore can
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be added to anode, and may contain the geometry of the drawn object. Again, this
structure is adopted to the customizable visualization framework inShawnṪhe user is
able to create several kinds of geometries, e.g. a sphere or box, that are again identified
by their name.

At last, after creating the graph structure and different geometries, the rule concept
is used for displaying objects on the screen. If a rule can be applied, the associated
object is drawn by using the associated material. The whole idea is indicated in Figure
5.6.

Neighbor
Connections

Root

ConnectionsNodes

Material 01 Material 02 Material n...

Geometry m

Geometry 01

Geometry 02

...

A Rule

Figure 5.6: Graph Structure and Rule Concept.The figure shows an overview of using
the visualization framework inShawn. At first, a graph structure must be created, and
added to the already existing root node. For example, such a node may be a Material
that describes the color and kind of drawing of a potential object. In addition, there
can be so called Geometries created that define the structureof an object, e.g. a sphere
or a box. At last, the Rules are used to combine this approach to the visualization
process. If a Rule can be applied, the connected Geometry is drawn by using the
appropriate Material.

However, the main design goal was a maximal amount of flexibility. Thus, all
of the mentioned tasks are done by the user. For this purpose,the simulation task
TaskAlterOpenSGRuleset has been implemented that allows the creation of a
graph, defining geometries, and the set up of different rules. The latter is described in
detail below.

Rule Description

The general concept has already been indicated above. In general, aRule defines
whether an object is drawn or not. An object is thereby an abstract description and can
be, for example, a geometrical figure like a sphere or a box, a simple line, or, in later
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implementations, even a complete model. There are three different kinds of rules that
can be used:Node Rules, Connection Rules, andTopology Rules.

Node Rules TheseRulesare applied on eachshawn::Node in the network, and
allow the display of a geometrical figure at the appropriate position. The available
conditions of theRuleare shown in Table 5.1.

NODE RULE

Rule Name Unique name of a Node Rule
Parent Name Name of the parent in the graph
Geometry Name Name of the used geometry
Tag Comparison Provide the use of tags to decide whether an object is drawn or not
State Access to the internal state of ashawn::Node, e.g. the active ones
Position Either the real position or the estimated one
Offset Allows the movement of objects by the given offset
Priority The Rules are ordered due to their priority
Close Iftrue, no further Rules are applied on success

Table 5.1: Basic Contents of a NODE RULE.

At first, the unique name of theRulemust be set, and can also be seen as an identifier.
Then, a parent in the graph structure is needed. Mostly this should be the potential
material of the drawn object that in turn is given by the name of the geometry.

In addition, it is possible to define conditions that specifywhether aRuleis applied
successful or not. On the one hand, there is theTag Comparisonprovided. As al-
ready described in the introduction ofShawn, the so calledtagscan be added to a
shawn::Node and may contain a string, a bool value, an integer, or a doublevalue,
and can be read by each other class that has access to the appropriate node. The imple-
mentation of theNode Ruleallows the comparison of a tag with a given value, e.g. if a
bool content is true, or an integer one is greater than the given one. On the other hand,
the state of the node can be checked. That is, provided by the simulator, an active state,
an inactive one, or sleeping.

Moreover, also the position of the drawn object is customizable. As the variable
one, the position is either the real or the estimated one of each node. Furthermore, it is
possible to define a fixed offset by that each object is moved iftheRuleis applied.

At last, there is the chance to assign priorities to theRulesto define the order they
are applied. The standard value is0, and a smaller one represents a higher priority,
whereas a greater one let theRulebe applied later. In addition, on processing multiple
Rulesin the given order, a successfully applied one is checked forbeing a final one.
That means, no furtherRulesare applied on the appropriate node.

Connection Rules Again, theseRulesare applied on eachshawn::Node in the
network, but in contrast to the former introducedNode Rulesthere are only relation-
ships shown. That means, a successfully appliedRuledraws a line between two nodes.
Table 5.2 shows the customizable data.

At first, a unique name by that theRulecan be identified, and the name of a geometry
object to that the drawn lines are added must be given.
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CONNECTION RULE

Rule Name Unique name of a Connection Rule
Line Name Name of the used geometry object where the line is added
To Eithersrc or neighbors
Tag Comparison Allow the comparison of tags
Source Position Either the real position or the estimated one of the source
Source Offset Allows the movement of the source by the given offset
Source Rule Node Rule that is applied on the source
Destination Position Either the real position or the estimated one of the destination
Destination Offset Allows the movement of the destination by the given offset
Destination Rule Node Rule that is applied on the destination
Priority The Rules are ordered due to their priority
Close Iftrue, no further Rules are applied on success

Table 5.2: Basic Contents of a CONNECTION RULE.

Next, the kind of destination is chosen. The standard case isthe neighborhood in
which potential connections are drawn between a node and itsneighbors, but it is
also possible select a destination relative to the handled node. The latter can be, for
example, drawing a line from the real source position to the estimated one, or otherwise
to a given offset.

By using the relationships to the neighborhood, the tags of the nodes can again be
compared. In this case, the only implemented possibility isthe comparison of integer
lists. A node must therefore write an appropriate value, or several ones separated by
commas, in a tag. If one value is part of both lists of the compared nodes, the line is
drawn.

In addition, the source and the destination can be specified.On the one hand, both
can be drawn on the real or estimated position, moved by a optional offset. Moreover,
both ones need an assignedNode Rulethat is applied on the appropriate node.

At last, the possibility of assigning priorities to theRulesas well as the check for
being a final one are provided again, as already described above.

Topology Rules The third kind ofRulesare theTopology Rulesthat are used to
display structures, terrains, and so on. In contrast to the former presented ones, they are
not applied on nodes. Instead, theshawn::Reading concept is used. The contents
are shown in Table 5.3

TOPOLOGY RULE

Rule Name Unique name of a Node Rule
Topology Name Name of the used geometry where the drawn object is added
Height Reading Name of the height reading
Bool Reading Name of the bool reading
Step Iterate through theshawn::World by the given step

Table 5.3: Basic Contents of a TOPOLOGY RULE.

The first parameters are already known from theConnection Rules, and describe the
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name as an unique identifier and the geometry for adding the drawable objects. For
now, it is only possible to add lines to the geometry, and thuscreate a wire frame of
the topology.

The procedure of drawing is very simple and operates as follows. It is iterated
through the x and y coordinates of the world by using the defined step counter. On
each point the given height reading that is identified by its name returns the appropriate
z value to enable a three-dimensional view on the topology. Additionally, the bool
reading is used to decide whether the point should be drawn ornot.
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5.3 Algorithms and Dike Representation

The simulation of the designed algorithms in a sandbag dike scenario has been done
by using several options ofShawn. Figure 5.7 shows a rough overview of the most
important classes.

Sandbag

SandbagProcessor

Shawn

Processor

SandbagNeighborhood

SandbagModule

SandbagRoutingModuleSandbagDirectionModule

SandbagMessage

SandbagRoutingMessage

SandbagWetnessReading

SandbagWetnessSensor

SandbagTransmissionModel

<<access via SandbagProcessor>>

TransmissionModel

<<adding information>>

DoubleReading DoubleSensor

<<prepare>>

Figure 5.7: Algorithms and Dike Representation Overview.The class diagram shows
the most important classes for the simulation of the designed algorithms in a sand-
bag dike scenario. The central unit is theSandbagProcessor that provides the
possibility of implementing the algorithms in so called Modules that are divided in
arbitrary ones, direction ones, and routing modules. The latter are used for allow-
ing the routing of appropriate messages from a source to a given sink. In addition,
it is possible to simulate the behavior of soaked sandbags. On the one hand, the
SandbagTransmissionModel can be enabled to drop messages sent through
wet sand. On the other hand, theSandbagWetnessReading simulates the mois-
ture penetration of the sandbags, and can be used by an implementation over the
SandbagWetnessSensor that allows the simulation of errors in the measurement
process.

At first, the implemented processor is presented by describing the principal tasks
to give a general design overview. Then, the used module concept is shown in de-
tail. At last, the simulation of an increasing waterline andthe consequently moisture
penetration of the sandbags is illustrated.

5.3.1 Sandbag Processor

The SandbagProcessor is the central unit for a simple and flexible implemen-
tation of the designed algorithms. To allow exchangeability of different approaches
as well as a potential extensibility, a module concept has been established. That is,
the processor can contain multiple modules that are defined at run-time per configu-
ration file, and provides a basic functionality like a working phase in each iteration,
sending and receiving of messages, and an one-time boot phase. More precisely, the
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relationship between the processor and the modules is like the relationship between
ashawn::Node and ashawn::Processor, but allow a more intensive connec-
tion. For example, all modules have access to the neighborhood of a node provided
by theSandbagProcessor. In addition, a very simple energy model is realized
on the processor. At last, each sent and received message is processed, which in turn
is used to manage the routing of messages. Figure 5.8 shows a class diagram of the
implementation of the processor.

