Reliable and energy efficient
algorithms for sensor networks used
In flood protection

Tobias Baumgartner

June 1, 2006

Contents

1 Introduction 1
2 Related Work 3
3 Flood Protection 5
4 Algorithms 7
4.1 Preliminaries e 7
4.2 \Waterline Identification 8
421 NeighborLoss 8
4.2.2 LocalMeasurement. 10
4.3 Rough Location Awareness e 12
4.3.1 Adjustment at the Long Side ofthe Dike 13
4.3.2 Adjustmentinthe Cross Section 15
4.4 Communication Backbone 17
4.4.1 Stripe nexttothe Waterline 17
442 ShortPathMixUp 24
5 Implementation Details 35
5.1 Simulation Environment o oL 35
5.2 \Visualization Framework 37
5.2.1 ConcurrentAdapter. 38
5.2.2 VisualizationLibrary, 39
5.2.3 Visualization of Simulations 43
5.3 Algorithms and Dike Representation 49
5.3.1 Sandbag Processor, 49
532 ModuleConcept 53
5.3.3 Dike Representation 57
5.3.4 Additional Tasks 58
6 Evaluation 59
6.1 Waterline Identification 95
6.1.1 Scenario Description L 59
6.1.2 NeighborlLoss 60
6.1.3 LocalMeasurement. 68
6.2 Backbone Algorithms 74
6.2.1 Scenario Description o L. 74
6.2.2 Waterline Stripe 76
6.2.3 ShortPathMixUp 77

6.2.4 Comparison of the Algorithms 78

Contents

7 Conclusion

Bibliography

87

89

List of Figures

3.1
3.2

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2
6.3
6.4

ExampleofaDike 5
Potential Applications of Sandbagging 6
Cross Section and Front View of a node identifying a naighoss . . 8
Waterline identification with the aid of the neighbortioo 9
Cross Section and Front View of a node which measuresrbynea-

terine 11
Relative Reference Points 4 1
Direction Decision in the near of Reference Points 14
Adjustment in the Cross Section 6 1
Closeness decision by 2-hop neighborhood 16
Stripe: Hop distance to waterline 17
Overlapping Paths in Routing Process 23
Example of Short PathMixUp 24
ForceaPathBuilding 27
Arrangement of Endpointso L 28
Dead Endof Backbone 29
Malfunction of Path Members 31
Branching and Merging in Routing Process 33
Visualization Overview, 37
Class diagram of the Concurrent Adapter 39
Graph Structures of Scenegraphs 40
Classes of OpenSG Visualization 42
Classes of OpenSG Adaption 43
Graph Structure and Rule Concept 5 4
Algorithms and Dike Representation Overview C 49
ClasssandbagProcessor 50
Classsandbaghbdule 51
ClasssandbagNei ghborhood 52
ClasssandbagMessage 53
Miscellaneous Modules L 54
DirectionModule oL 55
RoutingModule 56
Sandbag Reading Overview 57
Standard Scenario for Waterline Identification 60
Example for Waterline Identification 61
Connectivity by the Variation of Communication Range..... . . . 62
Neighbor Loss: Variation of Communication Range 63

List of Figures

6.5 Neighbor Loss: Variation of Random Neighbor Malfunatia.
6.6 Neighbor Loss: Variation of ParamefRelative Loss Bound.
6.7 Local Measurement: Variation of Communication Range.
6.8 Local Measurement: Variation of Random Neighbor Madfion . . .
6.9 Local Measurement: Variation Bfelative Bounds
6.10 Normal Scenario for Backbone Algorithms e e
6.11 Scenario containing one Hole in the Topology
6.12 Scenario containing multiple Holes in the Topology
6.13 Example ofVaterline Stripe L
6.14 Example oBhort PathMixUp.
6.15 Variation of Communication Range: Number of Backbowned$ and

Average Hop Distance to Waterline

6.16 Variation of Communication Range: Energy Level and Remof

SentMessages e

6.17 Variation of Communication Range: Routing of Messages
6.18 Variation of Waterline: Number of Backbone Nodes andrage Hop

Distance to Waterline
6.19 Variation of Waterline: Energy Level and Number of Sdessages .

6.20 Variation of Waterline: Routing of Messages .
6.21 Variation of Distance Parameters: Number of BackbondeN and

Average Hop Distance to Waterline

6.22 Variation of Distance Parameters: Energy Level and bamof Sent

Messages e e

6.23 Variation of Distance Parameters: Routing of Messages

List of Tables

4.1 Decision thresholds for changing the state &@BCTED. 12
4.2 Contents of BCKBONE EXTENSIONREQUEST. 19
4.3 Possible ElectionRules oo 22
4.4 Contents of BTH BUILD REQUEST. o v v v v v v .. 25
45 Contents of BTH SEARCHREQUEST. 30
5.1 Basic Contentsofa®dbERULE. 46
5.2 Basic Contents of a@NNECTIONRULE. 47
5.3 Basic Contents of aDPOLOGYRULE. 47

List of Tables

Vi

1 Introduction

Sensor networks consist of a large number of small devices) eontaining one or
more sensors, a processor, a radio transmitter, memoryg Emided amount of energy
generally given by a battery, whereas each node merely me=athe values given by
its sensors. They communicate with each other via exchgngiessages over their
radio transmitter. Joined together, they build a powerfillective and are able to
solve complex tasks. In the absence of a central contro] aritch would enable

access to a global view of the network, the necessary infimméas to be gathered
by carrying the local information of each node together. Dau¢he restrictions in

energy consumption, there is a need of a special kind of igthgas with a main focus

on energy efficiency.

In general, the nodes are distributed randomly in a giveionego that algorithms
must be self-organizable and scalable. In addition, Inatibn hardware like GPS is
too expensive and energy wasting to equip many nodes, oeaanone with it. There
are approaches to solve this with localization algorithmerable a global position
awareness on each node, but depending on ranging erroesstiitsrare imprecise and
not satisfying so far. As a consequence it is preferable tkenuge of the benefits of
strict local algorithms. In such an approach, the sensoesi@ie not aware of their
position, neither in an absolute nor in a relative globalrdowmte system, and merely
use the information of the contiguous neighbors.

Sensor networks can be used, for example, for animal olsamnia large areas,
movement analysis of fire fronts in forest fires, traffic swon, habitat monitoring,
or flood protection.

This thesis shall deal with the latter case. The sensorsharefore inserted into
sandbags and measure the actual wetness of the surrouadithgWith this informa-
tion the network is able to build a general view of the moistoenetration the sandbag
structure is exposed to. There are three avenues of apptoackivable. Either a base
station requests a status report of the nodes in the santthatyse, or they report their
state in periodic intervals independently, or potentiakkrl sections are announced.
Such information must be routed through the network whidluces the overall energy
level of the nodes.

By assuming that nodes below the waterline are no longertalslemmunicate with
their neighbors, it is preferable to route messages edpyeciger nodes in the near of
the waterline. Those nodes run the risk of losing their gbith communicate in the
foreseeable future, and thus can be exhausted instead ®tiwateare supposed to be
part of the network over a longer period. The communicatass Ican be assumed,
for example, in the consequence of physical restrictionsadfo wave propagation
through wetted sand on the one hand, or nodes that are natmesigtant on the other
hand.

However, the construction of such a communication backlmamebe divided into
multiple tasks. Firstly, the waterline must be identified fault-tolerant techniques

1 Introduction

that are robust against measurement errors. Secondly icotisequence of the lack
of position awareness, the nodes must be able to coordinateselves. Thirdly, the
communication backbone is built in the near of the identifiederline, and must pro-
vide a continuous connected structure that also recogpiaestial missing parts in
the topology. Finally, a routing algorithm that uses thelkbane structure must be
designed.

Chapter 2 describes the related work which has already be@nid the context of
this thesis. In Chapter 3, a general overview of sandbaggimdikes in the sense of
flood protection is given. Chapter 4 presents the desigrgditims. Chapter 5 intro-
duces the used simulation environment and illustratesdibe of the implementation.
In Chapter 6, the results of the simulations are shown. At @isapter 7 summarizes
this thesis and gives a short forecast.

2 Related Work

This chapter gives an introduction to the related work coggethe basic objectives
of this thesis. At first, selected routing algorithms for s@mnetworks are presented,
followed by approaches of organizing and coordinating avagt. Then, literature
about general as well as moisture measurement technigy@sdented. At last, a
basic overview of floods, dikes, and the usage of sandbaggeis.g

Intanagonwiwat et al. [CIEQQ] describe tbBérected Diffusion a data-centric rout-
ing algorithm which implies that the generated data is nabyedttribute-value pairs.
For example, a node starts an interest which again is ddftts®ughout network. The
requested data in turn is sent back to that node by the useltplaypaths and addi-
tional data caching. Hence, there are methods for the padioagof requests as well
as ones for the aggregation of data.

Johnson et al. [JM96] present tbynamic Source Routinglf one node sends a
message to another one, it starts a route request that ieflamer the network. If the
request reaches the destination, or a node is aware of auglkeown cached route,
a route reply message is sent back to the initiator. A routgatos the addresses of
the nodes through which the message can be forwarded. Iticdhe maintenance
of cached routes is handled.