Sandbag

Shawn

Processor

SandbagProcessor

-module_factory_keeper_: SandbagModuleKeeper

-energy_send_: double

-energy_rcv_: double

-modules_: SandbagModules

-direction_module_: SandbagDirectionModule*

-routing_module_: SandbagRoutingModule*

-neighborhood_: SandbagNeighborhood

-node_type_: NodeType

+boot(): void

+process_message(const shawn::ConstMessageHandle&): bool

+work(): void

+energy_level(): double

+node_type(): NodeType

+forward_cached_message(SandbagRoutingMessage*): void

#send_message(SandbagMessage*): void

#prepare_sandbag_message(SandbagMessage*): void

#forward_message(SandbagRoutingMessage*): void

#prepare_message(SandbagRoutingMessage*): void

#finish_message(SandbagRoutingMessage*): void

-init_modules(): void

SandbagNeighborhood

SandbagModule

SandbagDirectionModule

SandbagRoutingModule

Figure 5.8: ClassSandbagProcessor. The class diagram shows a basic overview
of the implementation of theSandbagProcessor. The main purpose is the man-
agement ofSandbagModules that can fulfill different tasks. In addition, there is
exactly one direction as well as one routing module associated. The latter is used for
the routing of messages that can be prepared, forwarded, andreceived. Moreover,
there is access to theSandbagNeighborhood and the type of the node provided.
The latter can be either a normal one or a base station. At last, the remaining of energy
is hold.

The several aspects of theSandbagProcessor are presented in detail below.

Modules

The main design goal for the module concept was exchangeability as well as extensi-
bility. For this purpose the factory pattern also used inShawn has been taken. The
processor got therefore a module keeper object that contains factories which in turn are
able to create instances of appropriate modules. The advantage of this procedure is that
an implemented module can be load at run-time by adding the name to an appropriate
parameter. On booting, the processor reads the content of the parameter and loads all
wanted modules. Figure 5.9 gives an overview of the basicSandbagModuleand the
appropriate factory.

In general, the module provides access to the most importantcontents of the proces-
sor such as the neighborhood, the associatedshawn::Node, access to the direction
and routing module, and so on. Moreover, sent messages are passed to the processor.
In addition, the module is derived fromshawn::Logger, and thus is in possession
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Sandbag

Shawn

SandbagModuleFactory

+~SandbagModuleFactory()

+create(): SandbagModule*
KeeperManaged

SandbagModule

-sandbag_processor_: SandbagProcessor*

+boot(shawn::SimulationController&): void

+process_message(const ConstSandbagMessageHandle&): bool

+work(): void

+set_owner(SandbagProcessor&): void

+owner(): const SandbagProcessor&

+owner_w(): SandbagProcessor&

+node(): const shawn::Node&

+node_w(): shawn::Node&

+node_type(): NodeType

+set_node_type(NodeType): void

+neighborhood(): const SandbagNeighborhood&

+neighborhood_w(): SandbagNeighborhood&

+simulation_round(): int

+send(SandbagMessage*): void

+direction_module(): const SandbagDirectionModule&

+direction_module_w(): SandbagDirectionModule&

+routing_module(): const SandbagRoutingModule&

+routing_module_w(): SandbagRoutingModule&

RefcntPointable

Logger

<<create module>>

Figure 5.9: ClassSandbagModule. The sandbag module concept has been designed
by keeping the factory pattern in mind. Each module has an associated factory that is
able to create an instance of the module. The module in turn provides access to the
basic functionality of the processor.

of an own logger object to customize the logging output of different implementations
of modules.

A more detailed description as well as the special purposes of the derived modules
is done in Section 5.3.3.

Neighborhood

In general, the implemented algorithms need an awareness ofthe local neighborhood.
That can be, for example, the point in time of the last activity to recognize potential
dead neighbors, the remaining energy level, or in case that it is needed, the 2-hop
neighborhood. The latter means that a node is also informed of the neighborhood of
its neighbors.

For this purpose, the processor provides information of thelocal neighborhood that
can be accessed by each module. In the consequence for the need of different informa-
tion in the algorithms, the processor do not update the contents of the neighborhood.
Hence, an appropriate module has been implemented, and is described in Section 5.3.3.

However, the implementation allows the building of the n-hop neighborhood in the-
ory, because it contains information about the neighbors that in turn use the neighbor-
hood class. An overview is given in Figure 5.10.

51



5 Implementation Details

SandbagNeighborhood

+neighborhood_: NeighborInfoMap

+source_: const shawn::Node*

+silence_limit_: int

+inactive_count(int): int

+wet_count(double): int

+cnt_neighbors_wl_hops(int): int

+neighborhood_w(): NeighborInfoMap&

+neighborhood(): const NeighborInfoMap&

+begin_neighborhood_w(): NeighborInfoMapIterator

+end_neighborhood_w(): NeighborInfoMapIterator

+begin_neighborhood(): ConstNeighborInfoMapIterator

+end_neighborhood(): ConstNeighborInfoMapIterator

+size(): size_t

+find_w(const shawn::Node&): NeighborInfoMapIterator

+find(const shawn::Node&): ConstNeighborInfoMapIterator

SandbagNeighborInfo

-node_: const shawn::Node*

-last_activity_: int

-wetness_: double

-energy_: double

-backbone_: bool

-wl_hops_: int

-neighborhood_: const SandbagNeighborhood*

-silence_limit_: int

+is_alive(): bool

+has_neighborhood(): bool

+neighborhood(): const SandbagNeighborhood&

+has_neighbor(const shawn::Node& ): bool

1

0..*

Figure 5.10: ClassSandbagNeighborhood. The SandbagNeighborhood
contains multiple instances of theSandbagNeighborInfowhich in turn describes
the available information of an appropriate neighbor. The neighbor info is again asso-
ciated with a neighborhood to allow the building of a n-hop neighborhood. The class
diagram shows the basic information that is provided by the classes, but leaves all the
get and set methods out.

Energy Model

The main focus of this thesis is the maintenance of a communication backbone near
to the waterline, which is responsible for forwarding and routing messages. Although
this is done primarily for energy efficiency reasons, the backbone can also be rated
by the number of messages routed by nodes belonging to the backbone in contrast
to nodes which do not. Thus, there is only a very simple energymodel which only
considers sent and received messages. Each node got a standard energy level of 100%
whereas sending and receiving decrease this value by 0.05 and 0.01, respectively. A
node is dead, if its energy level is≤ 0.

Message Sending and Routing

The handling of messages is divided in two parts. On the one hand, there are the
SandbagMessages that can be used for the standard case of broadcasting. On the
other hand, there areSandbagRoutingMessages that are used for the routing
process to a given sink in the network. Figure 5.11 shows a class diagram of both
classes.

The basis for the message sending process in the implementation is theSandbag
Messagewhich is used for each local broadcasted message. The appropriate method
in the module passes a sent message to the processor which in turn forwards it. In
addition, the processor adds basic information about the node to the message, such
as the actual energy level and the hop distance to the waterline. Consequently, the
neighbors can update their knowledge of the sender by each received message.

For enabling the routing of messages from an arbitrary source to a given sink, there
is theSandbagRoutingMessage that is derived from theSandbagMessage.
The general routing process as the sending and receiving of such messages is done in
the processor, whereas the preparation is passed to a routing module, and is described
later in theModule Concept. The routing message provides suitable information for
the appropriate module. Hence, there is a list of wanted receivers on the one hand, and
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Sandbag

Shawn

Message

SandbagRoutingMessage

-id_: long

-ttl_: int

-hops_: int

-origin_: const shawn::Node*

-sink_: const shawn::Node*

-recv_set_: NodeSet

-pre_defined_path_: NodeList

+set_id(long): void

+id(): long

+new_id(): long

+set_hops(int): void

+hops(): int

+set_ttl(int): void

+ttl(): int

+set_origin(const shawn::Node&): void

+has_origin(): bool

+origin(): const shawn::Node&

+set_sink(const shawn::Node&): void

+has_sink(): bool

+sink(): const shawn::Node&

+has_receiver(const shawn::Node&): bool

+receivers_w(): NodeSet&

+pre_def_path_w(): NodeList&

SandbagMessage

-energy_: double

-wl_hops_: int

-wetness_: double

+set_energy(double): void

+energy(): double

+set_wl_hops(int): void

+wl_hops(): int

+set_wetness(double): void

+wetness(): double

Figure 5.11: ClassSandbagMessage. TheSandbagMessage is the basis for
message sending in the implementation of the dike scenario of this thesis. Each sent
message is derived from this one, and thus general information of the node such as
the energy level and the current hop distance to the waterline are stored. The data
is set by the processor, so that a potential module does not need to do this on each
sent message. In addition, there is also a special message that is used for the routing
process. It contains the source and the destination of the message, as well as the time
to live. Moreover, a set of receivers in the local neighborhood can be set just as well a
predefined routing path.

the possibility to add a predefined routing path on the other.Moreover, each created
routing message get a unique ID by which it can be identified. In addition, the origin
and the sink are stored. At last, the message contains the time to live, and the actual
hop count.

5.3.2 Module Concept

The module concept has already been indicated in Section 5.3.1, and shown in Figure
5.9. There are three different kinds of modules: First, the standard ones that have only
access to the data provided by theSandbagModule. Second, a direction module.
A potential implementation must provide a rough location awareness that enables at
least aleft-right feeling. The third one is the routing module. If a message is routed,
the processor passes it to the routing module for preparation. The objective is either
adding nodes to the potential receivers, or build a predefined routing path.

Miscellaneous Modules

TheMiscellaneous Moduleshave been implemented to fulfill basic tasks, and can be
auxiliary for the implementation of backbone or direction algorithms. Figure 5.12
gives an overview of the available modules.
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SandbagModule

SBMWaterlineBase

SBMWaterlineMeasurement

SBMWaterlineNeighborDeath

SBMDummyData SBMAvailability SBMEvaluation

SBMNeighborhoodSBMPeriodicNeighborCheck

Figure 5.12: Miscellaneous Modules.The figure shows the implemented additional
modules. The waterline identification has been implementedby using a base class that
fulfills tasks of both methods. TheSBMDummyData is used for sending a routing mes-
sage to a particular node. The availability one checks whether a node malfunctions,
and the evaluation one collects data in each iteration. Moreover, the neighborhood
module updates the local neighborhood, and the last one sends messages in periodic
intervals to inform the neighbors of being alive.

Waterline Identification The waterline identification has been implemented as a
standardSandbagModule. There is also a base class that fulfills common tasks. For
instance, the update of the minimal hop distance to the waterline is done here.

Sending Routing Messages TheSBMDummyDatasends routing messages from
a given node to a particular sink. The destination is chosen by using theDirection
Module, and selecting the base station with the greatest hop distance.

The number of sent messages is stored in a tag, and thus can be read for evaluation
issues. The other way around, the receiving node also storesthe number of received
routing messages in a tag.

Availability The availability module checks in each iteration whether a node is still
alive or not. It reads the current wetness of the surroundingsand, and deactivates the
node on demand.

Evaluation The evaluation module has been implemented for evaluation reasons.
On the one hand, the important data of the current simulationis written to the associ-
ated logger object. On the other, the result can be written toa file that can be analyzed.

Periodic Neighbor Check This module sends messages in periodic intervals to
inform the neighbors of being still alive. If there has no message been sent in a given
interval, a small dummy message is broadcasted. Thus, if other modules are sending
messages anyway, this one recognizes the sending, and does not send a message itself.

Neighborhood The neighborhood module is responsible for the update of thelocal
neighborhood. It receives each message that is sent to the associated processor, and
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reads the contained data if it is aSandbagMessage. In addition, it sends periodic
messages to enable an ongoing 2-hop neighborhood.

Direction Module

The direction module is responsible for a rough location awareness, and provides ab-
stract methods that must be implemented by an derived class.Figure 5.13 shows the
class diagram of the module.

SandbagModule

SandbagDirectionModule

+neighbors(Direction,NeighborInfoSet&): void

+neighbors(Direction,NeighborInfoSet&,const shawn::Node&): void

+opposite_neighbors(const shawn::Node&,NeighborInfoSet&): void

+start_path_request(Direction,int,int): int

+start_bb_path_request_ref(const shawn::Node&,
                           int): int

+hop_distance(const shawn::Node&): int

+base_station(): const shawn::Node&

SBDMSimpleCoordination

SDMPathRequest

-id_: int

-ttl_: int

-hops_: int

-min_wl_hops_: int

+id(): int

+ttl(): int

+hops(): int

+min_wl_hops(): int

SDMPathFound

-path_: NodeList

-request_id_: int

-wl_hops_: int

-nearer_nbs_: int

+path(): const NodeList&

+request_id(): int

+wl_hops(): int

+nearer_nbs(): int

SBDMSimpleCoordinationPathRequest

SBDMSimpleCoordinationPathFound

SandbagMessage

Figure 5.13: Direction Module.The class diagram shows the responsibility of the di-
rection module. At first, a potential implementation provides a direction decision for
selected neighbors. Second, it is possible to start path requests that are either sent
over all neighbors or only to backbone ones. By starting the path request, an unique
ID is returned. This ID can be used by processingSDMPathFound messages. If
such one is received, the ID can be compared to the requested one. At last, a direction
module must be aware of base stations in the near, and store the minimal hop dis-
tance. There has also an implementation of the direction module been done, namely
SDMSimpleCoordination.

The first responsibility for a direction module is the classification of the neighbor-
hood in directions. Thus, it must be possible to select nodesfrom a given set that are
located in the given direction. Moreover, for a given node such as a base station the
ones which are located towards or contrary can be elected.

Next, an implementation of the direction module must provide the processing of
path requests. That is, each module can start the request in the given direction by
calling the appropriate method. In addition, the time to live and the minimal hop
distance to the waterline can be given. The latter ensures that the request is sent only
to nodes with a greater value. However, the request returns aunique ID that must be
stored by the initiator. If the path has been found, the message is routed backwards, and
contains the requested path. Then, the initiator processesSDMPathFoundmessages,
and compares the stored request ID to the one in the message. Thus, it is assured that
the correct path is received. Moreover, it must also be possible to send requests along
the backbone, and only the backbone. For this purpose, the second shown request
method is responsible.
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At last, the direction module provides information about base stations. On the one
hand, such a node can be requested. On the other hand, the hop distance to a given one
can be asked for.

The idea of theRelative Reference Pointshas been implemented as a direction mod-
ule, namelySDMSimpleCoordination, and provides all required possibilities.

Routing Module

The routing module is responsible for the routing of messages. If aSandbagRouting
Message is going to be routed, the processor calls theprepare routing method
to add wanted receivers to the message. The module provides more helpful methods
for potential implementations as shown in Figure 5.14.

SandbagModule

SandbagRoutingModule

-max_history_age_: int

-message_history_: std::map<long, int>

+prepare_routing(SandbagRoutingMessage*): void

#finish_message(SandbagRoutingMessage*,NeighborInfoSet&): void

#backbone_count_nis(const NeighborInfoSet&): int

#nonebackbone_count_nis(const NeighborInfoSet&): int

#reduce_nis_to_backbone(NeighborInfoSet&): void

#reduce_nis_to_nonebackbone(NeighborInfoSet&): void

#reduce_nis_by_min_hops(NeighborInfoSet&,
                        int): void

#reduce_nis_to_size(NeighborInfoSet&,int): void

#reduce_nis_to_nearest(NeighborInfoSet&): void

#select_nearest(NeighborInfoSet&): const shawn::Node&

#last_received(long): int

#exist_in_history(long): bool

#add_to_history(long): void

#clean_up_history(): void

SBRMWaterlineStripe SBRMShortPathMixup

Figure 5.14: Routing Module. The figure shows a class diagram of the
SandbagRoutingModule. The most important method isprepare routing
that is called by the processor to prepare the routing message and add the wanted re-
ceivers. In addition, there is some helpful functionality for potential implementations
provided. On the one hand, there are methods to work on a givenset of neighbors. On
the other hand, a message history is handled, and contains the last received messages.

The processor owns exactly one instance of a routing module.If a routing message
is sent, it calls the module to prepare the message. That is, either adding nodes to the
receiver set, or defining a predefined routing path. The latter can be used to cover short
distances, for example, by adding the nodes of a path request. After the preparation of
the message, it is finished by the processor and then broadcasted. Again, the receiv-
ing processor decides whether the message should be dropped, or forwarded and thus
prepared by the routing module.