Nieberg et al. [NDH 03] have designed th€ollaborative Algorithms for Commu-
nication The basic idea is to cluster the network whereby the clostats form a
dominating set. The non-clusterheads in turn act as gatew#y allow the routing
of messages, the already above mentioDgdamic Source Routinig adapted to fit
the clustered structure of the network. For an additiongdrovement of reliability,
messages are sent on multiple paths as well as divided wtoasd@ackets on demand.

EQos[SCCO04] is a two phase protocol, whereby the first phase eseatvirtual
communication backbone, turn the radios of some nodes dffietirnthe nodes learn
their rough coordinates. In the second phase redundardrsemsn their hardware off
due to information of the rough coordinates and the locajmsarhood.

ASCENTby Cerpa et al. [CE04] has been designed for energy efficiezmsons.
The basic idea is to have only a few nodes active routing tresagges through the net-
work to perform multihop routing. The other ones are pasaive check periodically
if they should wake up and become active. If an active nodegmizes that too many
messages getting lost, it sendegighbor announcement messagavake up passive
node to be integrated into the backbone. All things considlethere are four different
states a node could taksleep passivetestandactive

Another very simple approach 8PAN[CJBMO01] which elects coordinators ran-
domly. It ensures that there are enough coordinators,e®the coordinators due to
energy efficiency, attempts to minimize the number of cowtlirs, and elects the
coordinators using only local information.

Youngis et al. have designed the clustering algoritHEED [YFO04] that periodi-
cally selects cluster heads according to their remainimgggrievel and a variable sec-

2 Related Work

ond parameter such as the neighborhood density. Unliker othstering algorithms
such it does not need any location information.

Another general problem in sensor networks is the appearahimeasurement er-
rors that must be recognized by the nodes. Krishnamachati KI03] present a
Bayesian fault-recognition algorithm that considers tha geading as well as the
ones of the neighborhood. In contrast, Ishar et al. [[PPRE&Rjuss methods of fault-
tolerant feature extraction in sensor networks at a ceatigwhich receives the read-
ings of multiple nodes. In a more general manner Chugh et@DAD3] present a
cluster-based method for event notification in appropniaggons. A similar subject
is described by Koushanfar et al. [KSPSV02] who present eor-&slerant fusion of
sensor data.

An overview of measurements in general is given in [PP92]ighan introduction
in basic measurement techniques, theoretical fundanseraatl causes of potential
errors. The latter is described in detail by Grabe [GraO&]addition, there is also
specialized literature about moisture measurement, amdbedound in [Kup97], for
instance.

However, this thesis presents algorithms for sensor né&swvpotentially used in
flood protection. There is much basic literature about floadslable. In [Fle02],
an overview of the flood risk in the UK is given. Ohlig [OhlO4igsents historical
observations with a focus on flood protection at the Elbe. grbblems of floods with
respect to seepage and stability reasons of dikes are pedseifiDav64], which in turn
leads to the demand on the use of sandbags. Different apipficareas can be found
in [Bra03], whereas Kobayashi et al. [KJ85] as well as Gadad&3] have analyzed
the stability and construction issues of sandbags for ghoptection, but with a main
focus on coastal regions. A more general idea is given by &uet al. [BW99] who
have filed a patent on additional fill material for sandbageethuce the leakage. A
detailed overview of flood protection is given in the nextuiea

3 Flood Protection

River flooding is a natural disaster that can cause veryycdstinage by destroying
human life, buildings, villages, or even whole districta.tthe consequence of exces-
sive rainfall or melting snow, and if the land is no longereabd drain the present
amount of water due to a saturated ground, a river can ovémitebanks and flood
the bordering areas.

There are several examples of such disasters in historyeaedttime, respectively.
For example, in Easter 1998 a flood affected an area in theetVtitngdom from
Worcestershire to Cambridgeshire for six days and causediage o£500-700 mil-
lion [FIe02]. In Autumn 2000 there was the most intensivefil since records began
over 270 years ago. In October, for instance, the rainfadl fwar times the average for
a month. The related flood caused a damaggldbillion [Fle02]. Another example
occurred in Germany is the Elbe flooding in August 2002. Mbent100 people died
and the caused damage exceeded 15 billion Euro [RMSO03].

To protect an area against flooding, a widely spread defdretegy is the building
of dikes. Other methods are described in detail in [Fle@&]irfstance, but are beyond
the subject of this thesis. However, a basic overview of slikked potential problems
of moisture penetration is given in [Dav64]. Figure 3.1 se@simplified example.

Dike

Landside > -
1:2 - —_———— River —

Figure 3.1: Example of a Dikel he figure shows an example of a dike which has been
built to protect an area against flooding, and is a simplificatof an illustration that
can be found in [Dav64]. On an increasing waterline, the stawe runs the risk of
getting soaked. Such a situation is indicated by the dasimedsIthat is also called

a saturation line. If the end of the line is located at the landside of the dilstead

of the ground, there is a leakage at the according positiord a dike breakage can
occur.

There are several reasons that can cause a risk for the dikex&mple, in the con-
sequence of the mentioned problem of moisture penetratiendike runs the risk of
breakage which in turn causes essential danger for the timgdegions. Furthermore,
it is possible that the water level overtops the height ofdifie in the foreseeable fu-
ture, and would also result in flooding the concerning ar&asch situations require
additional methods of dike defense. A widely spread pradtiche usage of sandbags.
Figure 3.2 shows potential application areas for sandbaggind can also be found in
[Bra03].

3 Flood Protection

Sanangs

(a) Sandbagging against Overwhelming

Sandbags

-7 ——— River —
Seepage _ - J— N
_ -~ 7 Saturation Line

(b) Sandbagging due to Seepage

Sandbags

Seepage _-
_ -~ 7 Saturation Line

(c) Sandbagging at the origin of the Seepage

Figure 3.2: Potential Applications of Sandbagginigpe figure shows different applica-
tions for sandbagging in the sense of dike defense. In (@)ilte is protected against
overwhelming. That is, the increasing water level is asglitogget greater than the
height of the dike. Subfigure (b) shows the problem of meistenetration of the dike.
In the consequence of a leakage at the landside, the sandibagsit on the appropri-
ate position. In contrast, Subfigure (c) shows the positigrif sandbags at the origin
of the seepage to avoid an ongoing moisture penetration.

4 Algorithms

This chapter presents algorithms for solving the mentigmethlems of managing a
dike of sandbags which protect an area against flooding.thEitee preliminaries
and assumptions of the environment are presented. Secdliffiérent methods of
the identification of the waterline are shown, dependingheneilquipment of the used
nodes. Then, solutions for some rough coordination to enta decision, in which
direction an incoming message must be sent, are given. Ifid#ferent algorithms
for building a reliable and energy efficient communicaticackibone are presented,
each combined with a special routing process.

4.1 Preliminaries

On developing algorithms for sensor networks, some pralimés and assumptions
must be taken. Hence, this section gives an overview of thawer of the nodes on
which the below presented algorithms are based on.

To simplify the communication model, it is assumed thatdtaee only bidirectional
connections. If node is able to communicate with node nodew in turn is able to
communicate with node. Furthermore, nodes communicate only via broadcasting
messages, and thus there are no unicast connections. @en#ggif a node sends
a message, each of its neighbors receive it. This abstmacéio be used for a simple
recognition of message loss by sending and forwarding rgessaThus, if a node
broadcasts a message, it should receive the same one agairthvemeighbors in turn
broadcast the message.

To allow for a definite identification of nodes, each node mrletwork is equipped
with an unique ID. Furthermore, by taking this assumptidn sccount, the sent mes-
sages can also be made unique, at least by identifying themtlog ID of the initial
sender and a consecutively numbered value.

Although each node can be uniquely identified, it is not agsluithat one sends
a message to an arbitrary other one. Instead, it must onlsfwed that messages
can be sent to a given base station. This is essential forothiing process inside
the communication backbone, because the main focus is ske@onstruction of the
backbone and the routing of messages along the structure.

Moreover, the nodes are not aware of their global positionthat the designed
algorithms must operate in a strict local manner. This isi@&sl, because equipping
the sensor nodes with localization hardware like GPS is tmatlexpensive and energy
wasting. Also the use of only a few position aware nodes aritbkmwewn localization
algorithms is not a suitable option, because by reason gfimgrerrors in distance
measurement the results are imprecise and not satisfyirggldition, that would cause
an unnecessary message overhead and thus an avoidablefestegy.

The nodes themselves can have two different behaviors iméitéers of soaked

4 Algorithms

sandbags. On the one hand, in an absence of water resistamcejalfunction by the

first occurrence of wetness. On the other hand, if they arentigiit, they survive the

wetted sand, but just have a very limited communication eanghe consequence of
physical restrictions.

4.2 Waterline Identification

The first discussed problem is the identification of the wigiter Depending on the sort
of used sensors, there are different approaches for salliagproblem. If the nodes
are equipped with appropriate sensors like wetness or te&type ones, they are able
to handle the resulting readings. Otherwise, in case ofttkerace of such sensors, the
decision must be taken without any information about theérenment. That can be,
for example, the consideration of the characteristic ofratéid communication range
due to soaked sandbags or the enclosing waterline.

4.2.1 Neighbor Loss

This approach assumes that the nodes are not equipped witeasoring hardware,
and either malfunction or lose their communication abitity soaked sandbags. Es-
pecially the former assumption can be reasonable for ersagyng causes, because
each type of sensor consumes energy and can be seen as aseciquor.

The basic idea is indicated in Figure 4.1. A node which is dbléentify the
waterline has lost the connection to at most 50% of its neigdiod.

&Y 0
O O O O
=~ O 0 O

oo oo ¥

(a) Cross Section (b) Front View

Figure 4.1: Cross Section and Front View of a node identifyameighbor lossThe
above Figures show a typical situation of an arbitrary notattshould identify a
noticeable neighbor breakdown. Due to the fact that the Wingehas not yet reached
the appropriate node, there are obviously less than 50% @fritighbors below the
waterline.

Taking this information into account, one must elect a Valeahreshold for the
decision whether a node is near the waterline or not. On teéhand, if the threshold
is too high, a node runs the risk of getting soaked itself, thnd is no longer able to
communicate with its neighbors. On the other hand, in casdhle threshold is chosen
too small, the decision process is very fault-prone due tdfumetions of actually
healthy nodes, and a consequently false positive ideritdicaf the waterline.

The idea is to strike a balance between these two altersathet the threshold to
30%, and establish additional constraints which are pteddrelow.

4.2 Waterline Identification

Eliminating probably Fault-Prone Nodes The first restriction is defined by the
assumption that a node loss in consequence of an increasitegliwe occurs in a
much smaller time interval than a node loss due to arbitralfunctions. A node loss
in turn is recognized, if the last activity of a neighbor iggter than the given time
periodt,,i,(r4)- Hence, it is required that each node guarantees a maxiredine
with respect to the sending of messages, and thus sends domessages in case of
need. After that, a value for the time periog,,; 4) must be given, which defines a
maximal limit for the elapsed time since the last activityaohode. Both thresholds
tmin(ra) as Well ast,,,,..(;.4) depend essentially on the assumptions of the terms and
conditions of the environment. The former value can be lintethe given maximal
idle time ¢;4., and thus a node is assumed to be dead,if,4) > 2 - tige- The
latter threshold?,,.(.4), depends on the mean alteration rate of the water level for a
certain period during a flood, and thus can not be given gxacthis part. Of course,
choosing this threshold too small would lead to rejectirguiar malfunctioned nodes
by a medium-term established water level. Otherwise, lonatlg too wide space of
time, this restriction would have no effect.

The second restriction takes the problem of a node loss dadaitk of energy into
account. It is obvious that a node which is run out of energy loa taken for one
below the waterline. For this purpose the threshglg, is adopted, in order that all
malfunctioned nodes for which a lower last energy level isvin, are ignored in the
decision process. Due to the definition of the energy levalelsas the chosen value
of the above mentioned idle timegy., it is set to 10% of the mean initial energy level
of the sensor nodes.

Relationships of Lost Nodes As already mentioned above, nodes can not dis-
tinguish between an arbitrary malfunction and a wetnesedasde loss. The next
idea to scale the probability of false positives down is tasider relationships be-
tween fancy nodes. That is, if one node gets lost, in all grdihaat least one of its
neighbors gets lost, too. The idea is indicated in Figurga).2

0,70 G0 0 ETELG
O O O o o 5 O O o O . . . |
6i*00%0i o 0Fooem0 g
® Rela;i;hsrhi/ps of Lost Nodes (b) Neighé)‘(;)rrr;g(;d-é;;ed Decision

Figure 4.2: Waterline identification with the aid of the rigigrhood. The left Figure

shows the idea of “Relationships of Lost Nodes”. Nodes belmwvaterline should
have the characteristic that a certain number of their nbigts are below the wa-
terline, too. Taking this information into account, an wgesinode can differentiate
between an arbitrary malfunction and wetness based node ldse Figure on the
right shows another approach, namely “Neighborhood Corguar”. That is, a node

recognizing a noticeable node loss should verify that ottegtes in its neighborhood
have also recognized a similar breakdown.

4 Algorithms

Hence, assuming a relatively small neighborhood densitgbofut 15 to 30, the
threshold must be chosen rather reserved. Thus, a poséuisiah with respect to a
near waterline requires at least two neighbors which in had got at least one lost
node as a neighbor, too. Additionally, all considered nauest be different. For
example, if a node has the connected neighpom@ndp-, as well ag;; andgs, which
have all got lost, itigp1,p2} N {q1,q2} = 0.

Neighborhood Comparison The next restriction regards neighbors which are
still alive. The basic idea is that if a node decides to be tteawaterline, some of its
neighbors should have done so, too. An indication is showigare 4.2 (b).

Again, the appropriate threshold must be chosen reserved réquired that at
least two neighbors have identified a significant node logkenconsequence of the
above mentioned restrictions, too. In addition, two of tbasidered neighbors must
be located on different sides. This is approximated by tiqairement that two nodes
are not allowed to be in the neighborhood of the respectiotigr one.

In general, théNeighborhood Comparisomeeds the adoption of an additional tem-
porary state. At first, all nodes have not identified the wiater If the former men-
tioned restrictions are fulfilled, a node changes to be a ¢teamp accepting one, and
only if the here described comparison succeeds, the wagddifinally identified.

Characteristics The Neighbor Lossnethod is a very simple one. There are only
a few requisites needed, such as a nearly reliable losingrafrunication ability to
nodes below the waterline and the knowledge of the 2-hophbeidnood. Moreover,
the nodes do not need any type of sensor which would lead tie\zare¢ energy con-
sumption.

Nevertheless, the approach has some mentionable drawbacdtsthe requirement
of the knowledge of the 2-hop neighborhood leads to a sigmfimmessage overhead
as well as additional memory consumption. Moreover, theesatecide only locally,
which could lead to false positives and should be taken ictmant in the below
described backbone algorithms.

4.2.2 Local Measurement

The idea of this approach is that the nodes are equipped agihide sensors to identify
a nearby waterline. Like the previous methgdighbor Lossthe Local Measurement
decides only locally whether to be near the waterline or @ad works as follows.

Each node measures periodically its surrounding enviromrend compares the
results to the definition of a nearby waterline. If the givemgmeters match, the wa-
terline is identified and the node notifies its neighbors patdcasting an appropriate
message. Due to the probable occurrence of measuremers, éneodecision process
must handle those uncertainties by taking only the locélae information into ac-
count. On the one hand, nodes which had not identified therlivetalthough they
should do so, must recognize this and set themselves to bemneaow the waterline.
On the other hand, false positives must be eliminated agbtelas possible.

The nodes compare the own measurements with the ones ohéigitborhood and
accept the waterline only if certain conditions are ful@ilié-or this purpose each node

10

4.2 Waterline Identification

is able to accept the waterline temporarily before the d@tigrocess is finished. The
ideas are presented in detail below.

States of the Nodes For enabling a temporarily acceptance of the waterline) eac
node can take the three different staRsjected Interim, and Detectedwith respect

to the identification of the waterline. In the beginning alldes start aRejected If
one measures a nearby waterline, it sets itself to bntmim and checks its local
neighborhood. If the conditions for an acceptance are ledfjlit changes to the state
Detected

Neighborhood Matching ~ As mentioned above, a node decides only locally whether
to accept the waterline or not, and analyzes therefore thmestate as well as the ones
of its neighborhood. The decision process must handle tiengal types of errors.
First, false positives, that are nodes identifying the wiaie although they should not,
must be detected and avoided. Secondly, nodes below thelimateust recognize
this albeit their sensor has not detected such a situation.

Figure 4.3 shows an example of a node below the waterline. tDulee already
passed water level, the node itself and at least 50% of itthbers should have iden-
tified the waterline, which again can be used in the decisiongss.

Eoers
b O
Y0 0o O ¢

© @ 00

(a) Cross Section (b) Front View

Figure 4.3: Cross Section and Front View of a node which nreasa nearby wa-
terline. The above Figures show a typical situation of an arbitrarydedhat should

identify and accept the nearby waterline. Due to the fadt thewaterline has reached
the appropriate node, there are obviously more than 50% efgighbors below the
waterline, too.

Atfirst, the situation of nodes below the waterline is ddszuli There are two differ-
ent possibilities to be handled. If the node has identifiedihterline itself and has set
its status tdnterim, there must be a minimal amount of neighbors which have done s
too. As shown in Figure 4.3, in theory there are at least 3@-p0sitives in the local
neighborhood. Depending on the assumed fraction of faelgars, the threshold for
an acceptance of the waterline must be reduced. Thus, theatifraction oflnterim
for an appropriate node is set to 30%.