The routing module also provides auxiliary methods which can be used by potential
implementations of the module. For instance, a set of neighbors can be reduced only
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to backbone ones, or the neighbor that is nearest to the waterline can be selected.
Moreover, a message history is provided. The ID of each received routing message

is put into the history by additionally storing the simulation round of the reception. In
each iteration, message IDs that are older than a given valueare cleared.

In the consequence of the close relationship between the routing process and the
backbone algorithms, the appropriate implementation has completely been done in a
routing module. Hence, there are the classesSBRMWaterlineStripe andSBRM
ShortPathMixUp.

5.3.3 Dike Representation

In addition to the implementation of the designed algorithms, the behavior of a sensor
node in a sandbag must be simulated. For this purpose a waterline is needed to let
the nodes decide whether they are below the actual level. Furthermore, the moisture
penetration of the dike must be simulated, and a sensor should be able to measure
the current wetness of its environment. At last, if a sandbagis getting soaked, the
transmission of messages is possibly reduced by a given factor. The implemented
approaches are described in detail below.

Readings and Sensors

As already mentioned in Section 5.1, ashawn::Reading returns a computed value
for a requested position. This is used for the representation of the waterline and the
moisture penetration of the dike as shown in Figure 5.15.

SandbagUnderseaReading

SandbagWaterlineReading

SandbagWetnessReading

SandbagWetnessSensor

<<read value>>

<<uses for decision>>

<<uses for computation>>

Figure 5.15: Sandbag Reading Overview.The figure shows the realization of the sim-
ulation of the dike representation. The waterline reading represents the actual height
of the waterline, and is used by the undersea reading as well as the wetness one. The
former decides for a given position whether it is located below the waterline. The
latter takes the information into account for a computationof the moisture penetra-
tion. At last, the sensor is used to read the actual amount of wetness by allowing the
integration of measurement errors.

At first, a waterline reading has been implemented. The only purpose is to manage
the actual height of the waterline by returning the same value for each position in
the topology. That means, the reading is not aware of a potential dike in the topology
which would block the water, and represents a completely flooded scenario. It possible
to customize the waterline, and define increasing, decreasing, and stalled periods.

For the purpose of a consideration of the dike, the undersea reading can be used. It
returns, whether a given position in the topology is locatedbelow the waterline. For
example, a TOPOLOGYRULE as described in Section 5.2.3 can be created by assigning
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the waterline reading as the height one, and the undersea reading to decide whether a
point is used.

Moreover, also the wetness reading uses the waterline one. It represents the moisture
penetration of the dike. That is, for a given position the current amount of wetness is
computed. The implementation considers also an approximation of the seepage of the
dike as described in Chapter 3 by customizing the amount of leakage, the draft, and so
on.

At last, there is a wetness sensor that can be used by a module to simulate the
measurement of the surrounding moisture. In addition, the sensor supports also errors
in the measurement process. For example, a sensor can be completely malfunctioned,
or returns diverged values.

Message Transmission

For the simulation of message transmission through wetted sand, a newshawn::
TransmissionModel has been implemented. TheSandbagTransmission
Model drops messages that are either sent or received by nodes in a wetted region.
A message is dropped with a given probability that depends onthe actual amount
of wetness and a given threshold, and works as follows:ActualWetnessLevel ·
Threshold ≤ Random[0, 1].

5.3.4 Additional Tasks

By implementing the above described classes there have alsotwo additional tasks been
created.

The SimulationTaskSandbagEvaluation collects important information
of the current simulation. On the hand, it shows the results of the routing process,
the remaining energy of backbone and none-backbone nodes, the number of sent mes-
sages, and so on. On the other hand, it uses the data of the evaluation module and
collects average, minimal, and maximal values of the simulation process. The infor-
mation is written to console as well as logged in a given file.

The other implemented task is theSimulationTaskSandbagSelectNode is
able to select a node and write wanted content in a given tag. The selection process
is done by defining a position, and electing the nearest node.The task is used, for
example, to elect base stations or the node that starts the routing process.

58



6 Evaluation

This chapter presents the results of the simulation of the designed algorithms. They are
tested in different scenarios, under several conditions like the variation of the commu-
nication range, and by modifying essential parameters. At first, the waterline identifi-
cation methods are evaluated by taking their individual assumptions of the environment
into account. Then, by using the waterline identification methods and the approach for
a rough location awareness, the results of the backbone algorithms are shown.

6.1 Waterline Identification

At first, the waterline identification is evaluated. This is done by varying the commu-
nication range, allowing the detection of false positives,and analyzing the parameters
of the algorithms.

The most important rating factor is the amount of false positives and false negatives,
respectively. The former are the nodes which have identifiedthe waterline albeit they
should not do so, whereas the latter are the ones which do not identify it albeit they are
located in the near. The results are given in absolute numberof nodes as well as the
relative fraction. In addition, the average real distance of false positives is presented.

Both waterline identification methods,Neighbor LossandLocal Measurement, are
rated separately. This is done in the consequence of the different assumptions on which
they are based. TheNeighbor Lossassumes that nodes malfunction on contact with
wetness, whereasLocal Measurementrequires on appropriate event to identify the
waterline.

Nevertheless, for the evaluation process both methods are tested in the same scenario
which is described in Section 6.1.1. After that, in Section 6.1.2 and 6.1.3 the results of
the simulations of the different methods are presented.

6.1.1 Scenario Description

Both waterline identification methods have been simulated in a simple standard sce-
nario as shown in Figure 6.1. The network consists of2000 nodes that are placed
randomly in the given region. The communication range is setto 18 units which in
turn results in a connectivity of 15 which defines the averagenumber of neighbors of
the nodes.

The message transmission is done in a reliable manner. That means, each sent mes-
sage is delivered to the receiver without loss or delay. In addition, a diskgraph com-
munication model is used to assure that if a nodeu can receive messages from nodev,
nodev in turn always receives the broadcasted messages of nodeu.

The processor provides several implemented modules. TheAvailability one simu-
lates an arbitrary node loss on the one hand, and a wetness based on the other hand. The
Neighborhoodmodule allows the use of the information of the 2-hop neighborhood,
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6 Evaluation

(a) Top View (b) Side View (c) Diagonal View

Figure 6.1: Standard Scenario for Waterline Identification. The figure shows the used
standard scenario for the waterline identification. It consists of 2000 nodes that are
represented by the grey spheres. It is assumed that the shownnodes were inserted into
sandbags which in turn are placed on the riverside of a dike.

and is updated every 5 rounds. In addition, each sent messagecontains the energy
level, the hop distance to the waterline if known, and the potential measured amount
of wetness. Such information is updated on each reception. Messages in turn are sent
at least every 3 rounds which is assured by thePeriodic Neighbor Checkmodule that
sends dummy messages in case of need.

The simulation runs for 100 iterations after that the results are evaluated. In addition,
the waterline is increased in the first 30 iterations by 15 units. After that, it holds it
current height up to the end of the simulation. The height is chosen to put about13 of
the network below the waterline.

To allow accurate results, each simulation has been done 100times, and the below
presented results represent the appropriate average values.

In addition, Figure 6.2 shows a situation in the scenario of an increasing waterline
and identifying nodes.

6.1.2 Neighbor Loss

The neighbor loss method uses the standard parameters as already described above. In
addition, algorithm specific parameters must be set.

To increase the possibility of false detections, an arbitrary node loss has been en-
abled. From iteration 25 to 35 each node malfunction with a probability of p = 0.01.
This configuration has been chosen with respect to the increasing waterline that stops
at iteration 30.

Nodes are supposed to be dead if there has no message been sentfor 5 rounds. In
addition, nodes with a last activity of more than 10 rounds ago are ignored, as well as
nodes with a lower energy level than 10%.

At last, the relative loss bound is set to 30%.
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6.1 Waterline Identification

Figure 6.2: Example for Waterline Identification.The figure shows a situation of nodes
identifying the waterline which is represented by the wiredgrid. The red nodes below
the grid are soaked, and thus already dead. The small grey ones at the upper side are
still alive and have not identified anything. The bigger darkgrey ones have identified
the waterline, and enable the other ones to determine their minimal hop distance to
the waterline.
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6 Evaluation

Variation of Communication Range At first, the variation of the communica-
tion range is evaluated. The parameter varies from 14 to 24, which leads to connectiv-
ities from 8 to 30. Figure 6.3 shows a more detailed overview of the used ranges.

 0

 10

 20

 30

 40

 50

 60

 14  16  18  20  22  24

C
on

ne
ct

iv
ity

Communication Range

Min-Max
Neighbors

Figure 6.3: Connectivity by the Variation of CommunicationRange.The figure shows
the resulting connectivity by the variation of the communication range in the standard
scenario. In addition, the minimal and maximal number of neighbors of a node are
shown. For example, a communication range of 18 leads to a connectivity of 15. In
addition, there is at least one node that has only got one neighbor, as well as at least
one node with 33 neighbors.