The other situation for nodes below the waterline is that lveee not identified this
event itself, but should do so. This case is handled by aivelathigh threshold of
neighboring nodes which have already changed their statiderims The require-
ment for the high threshold is based on the situation, thaide mbove the waterline
changes its status due measurement failures in its neigbbdy or a nearby location

11

4 Algorithms

to the actual water level. Especially the latter case carebe m Figure 4.1 by swap-
ping the lost nodes witinterim ones. Thus, to avoid such a situation, the appropriate
threshold should be set to at least 60% of the neighborhoede,H fraction of 75%

is required for an acceptance of the waterline without tgaweasured an appropriate
occurrence.

Secondly, there are the opposite cases of nodes above tedimegtwhich should
not identify it in the consequence of a concentrated ocoog®f measurement errors.
Such a situation is covered by the above given thresholdss bepeated and discussed
shortly from the other point of view. Hence, if the node isdtexl above the waterline,
but has a positive sensor return value, it needs at least 3@P& meighboring nodes
which have identified the waterline, too. Otherwise, if tbedl sensor has not given a
wrong measurement, a node would need 75% of neighboringsiwidlean appropriate
state.

Both cases, especially the former one, can lead to falséyessprimarily in the near
of the waterline. Such a situation can be ignored, becauappropriate false positive
would be at least in communication range to the accuratdifgieny ones. Otherwise,
such wrong detections are accordingly improbable due toéweel of a deep sensor
malfunction density, and should be considered by the dotigg algorithms.

At last, the idea is summarized in Table 4.1 by showing onéyréievant attributes
and thresholds.

Sensor Stat¢ Minimal fraction of positive neighbors
INTERIM 30% of the neighborhood
REJECTED 75% of the neighborhood

Table 4.1: Decision thresholds for changing the stateBOHEZ TED.

Example Application: Wetness Measurement The previous description has
assumed an appropriate sensor for an identification of therlivee. That can be, for
example, a wetness measuring which returns the actual/estabisture content of the
surrounding sand.

Characteristics The decision of a nearby waterline is again taken strictihpdaut
unlike the previous approach there is only the 1-hop neididmdl needed, which in
turn causes a smaller amount of messages that need to bersembfdination issues.
Moreover, methods using sensoring hardware should be safes drawback is the
decreasing communication ability by an increasing mogstédnother drawback is the
error-proneness in the sense of local failures (1-hop heidiood).

4.3 Rough Location Awareness
For building a communication backbone and a consequerdiging method, the

nodes must dispose of a rough localization awareness. Iseqgoence of the men-
tioned lack of the knowledge of either a relative or absogitdal coordinate system,

12

4.3 Rough Location Awareness

the localization procedure must be done distributed. Asaltref the potential appli-
cation area, the primary requirements on such algorithmsaoustness and simplic-
ity, whereas precision can almost be neglected. This carobtilpted, because the
later discussed backbone and routing algorithms should beliable as possible, and
thus do not require an exact coordination system. Moreewvingy efficiency reasons
by means of preferably a small amount of messages, and thereace of hardware
failures, especially by measuring distances, come to the.fr

However, the localization awareness is divided into twagahat are described
below. At first, the adjustment at the long side of the dikeréspnted, followed by the
adjustment in the cross section.

4.3.1 Adjustment at the Long Side of the Dike

By routing messages through the dike or along the watentisieé the communication
backbone, nodes must be able to forward an incoming messggeger neighbors.

For this purpose, there are so calRRdlative Reference Pointaiilt, to which the
nodes are able to orientate themselves. A reference poiatrirnpreferably is a base
station, but can also be an arbitrary node in the network.cFieatation is done on the
basis of the minimal hop count to such references by corniegléne fact that there are
neighbors with a lower hop distance on the one side, and oitesawreater distance
on the other.

Initial Coordination Phase

In the initial phase each base station send®aRDINATION message which contains
the unique ID of the station, the information that the flogdimas been started at a
base station, and a hop countlofA node that receives such a message increments the
hop count by one, and forward it, only if there is no earliep lvount known for this
base station, or the received one is smaller than the existie. Additionally, in case
of forwarding the message, it stores the incremented hopt@sithe distance to the
reference point.

Moreover, each received message is used for updating thenalihop distances
of the local neighborhood. Thus, the hop count of the appatgmeighbor to the
reference point is set, if it is either not already known oraBer than the existing
one. This case must be mentioned separately, because infcagerwarding of the
message there are nodes whose minimal hop count is greaiteththown one, but can
not be ignored. Figure 4.4 shows an example of the initiatdioation phase.

In general, there should be only a few base stations existéhe network. Espe-
cially short after the construction phase of the dike it isrepossible that there is no
base station available. In the consequence of the simpteguoe of the coordination
process it is also supposable to elect an arbitrary nodetivonle to act as a reference
point. For this purpose an additional threshold is intraglud=ach node is required to
know at leastmIN REF POINTSreference points. If not reached, a node can start the
flooding of aCOORDINATION message by its own.

Such a case requires the use of two additional thresholdst, Fie probability of
doing so must be defined, followed by setting the intervalctoecking the threshold

13

4 Algorithms

(a) Flooding started at a base station (b) Rough direction awareness of
nodes

Figure 4.4: Relative Reference PoinfEhe left Figure shows an example of a base
station that starts the flooding of a coordination messagechieceiving node stores
the minimal hop count, and forwards the message if needeah®nght Figure the
nodes are already configured. If nodereceives a message from one of #e it can
easily forward the message to one of the. Nevertheless, there are also nodes which
cannot be allocated.

MIN REF POINTS The former one is chosen by keeping in mind that the network ¢
sists of at least tens of thousands of nodes, and that thageseonnectivity should be
between 10 and 20. Hence, it is se%ém in the beginning, but is doubled after each
step of the check to avoid a hardly ever selected referenice jpopossibly smaller
areas. The other threshold that defines the interval of thelghs set relative to the
time, a potentiaCOORDINATION message would take to reach nodes in a distance of
30 hops.

Selection of Reference Points

If a side decision is taken, one of the collected referent@@must be selected. There
are two criterions that affect the result. On the one hanel,nimber of neighbors
knowing a reference point has an influence, because the muhégible alternatives
is greater the more nodes take part in the decision procesthebther hand, the hop
distance to the reference point is essential as shown irré-#§6.

w123 4

Message

Figure 4.5: Direction Decision in the near of Reference Roihe figure illustrates
the problem of direction decision in the near of a Referena@tP Assuming that a
potential message should be routed along the Referencé Balecision that involves
only the hop count is problematic, because the routing eaan not be done.

14

4.3 Rough Location Awareness

Depending on the height of the dike and the location of theregice point, an ade-
guate thresholdhin_ref_point distancefor the minimal distance to a potential reference
point that is taken into account may vary. Here, it is set tbidfs. However, all refer-
ence points that have a smaller hop distance thamref point distanceare dropped
from the decision process. The remaining ones are orderedebyumber of neigh-
bors that know the appropriate reference point, and the othetiae highest number
of neighbors is selected. In the probable case that therigl@nécal results, the hop
distance comes to the front again by selecting the refengoice with the greatest hop
count. At last, if there are still identicals, the higher IDng.

Characteristics

The rough localization by reference points is a very simpld, also robust and en-
ergy efficient method, and thus fulfills the given requireiserit does neither need
any global localization information nor a base station,dose the nodes are able to
coordinate themselves. Furthermore, there are only theltwdion messages needed
which are flooded over the network once per reference poidditenally, the mes-
sage overhead is limited by the given flood limit.

4.3.2 Adjustment in the Cross Section

In contrast to the previously discussed adjustment at tigedade of the dike, the nodes
should also be able to coordinate themselves in the crosisrsed the dike. Again,
robustness, simplicity, and energy efficiency are much rimop®rtant than precision.

Taking the Waterline into Account

In the consequence of the requirement for an strict locaistisijent that works without
any localization hardware, it is useful to take an exteradnence point into account,
so that the nodes do not need to perform a boundary deteti@mwbuld even have
the demand for operating in the three-dimensional spaces, &hsimple but sufficient
idea is to perform the adjustment with the aid of the waterliand is indicated in
Figure 4.6.

In general, each node determines the minimal hop count twé#terline, but there
are two additional restrictions that must be considered.tif@rone hand, a potential
false positive in the means of the waterline identificatiam occur, and thus could
influence the adjustment. On the other hand, a possiblynfalterline would lead to
a need for incrementing the minimal hop count.

However, nodes that have identified the waterline start wittop count of 0, and
send awL HOP COUNT message by setting the appropriate value. A neighbor that
receives the message stores the included hop count as wek 48 of the sender.
Analog to the description in thBeighbor Losgnethod in Section 4.2.1, the lowest
hop count that has been sent by at least 30% of the neightmit@acepted, followed
by the broadcasting of a newL HOP COUNTmMessage.

Moreover, in case of a fallen waterline, nodes that had dyrédentified the water-
line and an appropriate hop count of 0, can not identify itaose. Thus, those nodes
will update their hop count to 1 in due time, and again broatleavL HOP COUNT

15

4 Algorithms

\w—Distance

Waterline

Soak

Sandbags

Figure 4.6: Adjustment in the Cross Sectidrhe figure shows the cross section of a
potential sandbag dike and the idea of the adjustment. Bndathe waterline into
account, the nodes are able to determine the minimal hoptcaunad thus build the
appropriate relationship to each other.

message. The receivers only update their neighborhoodthanalverall minimal hop
count is incremented by and by.