However, Figure 6.4 shows the results of the simulations. There are the false posi-
tives, the false negatives, and the distances of the false ones to the waterline evaluated.

In (a), the absolute number of false positives is shown. The value varies between
0.5 and 1.8 nodes that have detected the waterline albeit they are not in the immediate
near. A small communication range as well as a bigger one leads to better results than a
middle range one between 17 and 20. Nevertheless, the absolute number is quite small
with about one false positive per simulation. In almost the same manner the relative
fraction of false positives is proportionally small as shown in (b). It varies from 3.5%
to 0.5%, and is constantly getting smaller with an increasing communication range.

The number of false negatives in (c) varies from 98 to 135, andis much greater
than the absolute values of (a). With an increasing communication range, the value is
continuous rising. Considering the relative fraction in (d), it is continuous increasing,
too, but still relative small with a span from 9.8% to 14.7%.

In (e), the average real distance to the waterline is shown. By varying from 38 to
70, there are nodes that have detected the waterline but are multiple times the commu-
nication range away. The other way around, the false negatives in (f) are mostly more
than the half of the communication range away.
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Figure 6.4: Neighbor Loss: Variation of Communication Range.
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6 Evaluation

Variation of Random Node Malfunction The variation of node malfunctions is
done in multiple iterations as described in theStandard Scenario. From round 25 to
35 a node dies with the given probability. The evaluated values vary from 0 to 0.05.
The results are shown in Figure 6.5.

Up to a node loss of 0.015 the absolute number false positivesis acceptable small
as shown in (a). After that, the false detections increase precipitously to number of
nearly 250 nodes by a node loss of 0.05 per round. A similar observation can be done
in (b) that shows the relative fraction of false positives. In the beginning, only a small
fraction identifies the waterline albeit it is incorrect. Later, by a probable loss of 0.05,
the fraction reaches 80%.

On the contrary, the number of false negatives decreases continuously with a greater
probability of node loss. If there is no node loss, an averagenumber of 125 nodes do
not identify the waterline albeit they are in the immediate near. If the probability is set
to 0.05 per round, only 20 nodes do so, too. The relative fraction falls from about 12%
to 6%, and is shown in (d).

The average real distance to the waterline is multiple timesthe communication
range, if the probability of a node loss is greater or equal than 0.01, and is averaged
to 60 units. Otherwise, if the probability is smaller than 0.01, the mean distance is
acceptable inside the communication range, or even 0 if there is no node loss. The
distance of the false negatives is constantly 13 units by a communication range of 18.

64
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Figure 6.5: Neighbor Loss: Variation of Random Neighbor Malfunction.
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6 Evaluation

Variation of Parameter Relative Loss Bound The variation of theRelative
Loss Boundparameter defines the relative fraction of nodes that are assumed to be dead
to identify the waterline. In addition, the additional methods given in 4.2.1 to allow for
a more reliable decision are also applied, but not varied. However, theRelative Loss
Boundhas been tested from 10% to 50%, and the results are shown in Figure 6.6.

If the bound is set to at most 20%, there are between 11 and 12 nodes that identify the
waterline albeit they should not. By a minimal loss of 25% or 30%, the number drops
to only 4 and 2 nodes, respectively. After that, on the setting the parameter to 35% or
greater, there are nearly no false positives. Proportionalto the absolute number, the
relative fraction is decreased from 12% to 0% by having the same mentionable points.

In contrast to the false positives, the number of false negatives increases with a
higherRelative Loss Bound. From 10% to 20% the number is constant by about 80
nodes. After that, it rises linear to over 140 nodes. Again, the process of the relative
fraction is proportionally, and varies from about 8% to over14%.

The distance of the false positives is approximately 50 units by a communication
range of 18, if theRelative Loss Boundis less or equal than 40%. In the consequence
of a lack of such ones at 45% or 50%, the distance is 0 at the according positions.
False negatives must be again in communication range to the waterline, and are ap-
proximated 14 units away. With an increasing parameter, thenodes draw near the
waterline to 12 units.

66



6.1 Waterline Identification

 0

 2

 4

 6

 8

 10

 12

 10  15  20  25  30  35  40  45  50

F
al

se
 D

et
ec

te
d 

W
at

er
lin

e
(N

um
be

r 
of

 N
od

es
)

Relative Loss Bound

Neighbor Loss Method

(a) Absolute Node Count of False Positives

 0

 2

 4

 6

 8

 10

 12

 10  15  20  25  30  35  40  45  50

F
al

se
 D

et
ec

te
d 

W
at

er
lin

e 
F

ra
ct

io
n

(%
 o

f a
ll 

D
et

ec
te

d 
N

od
es

)

Relative Loss Bound

Neighbor Loss Method

(b) Relative Fraction of False Positives

 70

 80

 90

 100

 110

 120

 130

 140

 150

 10  15  20  25  30  35  40  45  50

F
al

se
 N

ot
 D

et
ec

te
d 

W
at

er
lin

e
(N

um
be

r 
of

 N
od

es
)

Relative Loss Bound

Neighbor Loss Method

(c) Absolute Node Count of False Negatives

 8

 9

 10

 11

 12

 13

 14

 15

 10  15  20  25  30  35  40  45  50

F
al

se
 N

ot
 D

et
ec

te
d 

W
at

er
lin

e 
F

ra
ct

io
n

(%
 o

f a
ll 

N
ot

 D
et

ec
te

d 
N

od
es

)

Relative Loss Bound

Neighbor Loss Method

(d) Relative Fraction of False Negatives

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10  15  20  25  30  35  40  45  50

D
is

ta
nc

e 
to

 W
at

er
lin

e

Relative Loss Bound

Min-Max
Distance to Waterline

(e) Average Distance to Waterline of False Posi-
tives

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10  15  20  25  30  35  40  45  50

D
is

ta
nc

e 
to

 W
at

er
lin

e

Relative Loss Bound

Min-Max
Distance to Waterline

(f) Average Distance to Waterline of False Nega-
tives

Figure 6.6: Neighbor Loss: Variation of ParameterRelative Loss Bound.
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6.1.3 Local Measurement

The Local Measurementhas been tested by using the standard parameters in almost
the manner as theNeighbor Lossmethod. Again, the communication range, the error-
proneness, and the setting of the important parameters are evaluated.

In general, 10% of the sensors are faulty. Consequently, such sensors do not measure
wetness albeit they should, or identify wetness in dry sandbags.

As already described in Section 4.2.2, a positive sensor needs at least 30% of neigh-
bors that have done so, too, whereas a negative one identifiesthe waterline if 75% of
its neighbors have measured wetness.

Variation of Communication Range At first, a variation of the communication
range is evaluated. The resulting connectivity is the same as shown in Figure 6.3. The
results can be seen in Figure 6.7.

The number of false positives is shown in (a). With an increasing communication
range the number of such nodes drops from 16 to 10 whereby the steepest descent
occurs from a communication range of 14 to 17. After that, thevalue is nearly constant.
A similar process occurs by considering the relative fraction shown in (b). The fraction
varies from 2.5% to 1.5%.

The number of false negatives is relative high in comparisonto theNeighbor Loss
method, but is also hardly affected by the communication range. There is a flat ascent
from about 250 nodes to 260. Again, the relative fraction proceeds similar, and varies
from 18% to 19%.

The distance to the waterline of the false positives shows much better results than
the ones of theNeighbor Lossmethod. With a communication range of at least 19, the
average distance as well as the maximal measured one is not greater than the range.
Also the results at 17 and 18 are acceptable with being not greater than two times the
communication range. Nevertheless, a smaller range leads to worse results, although
the average distance is near to the communication range. Thedistance of the false
negatives is always 0, because such nodes are already below the waterline to be able
to measure potential wetness.
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Figure 6.7: Local Measurement: Variation of CommunicationRange.
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Variation of Sensor Malfunction The reliability in the sense of measurement
failures is simulated by a variation of the fraction of faulty sensors. As already men-
tioned above, a faulty sensor measures wetness if there is not any, and detects one if it
is not supposed to do so. The fraction varies from 0% to 50% of faulty sensors, and is
shown in Figure 6.8.

Up to a fraction of 25% faulty sensors there are less than 20 false positives. Even a
fraction of 0% results in false detections, but occurs in consequence of the 75% limit
on which nodes that have not identified the waterline are allowed to do so. Hence, such
a situation occurres only in the near of the waterline and is acceptable. However, from
a faulty fraction of 30% on the number of false positives proceeds a steep ascent that
results in over 120 nodes. The same process is shown in (b). A value of 50% leads to
more than 20% false detections.

The number of false negatives proceeds a linear increasing from 200 nodes to nearly
450. In the consequence of the fraction of failed sensors thenodes are no longer able
to provide an accurate identification of the waterline.

In (e) it is shown that the false positives with 0% faulty sensors occur in the very near
of the waterline. The average as well as the maximal distanceof such nodes is smaller
than the communication range and can thus be tolerated. In general, the average value
is acceptable up to a fraction of 30%, and overwhelms the communication range by a
mentionable amount only with greater fractions.
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Figure 6.8: Local Measurement: Variation of Random Neighbor Malfunction.
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Variation Relative Bounds Finally, a variation of the parameters for an identifi-
cation of the waterline is presented. There are two mentionable parameters. On the
one hand, the one that accepts an own detection if at least 30%of its neighbors has
done so, too. On the other hand, the one that allows a node to identify the waterline,
if itself has not detected such ha occurrence, but 75% of the neighbors have done so
indeed. However, both parameters are varied concurrently.If the former one is set to
10%, 15% or 20%, the latter is set to 75%. The same relationship is given between
25%-35% and 80% as well as 40%-50% and 85%. This graduation explains the steps
in Figure 6.9 which shows the results of the variation of the parameters.

The number of false positives as shown in (a) is decreased from 16 to 7. The first
three values are settled down at 15, the next three at approximated 11, and the last ones
at 7. The same proceeding occurs in the relative fraction that reaches from 2.4 to 1.2.

An increasing of the parameters leads to a higher number of false negatives. The
steps are settled down at 220, 250, and 300 which is proportionally to the relative
fraction of 16.5, 18.5, and 21, respectively.

The distance to the waterline of the false positives is hardly affected by a variation
of the parameters. The average value is constantly by about 10 units which in turn is
approximated half of the communication range. In addition,the maximal distances are
also acceptable, because none of them is greater than two times the communication
range.

72



6.1 Waterline Identification

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 10  15  20  25  30  35  40  45  50

F
al

se
 D

et
ec

te
d 

W
at

er
lin

e
(N

um
be

r 
of

 N
od

es
)

Relative Loss Bound

Measurement Method

(a) Absolute Node Count of False Positives

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10  15  20  25  30  35  40  45  50

F
al

se
 D

et
ec

te
d 

W
at

er
lin

e 
F

ra
ct

io
n

(%
 o

f a
ll 

D
et

ec
te

d 
N

od
es

)

Relative Loss Bound

Measurement Method

(b) Relative Fraction of False Positives

 220

 230

 240

 250

 260

 270

 280

 290

 300

 10  15  20  25  30  35  40  45  50

F
al

se
 N

ot
 D

et
ec

te
d 

W
at

er
lin

e
(N

um
be

r 
of

 N
od

es
)

Relative Loss Bound

Measurement Method

(c) Absolute Node Count of False Negatives

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 21

 10  15  20  25  30  35  40  45  50

F
al

se
 N

ot
 D

et
ec

te
d 

W
at

er
lin

e 
F

ra
ct

io
n

(%
 o

f a
ll 

N
ot

 D
et

ec
te

d 
N

od
es

)

Relative Loss Bound

Measurement Method

(d) Relative Fraction of False Negatives

 0

 5

 10

 15

 20

 25

 30

 10  15  20  25  30  35  40  45  50

D
is

ta
nc

e 
to

 W
at

er
lin

e

Relative Loss Bound

Min-Max
Distance to Waterline

(e) Average Distance to Waterline of False Posi-
tives

-1

-0.5

 0

 0.5

 1

 10  15  20  25  30  35  40  45  50

D
is

ta
nc

e 
to

 W
at

er
lin

e

Relative Loss Bound

Min-Max
Distance to Waterline

(f) Average Distance to Waterline of False Nega-
tives

Figure 6.9: Local Measurement: Variation ofRelative Bounds.
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6.2 Backbone Algorithms

The backbone algorithms are evaluated in different scenarios by using both waterline
identification methods. In addition, the communication range, the velocity of an in-
creasing waterline, and important parameters of the algorithms are varied.

The are several rating factors of interest. Firstly, the remaining energy level of the
nodes belonging to the backbone can be compared. Then, the number of messages that
are used for coordination differs in the algorithms. Another rating factor is the number
of nodes belonging to the backbone as well as the average hop distance to the waterline.
Finally, the reliability and velocity of the routing algorithms is of interest. The former
is the number of messages that are received by the sink of a routing message, whereas
the latter describes the number hops taken by the message compared to the minimal
hop distance of source and destination.

At first, the different scenarios are described in Section 6.2.1. Then, examples of
both algorithms are presented in Section 6.2.2 and 6.2.3, respectively. Finally, the
evaluation is presented in Section 6.2.4.

6.2.1 Scenario Description

The algorithms have been simulated in three different scenarios: First, the standard
scenario that has already been used by evaluating the waterline identification, and is
shown again in Figure 6.10. Second, a scenario that containsone missing part in the
dike structure as shown in Figure 6.11. Third, a scenario with multiple missing parts
which can be seen in Figure 6.12.

The network in each scenario consists of 2000 nodes which areplaced randomly in
the given region. The communication range is set to 18 units.

In general, the same settings are used as in the scenario for the waterline identifi-
cation and described in Section 6.1.1. Hence, the transmission of messages is done in
a reliable manner. The communication is simulated by a diskgraph model to assure
bidirectional connections between neighbored nodes.

The simulation runs for 200 iterations. The water level is static for the first 100
rounds, and increases for the next 80 rounds. The standard alteration height is set to
20 units.

The simulation is repeated 10 times in each scenario which consequently leads to
30 results per parameter variation. Each presented diagramshows the aggregation and
average of all scenarios.
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6.2 Backbone Algorithms

(a) Top View (b) Side View (c) Diagonal View

Figure 6.10: Normal Scenario for Backbone Algorithms.

(a) Top View (b) Side View (c) Diagonal View

Figure 6.11: Scenario containing one Hole in the Topology.

(a) Top View (b) Side View (c) Diagonal View

Figure 6.12: Scenario containing multiple Holes in the Topology.
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6.2.2 Waterline Stripe

To illustrate the behavior of theWaterline Stripe, Figure 6.13 shows an example of a
running simulation.

(a) Top View

(b) Diagonal View

Figure 6.13: Example ofWaterline Stripe. The figures show an example of the Water-
line Stripe. The waterline is represented by the wired grid.The orange spheres are
the nodes belonging to the backbone structure which is builtshort above the waterline.
The remaining nodes are represented by the grey spheres.

The waterline is identified by the measurement method. The minimal hop distance
is set to 2 hops, and the maximal one to 3 hops. The result is a relative broad structure
in which messages can be routed.
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6.2 Backbone Algorithms

6.2.3 Short Path Mix Up

An example of theShort Path Mix Upis shown in Figure 6.14. The backbone consists
of only a small number of nodes, but builds a continuous connected structure.

(a) Path Building Phase (b) Top View

(c) Diagonal View (d) Cutout

Figure 6.14: Example ofShort Path Mix Up. The figure shows an example of the Short
Path Mix Up. The wired grid represents the waterline. The orange spheres are the
nodes belonging to the communication backbone, whereas thegrey ones are the none-
backbone ones. In addition, the short paths are illustratedby the lines which connect
the appropriate members. In Subfigure (a), the path buildingphase is shown, whereas
(b) and (c) enable the view on a continuous connected backbone. Finally, (d) shows a
cutout of the built structure to allow for a more detailed view.
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6.2.4 Comparison of the Algorithms

For the comparison of the both backbone algorithmsWaterline StripeandShort Path
Mix Up, each has been combined with both waterline identification methodsNeighbor
LossandLocal Measurement. Hence, there are four different combinations compared.

The evaluated parameters are the communication range, the velocity of the increas-
ing waterline, and the minimal and maximal hop distance for the initial backbone
building process.

On comparing the number of sent messages, the results include all sent messages
that are used for coordination. This includes periodic dummy messages, neighborhood
updates, and so on. Such messages do not depend on the used backbone algorithm, and
thus the comparison can be done by the difference of additional backbone coordination
messages. However, this approach takes advantage of being able to rate also none-
backbone nodes.

Variation of the Communication Range

At first, the communication range is varied from 17 to 24. The according connectivity
is shown in each diagram.