Refinement of Hop Count

So far, the adjustment has only be done by means of the haggndésto the water-
line of the 1-hop neighborhood. Additionally, by taking tinéormation of the 2-hop
neighborhood into account, the adjustment can be stated precisely. Figure 4.7
illustrates such a situation.

-0 n+1 hops
A ©__ S
Waterline| : O A @ = ! nhops
77777777 OB _ .
@O n-1 hops

Figure 4.7: Closeness decision by 2-hop neighborhddu figure shows a potential
situation of a closeness decision by taking the informatibthe 2-hop neighborhood
into account. Noded is able to differentiate between the nodesand C, that have
both a hop distance to the waterline of Hence, node” has a greater number of
neighbors with a hop count ef + 1 than nodeB. The other way around, nodg is
located nearer to the waterline than nodgin the consequence of a greater number
of neighbors with a hop count af — 1.

Characteristics

The adjustment in the cross section by taking only the wiageihto account takes
advantage of its robustness as well as simplicity. In agluitthe message overhead

16

4.4 Communication Backbone

can be significantly reduced, because the only sent infeosméd the hop count, and
thus can also be added to messages sent anyway.

4.4 Communication Backbone

This section presents algorithms for building a commurscabackbone near to the
waterline, which should be done as reliable as possible@arie hand, and in a mostly
energy efficient manner on the other hand. It is assumedhbawéaterline has been
successfully identified, and a rough location awareneds rgipect to the direction
decision is available.

4.4.1 Stripe next to the Waterline

The idea of the stripe next to the waterline is to build a roogimmunication backbone
by a very simple election process, and improve and maintesrekisting one in the
ongoing iterations.

Building the Backbone

Each node decides strict locally, and thus without any comoation overhead, whether
it belongs to the backbone or not. The decision is taken onlthe basis of the dis-
tance to the waterline measured in hops. So, given a minisnakd as a maximal hop
distance to the waterline byIN WATERLINE HOPS andMAX WATERLINE HOPS, each
node between these thresholds sets itself as a part of thegniration backbone, and
broadcasts an appropriate notification to its neighborgthEtmore, all nodes doing
so set their internal state ®URE BACKBONE STATE which is used later in the de-
scription of Dynamics The thresholds define the closeness to the waterline aswell
the thickness of the backbone. Figure 4.8 indicates a &ituat a part of the network
in the near of the waterline.

@ ®) (] @ 4hops
® @ 3hops
@) ° O 2hops
® (@) O 1hop
@) @ 0hops
6) o o
@)
e o © ©
o o o
(@) o o 0 (@) _
PY @ aterline
@ (&
@ @
@ &)

Figure 4.8: Stripe: Hop distance to waterlifiéhe figure shows a cutout of the network
in the near of the waterline. Each node has received the nainfrap count to the
waterline, and thus is able to decide whether it is part oftihekbone or not.

As shown, nodes in 1-hop range to the waterline are in then@ay, and run the risk
of a lose of the communication ability accordingly. Heney WATERLINE HOPS s

17

4 Algorithms

set to 2 hops to offer a sufficient closeness to the waterbnveedl as enough reliability
due to malfunctions in the routing process. FurthermereX WATERLINE HOPS is
set to 3 hops, resulting in a tolerable small backbone.

In the consequence of potential irregularities in the toggl the resulting backbone
could contain holes, and thus may not be continuously cdadec

Closing Holes

Either the strict definition of the backbone affiliation byethop distance to the wa-
terline, or sparse connected parts of the topology linkeddse-by thresholdsiiN
WATERLINE HOPSandMAX WATERLINE HOPS can lead to so called holes. That is,
there are multiple parts of the backbone that are not coaddot each other. Thus,
additional rules must be defined to avoid such situations.

For this purpose, each node needs a given minirBUWIKBONE CONNECTIVITY
on successors and predecessors which are neighbors obtiggtand also part of the
backbone. If a node do not fulfill the above requirement, istatart a request in the
appropriate direction. Choosing a too great threshol@&f@KBONE CONNECTIVITY
would lead to plenty of request messages, because the nadiyg batisfy the wanted
connectivity. HenceBACKBONE CONNECTIVITY is set to 2, so that each node should
have at least two successors as well as two predecessors.

There are two supposable situations. On the one hand, a ndde near oMAX
WATERLINE HOPSmay know nodes in the local neighborhood that are not alrpady
of the backbone. On the other hand, in case of unavailalwfituch a neighbor, a
potential connection must be requested. Both cases argloabseparately.

Local Request At first, it is assumed that there are neighbors availablelwhre
not already part of the backbone. Each node checks in giveodseof timeBACK-
BONE CONNECTION CHECK which is chosen in subject to the average lifetime of the
sensor node, the amount of successors and predecessars.isfraissing (in case of
an absence of more than one, the procedure is repeated digtdiypaintil the given
amount is reached), the appropriate node staB8GKBONE JOIN REQUESTtO the
wanted direction. The request is sent to exactly one neigtitad does not already
belong to the backbone, has a greater hop-distance to tleglwatthanMIN WATER-
LINE HOPS and is located as near to the waterline as possible. Of gptlve value
could also be set tMAX WATERLINE HOPS, because nodes between these thresholds
are part of the backbone. Furthermore, the selection ofsta are preferably near
to waterline is done in two steps. At first, all nodes with thaimal hop-distance are
elected. Second, if there is more than one in the resultingrse appropriate nodes
run through an additional election process. Hereby is tleesetected that has the most
neighbors with a minimal hop-distance. Thus, the neighbat is the closest to the
waterline is chosen. The node that receiv&akBONE JOIN REQUESTsets itself as

a part of the backbone, and broadcasts a notification ofifggp.

Furthermore, all nodes doing so set their internal stateElQUESTED BACKBONE
STATE. In case that the actual hop-distance to the waterline @srand is between
the thresholds/1IN WATERLINE HOPS and MAX WATERLINE HOPS, it changes to the
state toPURE BACKBONE STATE As already mentioned above, the sense of doing so
comes to the front later.

18

4.4 Communication Backbone

Global Request In case that there is no eligible neighbor available to extie
backbone structure as needed, a request must be startddisvaiie to cover multiple
hops.

An appropriate node therefore sendBACKBONE EXTENSION REQUESTmMessage
that contains the ID of the requesting node, a time to livestadf node IDs that
contains only the one of the initiator in the beginning, amel &ctual IOCATION IN-
FORMATION. The latter contains the location of the initiator as welltlas wanted
direction. Table 4.2 gives an explicit overview of the camnte

BACKBONE EXTENSION REQUEST
Initiator Node ID
Location LOCATION INFORMATION
Path LiskNode IDs>
TTL Integer

Table 4.2: Contents of BEKBONE EXTENSION REQUEST.

The request is flooded over a local area, and the first nodehvitiiills the given
LOCATION INFORMATION answers an acceptance.

If a node receives a BKBONE EXTENSION REQUEST, it adds its ID to the path
list in the message, and broadcasts it again. In additi@toies the unique ID of the
message, and drops all further receiving ones. As alreagtyribed in Section 4.1, the
message can be identified, for example, by the ID of the toitiand a consecutively
numbered value. Moreover, to avoid an undesirable extermtow themIN WATER-
LINE HOPSthreshold, an appropriately located node drops each extedquest.

In case that a node fulfills the giverolcATION INFORMATION of the message, it an-
swers a BCKBONE EXTENSION FOUND message. This message is routed backwards
to the initiator along the path that is contained in the regugach node, including the
answering one, sets itself as part of backbone. When negefisa state is changed
to REQUESTED BACKBONE STATE Hence, a potential connection from the initiator to
the answering one is assured.

Dynamics

In case that the hop-distance to the waterline changes, ablkbbne in turn must
change its structure by joining and disjoining of nodes.

At first, the disjoining of nodes is discussed. If a node isadly part of the back-
bone, and the thresholsiiN WATERLINE HOPS gets greater than the actual hop-
distance to the waterlineCTUAL WATERLINE HOPS, the node must prepare its leaving
from the backbone. Therefore it broadcasenakBONE LEAVE REQUEST, and stores
the point in timeTIME LEAVE REQ STARTED of that request. Each neighbor that re-
ceives such a request, and knows at least one alternativethatis located on the
same side as the leaving one, answega@<BONE LEAVE ACCEPTED In case, that
one does not belong to the backbone, the request is ignodedoanesponded. Hence,
if the disjoining request was accepted by each neighborishaart of the backbone,
the appropriate node leaves the backbone and notifies ghlmais by eBACKBONE
DISJOINED message, which in turn update their neighborhood. Altersigt if not
enoughBACKBONE LEAVE ACCEPTED messages arrive, the node disjoins anyway

19

4 Algorithms

after a given time periodIME FORCE BACKBONE LEAVE which is verified against
the above mentionediIME LEAVE REQ STARTED. In the consequence of the relative
short amount of time of a potential neRACKBONE JOIN REQUESTat a neighbor, the
thresholdTIME FORCE BACKBONE LEAVE can be chosen comparatively short with
respect to the duration of sending messages. Thus, by kegpmind that a neighbor
may start a new join request, the thresholsiE FORCE BACKBONE LEAVEIS set to
10 x t_msg_send.