Figure 6.15 shows the number of nodes belonging to the backbone structure and the
average hop distance of the backbone nodes to the waterline.
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(b) Average Hop Distance to Waterline

Figure 6.15: Variation of Communication Range: Number of Backbone Nodes and
Average Hop Distance to Waterline.

In (a) it can be seen that theWaterline Stripeconsists of more nodes than theShort
Path Mix Up. With an increasing communication range it rises from about350 nodes to
400, nearly independent from the waterline identification method. By usingNeighbor
Loss, there are only a few more nodes belonging to the backbone than in combina-
tion with Local Measurement. In contrast, theShort Path Mix Upconsists of about
150 nodes and is decreased 70 with an increasing communication range. Again, the
Neighbor Lossleads to few more members.

By comparing the average hop distance to the waterline as shown in (b), theWater-
line Stripeis closer to the waterline than theShort Path Mix Up. The hop distance of
the stripe is decreased from 3.3 to 2.2, whereas the one of thepaths drops from 3.9 to
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6.2 Backbone Algorithms

3.1. In general, the combination withNeighbor Lossleads to a smaller distance except
for theWaterline Stripeby a communication range that is greater or equal 21.

Figure 6.16 shows the remaining energy level and the number of sent messages.
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(a) Remaining Energy on Backbone Nodes
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(b) Remaining Energy on None-Backbone Nodes
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(c) Number of Sent Messages by Backbone Nodes
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(d) Number of Sent Messages by None-Backbone
Nodes

Figure 6.16: Variation of Communication Range: Energy Level and Number of Sent
Messages.

As shown in (a), the usage ofShort Path Mix Upleads to a higher remaining energy
level than the usage ofWaterline Stripe. The former drops from 75 to 65, whereas the
latter is decreases from a mean value of 64 to a mean one of 20. The combination
with Neighbor Lossleads to a higher level than withLocal Measurementby using the
stripe. In contrast, there is no mentionable difference by using the paths.

The remaining energy level of the none-backbone nodes shownin (b) proceeds sim-
ilar to the one of the backbone nodes in (a), but each with a greater value of about
10.

The number of sent messages in (c) makes theShort Path Mix Updistinguishable
from the Waterline Stripe, too. The former proceeding is constantly by about 100
messages in combination with both waterline identificationmethods. In contrast, the
combination of the stripe withNeighbor Lossvaries from 175 to 220, and in com-
bination withLocal Measurementfrom 250 to 300. The latter has a maximum by a
communication range of 19, and is then decreased down to 280.

Again, the none-backbone nodes show a similar proceeding, but each with a smaller
amount of sent messages. By using the paths the value is constantly by about 80
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messages, whereas the usage of the stripe leads to drafts from 120 to 180 and 140 to
210, depending on the used waterline identification method.

Figure 6.17 shows the results of the routing process.

 26

 28

 30

 32

 34

 36

 38

 40

 17  18  19  20  21  22  23  24
 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

N
um

be
r 

of
 R

ec
ei

ve
d 

R
ou

tin
g 

M
es

sa
ge

s
(4

0 
m

es
sa

ge
s 

se
nt

)

C
on

ne
ct

iv
ity

Communication Range

NLoss - Stripe
NLoss - Paths

Measure - Stripe
Measure - Paths

(a) Absolute Number of Received Routing Mes-
sages

 65

 70

 75

 80

 85

 90

 95

 100

 17  18  19  20  21  22  23  24
 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

F
ra

ct
io

n 
of

 R
ec

ei
ve

d 
R

ou
tin

g 
M

es
sa

ge
s

(%
 o

f 4
0)

C
on

ne
ct

iv
ity

Communication Range

NLoss - Stripe
NLoss - Paths

Measure - Stripe
Measure - Paths
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(c) Average Hop Count of Routing Messages
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(d) Theoretical Minimal Hop Count of Routing
Messages

Figure 6.17: Variation of Communication Range: Routing of Messages.

In (a), the absolute number of received routing messages is shown. Both combi-
nations with theWaterline Stripeproduce a noticeable reliability with an increasing
communication range. The combination withNeighbor Lossrises from 26 messages
to 40, the combination withLocal Measurementfrom 32 to 40. The latter reaches 40
messages by a communication range of 20. TheShort Path Mix Upin combination
with Local Measurementvaries from 30 to 37, whereas the combination withNeigh-
bor Lossvaries from 37 to 40. In (b), the results are shown as the relative fraction of
received routing messages, and produce the same proceedings.

The average hop count of routing messages decreases with an increasing communi-
cation range as shown in (c). The hop count of theShort Path Mix Updrops from 40 to
24 nearly analog with both waterline identification methods. TheWaterline Stripein
combination withNeighbor Lossdrops from 45 hops to 26, whereas the combination
with Local Measurementfalls from 46 to 27 in parallel. The theoretical minimal hop
distance between the source and the sink is shown in (d) and drops from 29 to 18.
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6.2 Backbone Algorithms

Variation of Velocity and Height of the Increasing Waterlin e

The velocity of the increasing waterline has been simulatedby varying the overall
height of the waterline. In the standard case, the increasing of the waterline starts at
iteration 100. Then, the height rises by 20 units for 80 rounds. This results in 0.25 per
round.

To simulate different water levels, the parameter of the overall height varies from 0
to 50, each for 80 rounds. The latter results in 0.625 per round.

Figure 6.18 shows the number of nodes belonging to the backbone structure and the
average hop distance of the backbone nodes to the waterline.
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(b) Average Hop Distance to Waterline

Figure 6.18: Variation of Waterline: Number of Backbone Nodes and Average Hop
Distance to Waterline.

The number of nodes belonging to the backbone structure as shown in (a) points the
differences between theShort Path Mix Upand theWaterline Stripeout again. The
former varies from 140 to 100 in combination withNeighbor Loss, and from 120 to 70
with Local Measurement. In contrast, the stripe varies from 310 to 350 in combination
with Local Measurement, and from 310 up to 450 withNeighbor Loss.

By analyzing the average hop distance to the waterline in (b), theWaterline Stripe
combinations are closer than theShort Path Mix Upones. Applying together with
Local Measurement, it drops from 3.7 to 2.9, and from 3.2 to 2.6 withNeighbor Loss.
The paths drop from 3.8 to 3.2 combined withNeighbor Loss, and vary from 3.6 to 4.4
with the measurement method.

Figure 6.19 shows the remaining energy level and the number of sent messages.
Except for the static waterline with a variation of 0, theShort Path Mix Upleads

to a greater amount of remaining energy than theWaterline Stripe. The former rises
from 58 to 81 with similar results for both waterline identification methods. The stripe
combined withNeighbor Lossvaries from 62 to 76, and withLocal Measurementit
drops from 69 to 60 by having a minima of 45 at a waterline alteration level from 15
to 25.

There are similar results for the none-backbone nodes, but having greater remaining
amounts of energy. TheWaterline Stripeapplied together withLocal Measurement
drops from 82 down to 66, whereas the combination withNeighbor Lossfalls from 82
to 80 with minima of 73 by an alteration of 25 to 35. In contrast, theShort Path Mix
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(a) Remaining Energy on Backbone Nodes
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(b) Remaining Energy on None-Backbone Nodes
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(c) Number of Sent Messages by Backbone Nodes
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(d) Number of Sent Messages by None-Backbone
Nodes

Figure 6.19: Variation of Waterline: Energy Level and Number of Sent Messages.

Up leads to an increasing remaining energy level. Both combinations rise from 78 to
84.

The number of sent messages of backbone nodes is nearly constant for theShort
Path Mix Upand decreases from 100 to 90 in both combinations. TheWaterline Stripe
applied together withNeighbor Lossvaries from 200 to 125 by starting at 160. Com-
bined withLocal Measurementit proceeds from 150 to 240 by having a maximum of
290 at an alteration level of 25.

The Short Path Mix Upleads again to nearly constant results for the number of
sent messages for none-backbone nodes. Combined withLocal Measurementis per-
manently at 85, whereas the combination withNeighbor Lossdrops from 85 to 78. In
contrast, theWaterline Stripeapplied together withLocal Measurementincreases from
85 up to 180. Combined withNeighbor Lossit proceeds from 85 to 100 with maxima
of nearly 140 by waterline alterations from 25 to 35.
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6.2 Backbone Algorithms

Figure 6.20 shows the results of the routing process.