If a node recognizes an affecting change of the hop-distemtiee waterline at the
upper side of the backbone that requires a disjoining, ierotOrdSACTUAL WA -
TERLINE HOPSgets greater thamAX WATERLINE HOPS, and the internal state is
equal toPURE BACKBONE STATE it prepares for disjoining the backbone. In this case
the difference betweePURE BACKBONE STATEANdREQUESTED BACKBONE STATE
appears, because tipaire ones form the primarily backbone structure, whereas the
requestednes connect parts of the core structure, and thus havesaathitfpriority of
leaving the backbone. However, in case of the disjoining pfii@ node, the process
works identical to the above mentioned method. Again, the@piate node is broad-
castingBACKBONE LEAVE REQUEST, waits for the replies, and disjoins by sending a
BACKBONE DISJOINED, if either TIME FORCE BACKBONE LEAVEIs elapsed or all rel-
evant neighbors have answered. Contrary, a hode in theestateBONE REQUESTED
is part of an explicitly requested connection between tveags of the primarily back-
bone structure, and thus must ensure the maintenance. Id Wwelproblematic, if all
nodes of such a bridge try to take the structure nearer to etierlie concurrently.
Hence, the process is done iteratively. If such a node repegma decreasing water-
line by a smaller minimal hop-distance than the actual drests the flag@ACKBONE
TRY LOWER which in turn is checked periodically. In case that the flageis and the
node has the highest minimal hop-distance to the waterfiadl neighbors that are in
the stateBACKBONE REQUESTER it starts the disjoining phase as already described
above by sending 8ACKBONE LEAVE REQUEST, and leaves the backbone in any
case on a run off ofIME FORCE BACKBONE LEAVE If two nodes have an equal high
hop-distancen, the one that has more neighbors with a hop-distance 6f1 wins
the choice. At last, if also this comparison is equal, the witk the higher ID starts
the disjoining. All other nodes that dropped out of one ofé¢hmparisons, increment
the number of drop outSsROP OUT CNT, and start the same process at the next check
of the flagBACKBONE TRY LOWER. Finally, in case that a maximal number of trials
MAX LOWER TRIALS is reached, the flag is reset.

The above possibilities have discussed the disjoining deso However, it is also
possible that nodes are going to join the backbone due to piopqiate change in
the hop-distance. This happens if the thresholds getA® WATERLINE HOPS >
ACTUAL WATERLINE HOPSandMIN WATERLINE HOPS < ACTUAL WATERLINE HOPS.
In that case the procedure is very simple, because the ¢ongerode only sets its state
to be part of the backbone, and broadcasts a notificationetarimediate neighbors.
After that, the conventional periodical check for the numiieeligible successors and
predecessors starts.

20

4.4 Communication Backbone

Routing inside the Backbone

The routing process is a very dynamic and on-demand one.hBoptirpose a node
decides as recently as a message arrives, to which neigtiteoraessage should be
forwarded. Each forwarding takes the message closer tarthég selecting an eli-
gible neighbor, and thus makes use of the direction awasendse election process
is done repeatedly due to the kind of criterion, so that tlaeeedynamically different
nodes elected. A more detailed description follows below.

General Behavior As already mentioned above, the path of a message is built
completely dynamic and on-demand, respectively. Thu$ tiae a message must be
forwarded, a node takes into account a list of eligible nieggh, and elects a receiver
by a specified rule. The election process is given in dettat.la

Furthermore, to enhance the reliability of the routing &lpon, messages can be
sent on multiple paths. Therefore the initial sender selnelsrtessage to a given num-
ber of neighbors, whereas each of these nodes act as agtaotitt of an individual
path. As a consequence of the multiple paths and the elgotamess, it is supposable
that the same message is sent to one node several timeshla sase the appropriate
node tries to forward the message to different receivers.

The Election Process The election process is responsible for the selection of a
receiver from the list of eligible neighbors given by theedition algorithm. As a result
of afore sent messages, each node is being aware of relefannation about its
neighbors, such as the energy level, the distance to thelivater whether a neighbor
belongs to the communication backbone or not. On the baghliinformation it is
possible to develop different election rules, each with eced priority, depending
on the wanted kind of routing process. If, for example, sensales malfunction on
water contact, each node could elect the nodes which haventhdiest distance to
the waterline, because these are the ones which will get @tsterwise, if the nodes
are water resistant, each node could elect the nodes withighest energy level to
enable a long-living and dense backbone, which should bawilable after a falling
waterline. Table 4.3 presents some simple election rules.

As mentioned above, the NBW can be used, if the nodes are riet wesistant
and the backbone should be as close to the waterline as [gos#éxhaust the nodes
with the highest probability of dying. To apply this rulegtivaterline detection must
provide distance measurement.

Instead, the FFW routes messages to nodes that are as faframahe waterline as
possible, but still part of the communication backbone.sTan be used if the nodes
are water resistant and takes advantage of the circumsthat¢he more soaked a
sandbag is the more unreliable the appropriate commuoicaghavior is.

As a similar rule there is the LM which elects the nodes of tbemunication
backbone with the lowest measured moisture. Again, thiooeedo avoid wetness
based message loss.

Otherwise, if there is a certain amount of reliability in re@ge transmission guar-
anteed, one can use the GH to elect the nodes with the greaasured humidity.

To increase the average lifetime of all nodes belonging edotickbone, in case of
the possibility of detecting a falling waterline, one ca tise HEL. For this purpose

21

4 Algorithms

Election Rule Acronym | Short Description

Near by the waterline| NBW | Select nodes as near by the waterline as pos-
sible

Far from the waterline FFW Select nodes as far from the waterline as pos-
sible

Lowest Moisture LM Select nodes which have measured the lowest
level of moisture

Greatest Moisture GM Select nodes which have measured the great-

est level of moisture
Highest Energy Level| HEL Select nodes having the highest energy level
Lowest Energy Level LEL Select nodes having the lowest energy level

Longest Distance LD Select neighbors with longest distance
Most Neighbors MN Select nodes with the most neighbors
Random RND | Select nodes randomly

Table 4.3: Possible Election Rules

the election process chooses the nodes with the highegyelesel in each pass, so
that the nodes should keep a similar energy level.

The opposite rule of the HEL is the LEL, which chooses the sowi¢h the lowest
energy level. Applying only this rule at a pass takes no atgmto the mentioned
rules so far, but it is predestinated as a secondary one éwoéapplying multiple rules
per pass.

Another approach is to forward messages as fast as possilthe tsink, and is
described due to the LD. By choosing the nodes, e.g. neighlvath the longest
distance, messages arriving at the source should have th&esmallest number of
hops.

To exhaust the most unimportant nodes, there is the chareledbthe nodes with
the most neighbors (MN), because in case of a loss of thosesmae to too much
energy consumption, there should be enough remaininghatiees.

At last, the random rule (RND) should be mentioned. If one dbwmant to use
a specific rule, or there is not enough information about #ighbors available, the
appropriate nodes are elected randomly.

As indicated in the description of the LEL, there is no neitgssf applying only
one of these rules. On the one hand, multiple rules can bearsedfter the other,
for example at first a fixed number of NBWs, and on a given pathe$e ones the
LEL. On the other hand there are weighted as well as randomoagipes. The latter
means, that a certain probability is assigned to each rudefd® example, the NBW
is taken with a probability of 60% and the LD with a probalilaf 40%, whereas
the decision is repeated in every election process. Insthedweighted approach
assigns a quantifier to each used rule. At first the eligibightmrs are passed through
simple ranking methods, followed by a multiplication of aesulting value with the
assigned weighting. At last, the best rated neighbor igetdec

Maintenance of Multiple Paths As already indicated in the description of the
General Behavigrit is supposable that multiple paths are built over onelsingde,

22

4.4 Communication Backbone

which would lead to overlapping paths, and thus results intdemeck of the routing
process. An example for a supposable situation is showrgr€i4.9.

B, D, B, E,
A A
C C D
B, D, B, E,
(a) Single Overlapping Path (b) Multiple Overlapping Path

Figure 4.9: Overlapping Paths in Routing ProceRsis figure shows the problems of
overlapping paths in the routing process. In both subfigtinesnodes3; and B, send
the same message to no@ewhich in turn tries to fork the multiple paths again. In
Subfigure (a) on the left this is done directly by forwardihg thessage to nodé€3;
and D-, whereas Subfigure (b) shows the pass of responsibilityetadit node, here
D.

To break up such bottlenecks, each node provides a messdgeyhat includes
the message ID, the node ID of the sender, and the timestante oéception. Fur-
thermore, the neighbor to that the message is routed isdstdreus, on receiving a
message that must be forwarded, nodes are able searchttitg Fos an already sent
message, and exclude the appropriate node from the elqutimess. Only if there
are no eligible alternatives, the message is sent to thighber (as had been shown in
Figure 4.9 (b).

In the consequence of the establishment of a message higtaryst be defined
how long those messages are stored. By taking into accoantht paths are started
almost concurrently, and thus duplicated messages arivedde an relatively short
time span, messages in the history can be cleaned quitdyshéence, the threshold
MAX HISTORY AGE is set to the time a message would take to cover 5 hops.

Dead End Inthe consequence of the way of closing holes in the backbwoeture
a node must not have immediate successors, but provideh togat ongoing location
as described iGlobal Request

In such a case the message is equipped with the receivedapatlis routed along
the containing nodes. In addition, if one of those nodes ilbnger available, a new
request can be started that works analogous to the abowebdesone.

Characteristics

The building of a communication backbone as a stripe nexteontaterline was de-
signed for providing a preferably simple coordination ghteat needs as few as pos-
sible messages to be sent. Thus, the definition of a backliblegian depending on
the hop distance to the waterline has been set, by addindesmmgthods of mainte-
nance. In the consequence of the lack of coordination irteiel®ackbone, the routing
process has been set up for a load balance of the forwardeshgess

23

4 Algorithms

4.4.2 Short Path Mix Up

The idea of theShort Path Mix Upis to build arbitrary short paths in the near of the
waterline. Each path is thereby connected to at least ome, @thd thus build the basis
for the routing process, because messages can be sent ladopgths. Figure 4.10
indicates the idea of this approach.

N o ®\®/®\®
o @) ®
o e

@)

Figure 4.10: Example of Short Path Mix Uphe figure shows a potential situation of
already built short paths in a part of the topology. Each efé path is connected to
at least one other. Thus, the result is one single, contiswmnnected path.

At first, the basic structure of the paths must be built, fofld by a refinement phase
to close potential holes, and the consideration of dynahyieeeans of an alteration of
the waterline. At last, the routing process must be desdribbe details are presented
below.

Building the Backbone

In the beginning the paths must be built from scratch. Thaameeno node in the
network already belongs to a path in the initial phase. Inteuig the coordination
between the nodes must be done strict locally. However,dbe is to build a rudi-
mentary infrastructure in the near of the waterline. Rang®sulected nodes start to
build paths that are restricted by a maximal path lengilx PATH LENGTH. The re-
finement of the result as well as the closing of holes is desdriater in the according
subsection.

Election of Initiators At first, the initiators of the built paths must be elected by
appropriate rules. It must be assured that the resultingspate located relatively
near to the waterline. Furthermore, only a small subset déashould initiate a path
building request to reduce the density of created pathstrarglavoid an unnecessary
message overhead in the consequence of the coordinativadretnultiple initiations.
However, each node that is not already part of a path cheakisén intervalstiME
CHECK INITIATION, if it fulfills the conditions for the initiation of a new patfihat is,
nodes must be located in a given hop distance to the watgwinieh is bounded by the
thresholdsviiN wL HOPS andMAX WL HOPS. Furthermore, nodes are not allowed to
have a neighbor that is already part of a path. This is pdstli reduce the number
of initial path requests, and thus to provide only a roughctired backbone in the

24

4.4 Communication Backbone

beginning. A refinement as well as the improvement to a coatis connected path is
done later on.

If the conditions are fulfilled, a node startsPaTH BUILD REQUEST with a given
probability that depends amAX PATH LENGTH as well as the neighborhood density
of each node, and is given by = Grzozm — L aensiy- || SO, the request is sent
to one specified neighbor that is elected by a simple proce$sllaws. At first, all
neighbors that are located between the threshaldswL HoPs andMAX WL HOPS,
and for which a definitely direction decision can be madee taken. Then, one of
those neighbors is selected randomly.

The PATH BUILD REQUEST message contains the unique ID of the initiator, a list
of IDs to which each receiver of the message adds itself ia oagoining the path,
the maximal length of the path, and the actual hop count tresage has been taken.
The unique ID is used to identify the created path by settivgggs PATH ID to the
one of the initiator. In addition, aOCATION INFORMATION is given. That can be,
for example, the reference points as described in Secti®d,dand the designated
direction the path should take. Table 4.4 illustrates theems of such a message.

PATH BUILD REQUEST
Initiator Node ID
Location LOCATION INFORMATION
Path LiskNode IDs>
Max Length Integer
Actual Hop Count Integer

Table 4.4: Contents of®H BuUILD REQUEST.

At last, after sending theATH BUILD REQUEST to the appropriate neighbor, the
initiator sets its state teB TMP PATH that describes a temporary, but not finally ac-
cepted path. The state is changed to the accepted®mecc PATH, if the initiator
receives &ATH BUILD ACCEPTED. In addition, the node stores the timestamp of the
path request. Thus, to avoid that it stays in that tempotaig &1 case of a malfunction
on another node, the initiator resets the state, if the givea TIME WAIT REQ ACC
has passed without receiving an acceptance. The threshséd proportional tmAx
PATH LENGTH, because the potential answer takes at Most MAX PATH LENGTH
hops. Finally, the initiator sets its role in the pathe® ROLE ENDPOINTWhich is set
in contrast taB ROLE LINK on the nodes that connect two endpoints.

Processing the Initial Request If a node receives BATH BUILD REQUESTthere
are several cases that must be considered. So, for exangplending on the actual
state such requests are either accepted or rejected. Fodige an acceptance must
be specified. The cases are described in detail below.

¢ A node that receives BATH BUILD REQUEST s not already part of a path,
and consequently its state is neithe@® TMP PATH nor BB ACC PATH. In the
consequence of the fact that the node is not already bounghatha it accepts

In case of using th&elative Reference Poinfsom Section 4.3.1, all neighbors with a different hop
count to one reference point than the own, are elected.

25

4 Algorithms

26

the request and changes to the seaMP PATH, and sets the path identifies
PATH ID to the ID of the initiator that is contained in tHaTH BUILD REQUEST
message.

If the maximal path length has not yet been reached, and iheeendpoint of
a path in the neighborhood, the actual path is extended eldrerthe node adds
its ID to the path in th@ATH BUILD REQUEST, increments the actual hop count,
and forwards the message to an eligible neighbor. In addlitiee state is set to
BB TMP PATH and the role t@B ROLE LINK, respectively.

Otherwise, if the maximal path length is reached, or the @meite node has
a neighbor that is an endpoint of a path, the actual path stdsdinalized.
That means, the node sets its statsBACC PATH and the role t®8B ROLE
ENDPOINT, respectively. Moreover, the node sendsasiH BUILD ACCEPTED
message back along the temporary path by using the appmopmfarmation
that can be taken from the request message. In addition, ¢éssage also con-
tains the above describedolCATION INFORMATION. Each path member that
receives the acceptance changes the state tecc PATH (the role has already
been set t®B ROLE LINK), and forwards the message. Finally, the acceptance
message arrives at the initiator which also changes the atat already has the
role of an endpoint. Hence, the path is created.

A node that receives@ATH BUILD REQUESTIs already part of a path, and con-
sequently its state is eith&B TMP PATH or BB ACC PATH. Moreover, the role

of the receiver i8B ROLE LINK. Under these circumstances the path request
is rejected by sending @ATH BUILD REJECTEDback to the sender. Thus, the
node that receives the rejection is able to try to find angblaéin. Nevertheless,
the building of the path can be forced, but such a situatiategcribed later in

an extra subpoint.

A node that receives BATH BUILD REQUEST is already part of a path, and
consequently its state is eitheB TMP PATH or BB ACC PATH. Moreover, the
role of the receiver iBB ROLE ENDPOINT. In this case, the behavior depends
on the length of both paths. If the actual path length plusi¢ingth of the
requested path is greater theax PATH LENGTH, and the request contains at
least two nodes, the requesting one is told to finalize its pgitsending @®ATH
FINALIZE message back. Thus, the result are two endpoints that asglin
communication range.

Otherwise, if the maximal path length is not exceeded, ordlggest contains
only one node, both paths are joined. Of course, the lattaditon could result
in a path length longer than allowed, but is accepted duemplaiity matters.
However, an endpoint that receives such a request sePaBHaJOINING mes-
sage back by adding the knowledge of the existing path. Eurtbre, it sends
aPATH UPDATE along the path it already belongs to, and thus informs theroth
endpoint about an update of the path.