 28

 30

 32

 34

 36

 38

 40

 0  10  20  30  40  50

N
um

be
r 

of
 R

ec
ei

ve
d 

R
ou

tin
g 

M
es

sa
ge

s
(4

0 
m

es
sa

ge
s 

se
nt

)

Variation of Waterline Level

NLoss - Stripe
NLoss - Paths

Measure - Stripe
Measure - Paths

(a) Absolute Number of Received Routing Mes-
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(b) Relative Fraction of Received Routing Mes-
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(c) Average Hop Count of Routing Messages
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(d) Theoretical Minimal Hop Count of Routing
Messages

Figure 6.20: Variation of Waterline: Routing of Messages.

The number of received routing messages shows no advantage of a special backbone
algorithm. TheShort Path Mix Upcombined withNeighbor Lossvaries from 36 to 40.
A similar result with the same variation is obtained by applying theWaterline Stripe
together withLocal Measurement. In contrast, theShort Path Mix Upcombined with
Local Measurementproceeds from 40 to 33 with a minimum of 29 at the waterline
alterations 25 and 30. TheWaterline StripeandNeighbor Lossdrop from about 40 to
30 with a local maximum of 37 at an alteration level of 35, and alocal minimum of 32
at 20. Again, the same results are shown in (b) with the relative fraction.

The average hop count of the routing messages is shown in (c).The Waterline
Stripecombined withLocal Measurementleads to a nearly constant value of 42. If
the Neighbor Lossmethod is applied, the stripe uses a nearly constant hop count of
40. TheShort Path Mix Upproceeds from 37 to 35 in both combinations, but with
different amplitudes.

The theoretical minimal hop distance between source and destination is approxi-
mated 26.4 as shown in (d).
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Variation of the Hop Distance to the Waterline

Finally, the minimal and maximal hop distance to the waterline for the initial phase of
the backbone algorithms is varied. The appropriate values are shown in the diagrams
on the x-axis with the minimum as the first value and the maximum as the second one,
respectively.

Figure 6.21 shows the number of nodes belonging to the backbone structure and the
average hop distance of the backbone nodes to the waterline.
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(b) Average Hop Distance to Waterline

Figure 6.21: Variation of Distance Parameters: Number of Backbone Nodes and Aver-
age Hop Distance to Waterline.

The number of nodes belonging to the backbone as shown in (a) depends on the
span of the minimal and maximal hop distance. TheShort Path Mix Upcombined
with Local Measurementleads to the smallest values. It varies from 50 to 100 nodes,
depending on the given span. Applied together withNeighbor Loss, the variation is
from 75 to 150. TheWaterline Stripecombined with the measurement method varies
from 200 to 400, and withNeighbor Lossfrom 250 to 475.

The average hop distance to the waterline depends particularly on the given minimal
parameter. For theWaterline Stripecombined withNeighbor Loss, it increases from 2
to 3.6, together withLocal Measurementfrom about 3 to 3.8. TheShort Path Mix Up
applied together withNeighbor Lossrises from 2.5 to 4.5, and withLocal Measurement
from about 3.5 to 4.8.
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6.2 Backbone Algorithms

Figure 6.22 shows the remaining energy level and the number of sent messages.
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(a) Remaining Energy on Backbone Nodes
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(b) Remaining Energy on None-Backbone Nodes
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(c) Number of Sent Messages by Backbone Nodes
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(d) Number of Sent Messages by None-Backbone
Nodes

Figure 6.22: Variation of Distance Parameters: Energy Level and Number of Sent
Messages.

The remaining energy of the backbone nodes as shown in (a) depends on the used pa-
rameters for theWaterline Stripe, whereas theShort Path Mix Upis nearly not affected.
The latter varies from 70 to 80 for both combinations, and produces only marginal dif-
ferences. TheWaterline Stripevaries from 65 down to 45 for the combination with
Local Measurement, and from 75 down to 60 withNeighbor Loss.

Except for a minimal as well as maximal hop distance of 1, theShort Path Mix Up
can be averaged to a remaining energy level of 82 for the none-backbone nodes. The
Waterline Stripecombined withNeighbor Lossdecreases from 80 to 76 but with a
local minimum of 74. The combination withLocal Measurementproceeds similar, but
from 76 to 72 and a local minimum of 68.

The number of sent messages of backbone nodes is nearly constant at 90 for the
Short Path Mix Upin both combinations. Depending on the parameters, theWaterline
Stripevaries from 120 to 200 if applied together withNeighbor Loss, and from 160 to
260 combined withLocal Measurement.

The number of sent messages for none-backbone nodes proceedsimilar. TheShort
Path Mix Upcan be averaged at 85, andWaterline Stripedepends again the used pa-
rameters. Combined withNeighbor Lossit varies from 100 to 130, and in combination
with Local Measurementit varies from 120 to 150.
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6 Evaluation

Figure 6.23 shows the results of the routing process.
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(c) Average Hop Count of Routing Messages
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Figure 6.23: Variation of Distance Parameters: Routing of Messages.

In (a) the number of received routing messages is shown. TheShort Path Mix Up
combined withNeighbor Loss, and theWaterline Stripeapplied together withLocal
Measurementshow the best results by varying from 34 to 40, each with different ad-
vantages in parameter settings. TheShort Path Mix Upin combination withLocal
Measurementproceeds best on ”1-3”, ”2-2”, and ”2-3” with a result of 34 to36. For
”1-2” and ”3-3” there are 29 and 28, respectively, messages received, and for ”1-1”
only 22. TheWaterline Stripecombined withNeighbor Lossleads to a value of 24 if
the minimal hop distance is set to 1, and 36 otherwise. The relative fraction of received
messages is shown in (b), and shows the same proceedings.

In (c), the average hop count of the routing messages is shown. The results of
the stripe in combination withLocal Measurementare decreased from 43 to 41. The
combination withNeighbor Lossleads to 42 down to 39 hops. TheShort Path Mix Up
combined withNeighbor Lossstarts with 36 hops at ”1-1”, rises to 39 at ”1-2”, and is
then constantly at about 34 hops. Combined withLocal Measurement, it starts at 38,
rises to 40, and can be averaged to 37 for the following.

The theoretical minimal hop distance between source and destination is approxi-
mated 26 as shown in (d).
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7 Conclusion

This thesis examined the potential usage of sensor networksin flood protection. It has
been assumed that the nodes are therefore inserted into sandbags which in turn are
used to protect an area against flooding. They are at most ableto measure the actual
wetness of the surrounding sand. In addition, they either lose their communication
ability due to physical restrictions, or fail on an increasing moisture penetration if
not water resistant. Consequently, a valuable idea is to exhaust particularly nodes
close to the water level by routing messages through the network. Such an approach
requires the construction of a continuous connected communication backbone, and the
definition of a routing algorithm that operates on the structure. Finally, the nodes are
not aware of their global position, neither in an absolute nor in a relative coordinate
system. Hence, the algorithms must be designed in a strict local manner, and are only
allowed to use the information of their immediate neighbors.

This thesis presented different algorithms for the construction of such a commu-
nication backbone by separating the several tasks. Firstly, two methods of waterline
identification were designed, each with a particular main focus on the behavior of
the nodes. TheNeighbor Lossmethod takes only the loss of communication to the
immediate neighbors into account, whereas theLocal Measurementrequires the avail-
ability of appropriate sensors. Both methods were extendedby additional conditions
to improve the robustness against false detections. Secondly, a coordination method
was designed by taking only the minimal hop distance to selected reference points
into account. The main design goal hereby was robustness as well as simplicity. Fi-
nally, two different backbone algorithms were presented, each with an adapted routing
method. The main design goal of theWaterline Stripewas a wide backbone struc-
ture that provides a preferably simple coordination phase.Consequently, the routing
method operates on the comparative high density and provides a load balance when
forwarding messages. In contrast, theShort Pathsmethod was designed for a more
reliable backbone structure. Each node is associated with at least one successor and
one predecessor. The paths are maintained as local as possible, but provide a contin-
uous connected backbone. The routing method makes use of thegiven structure and
operates in a simple but reliable manner.

The designed algorithms were implemented and simulated in the discrete event sim-
ulatorShawn. The evaluation has shown that the waterline identificationsucceeds in
an acceptable area. On greater perturbations, the methods fail in the consequence of
the strict local decision process. To avoid such situations, the methods must be ex-
tended to operate over multiple hops and gather the useful information. However, the
Local Measurementis more reliable than theNeighbor Lossmethod, because false de-
tections occur mostly in the near of the waterline, whereas the false ones in the latter
method are spread over the network. Furthermore, also the backbone algorithms have
shown different results. In general, theShort Pathsshould be preferred to theWater-
line Stripe. Nevertheless, the reliability of both algorithms can be improved, especially
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with respect to a rapidly increasing waterline.
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