Furthermore, the node is going to change its role from beimgralpoint to a
link. If there is no other endpoint in the neighborhood, tharmge of role is
done without further circumstances. Otherwise, if thereaaly is at least one
endpoint connected, the node is a link as well as an endpejperdling on the

4.4 Communication Backbone

point of view, and fulfills the role of &8 ROLE HYBRID. This is an unfortu-
nately solution. Thus, a node that fulfills both roles, ttegancel the existing
connections by sending @NCEL CONNECTION REQUESTto the appropriate
endpoints. Those in turn try to fulfill the request by eithiengy cancelling the
connection (if permitted by the threshaldN CONNECTIONS that is described
later in the subsection abo@osing Hole$ or starting aNEwW PATH REQUEST
(that is also described i€losing Hole$. If successful, an endpoint answers a
CANCEL CONNECTION ACCEPTEDand cancels the connection. In case that the
initiating node has received the acceptance by all relexagpoints, all connec-
tions are canceled, and the role is changed to be only a link.

e A node receive®ATH BUILD REJECTED Here, a node has sent a path build

request to a neighbor that is already part of a path. At firstarks the neighbor

as a path member. Next, it tries to select an alternativehbeigto send the
build request to. If the latter is not successful in the cqusace of a lack

of alternatives, or all potential nodes are already path bezs the request is
forced. Therefore the node elects one of the marked neighbod send BATH
BUILD FORCE message. The node that receives such an enforcement, can rea
in two different manners depending on the actual situa@gsrshown in Figure

4.11.
E ' E E
g O © g O . © © g O o’
© & @ © & O © -
OA OA OA
O O O
(a) Force Path Build (b) Cross-Over Paths (c) Overlapping Paths

Figure 4.11: Force a Path Buildinghe Figure shows the enforcement of a path build-
ing. In Subfigure (a), nodd sends an enforcement to noBewhich is already part of

a path. On the one hand, if there is an eligible nodé3is neighborhood B proceeds
the path building request. The result are two paths whtlas an cross-over point as
shown in Subfigure (b). On the other hand there is the sitnaticGubfigure (c). Here,
node B joins the two paths, and acts as a branching or merging poapethding on
the point view. Hence, all nodes frobBhto the endpointzs are part of two paths.

If the enforced node has at least one eligible neighbor focgeding the path
building request, it forwards the request to the approgrisighbor. This is
done by ignoring the maximal path length contained in thesags, and thus
can result in a path that is at one greater than the limit. Hewé¢he node is part
of both paths and acts as a cross-over point. To distinguishpath from the
other, it stores the appropriate information such as thquepath ID, the role
it takes, and so on, separately.

Otherwise, if the request can not be forwarded in the coresemuof a lack of
potential neighbors, the new path is joined to the existing.orhus, the node

27

4 Algorithms

acts as a branching point, or the other way around, as a nggugint of the two
paths. Again, the information about both paths is storedrsegly. To finalize
the path request, BATH BUILD ACCEPTED that contains the information about
the already existing path is sent back to the requester.ditiaid, the appropriate
part of the existing path is updated by sendinga@H NEW OVERLAP message
that contains the information of the requested path. Thesaggsis routed along
the path up to the endpoint, and each receiving member sraaeparated path
information for the new one.

General Behavior of Forwarding Path Requests In general, there are prefer-
ably neighbors chosen that are located between the thosshol wL HOPS andmMAX
WL HoPswith respect to the hop distance to the waterline. If sucheat®ln is not
possible, and there are alternatives with a hop distancegrénanMAX WL HOPS,
the nearest one (with respect to the waterline) is chosdrer@ise, if the path request
occurs in the near of the waterline, and there are only at®es with a hop distance
less tharmIN wL HOPS, none of them is chosen due to reliability matters.

Arranging the Endpoints In case that endpoints of different paths are in commu-
nication range, each endpoint must know the direction ottmnected paths. Figure
4.12 gives an overview of the situation.

Figure 4.12: Arrangement of EndpoinfEhe figure shows several paths that are con-
nected over their endpoints. Due to the fact that the othds et the paths are located
in different directions, it must be decided which connegqtaths are going forwards,
and which ones are directed backwards. Thus, by exchangm@formation about
the respective ends of the paths, notles able to decide that node8 and C' are
endpoints of proceeding paths, whereas nédis a backward one.

As described in the section about the processing of thaiméguest, each endpoint
knows the respective location information of the other emapof the path. Thus,
if a new endpoint has been recognized, they exchargpera TARGET message that
contains the appropriate location information.

As-Is State after Initial Phase After the initial phase has been finished, there are
several paths available, and each node in the given hopdesta the waterline is in
range of at least one path. The paths in turn may not alreagly t@nnected to each
other, soitis possible that there are endpoints which demmi any succeeding paths.

28

4.4 Communication Backbone

This happens, because the initial phase does not providetigous connection, and
thus is discussed in the section ab@lnsing Holes

Moreover, all paths can be identified by a unique path ID thaqual to the one
of the initiator. If the initiator gets lost, or the path iviied in the consequence of a
malfunction of a member, the path must be restructured. Aysioothers, such cases
are discussed in the section ab@ythamics

Closing Holes

As already mentioned above, the short paths may not be cantity connected. That
can be, for example, because the initial phase only provédemugh structuring to
reduce the number of needed paths. Moreover, the path mgigdarts only in a given
hop distance to the waterline, and in the consequence offaltg missing parts in

the dike structure, there is an appropriate hole in the bawkb

General Process The basic idea is that each endpoint needs at least one ather e
point in its communication range to build an ongoing conioecas already described
above and shown in Figure 4.12.

If the required number of connectiomaN CONNECTIONS is only set to one, the
overall result could be a single path subdivided in shorso@n the other hand, if the
minimum is set to two or greater, there would result too merfuested paths. Thus,
each endpoint selects the appropriate threshold randomdyprovide an adoptable
mixture the probability for one and two, respectively, rnegd connections is set to
p = 3 each. More than two required connections are not used.

If an endpoint recognizes that the threshaldl CONNECTIONShas not been reached,
it elects one neighbor in the appropriate direction, andiS@NEW PATH REQUEST
The neighbor in turn is a new initiator of a path, and thus thilllng works as already
described above. Theew PATH REQUESTforces a node to initiate a new path. Hence,
the restriction of the given distance to the waterline isus#d, and it is possible to
create paths outside the defined area.

Special Case: Path Finding The General Procesassumes that there are neigh-
bors in the direction of a path request. If not, an appropriade can not extend
the backbone although there may be a possible path. FigliBeshows a potential
situation.

Unbounded Nodes
s > A B <o :

Backbone ‘x > Backbone

Figure 4.13: Dead End of Backbon&he figure shows a supposable situation for the
creation of a communication backbone. If the backbone if btrict locally, that
means it is extended one by one, the structure may be caugtdead end, although
there would be an alternative path as illustrated by the ihand B.

29

4 Algorithms

Such a situation occurred already in tBgipe next to the Waterlinéut is repeated
here by reason of completeness. Thus, such a case must bd byglallowing parts of
a path to run in the opposite than the wanted direction. Tée isl that an appropriate
node without an eligible successor floods a request overdtweonk. If there is any
node that receives the request and is located in the wantedtidn, it answers an
acceptance. The initiator in turn can start a new path betgiest after receiving such
an acceptance. A more detailed description follows.

If an endpoint wants to extend the backbone due to a lack ofaxiions, it starts a
PATH SEARCH REQUESTby adding its ID and the actuabCATION INFORMATION.
Moreover, ariIME TO LIVE (TTL) is added as well as the capacity for storing the path
the message has taken. The structure of the message haly &lees shown in Table
4.2, but is repeated in Table 4.5.

PATH SEARCH REQUEST
Initiator Node ID
Location LOCATION INFORMATION
Path LiskNode IDs>
TTL Integer

Table 4.5: Contents ofA7H SEARCH REQUEST.

The RTH SEARCH REQUESTIs flooded over the network, and each node that re-
ceives the message adds itself to the containing path,effowarding it. In addition,
such a node stores the ID of the message, and discards exthir fieceiving one. As-
suming that such messages are not sent very often, the TTtharitheTIME HOLD
SEARCH REQUESTSf storing the IDs can be chosen relatively high. Thus, the iBT
set to 100 hops (but depending on the supposed size of thigypid can be chosen
greater, of course), armdME HOLD SEARCH REQUESTSproportional to the TTL.

In the consequence of the addeddATION INFORMATION a receiving node is
able to decide whether it is located in the wanted directigh vespect to the given
location or not. If so, the backbone can be extended and {mppate node sends a
PATH FOUND message back to the initiator by adding the so far coverddqratvhich
the message is routed back, and the @@ ATION INFORMATION. After sending the
PATH FOUND, the node discards all other messages with the same ID.

The first ATH FOUND message that is received by the initiator (there can be more
than one, of course) is used for building an appropriate, paktiereas later received
ones are ignored. However, the initiator knows a potenth fior extending the back-
bone, and thus sendsP& EDEFINED PATH BUILD message that contains the received
path of the RTH FOUND message, and is routed over these nodes. Each node that
receives theeREDEFINED PATH BUILDadds itself to the path, and sets the statBeo
ACC PATH.

Dynamics

The case of dynamic behavior in the network can occur in séuatters. At first, path
members may malfunction, and thus the broken path must berdiked or splitted
in two new ones. Then, in the consequence of a variation it#obone structure,
endpoints of paths that are connected to each other shoatk ¢hit is possible to

30

4.4 Communication Backbone

join both paths. And lastly, the waterline may vary, andesithew nodes must join the
backbone or existing nodes leave.

Malfunction of Path Members At first, the malfunction of path members is dis-
cussed. The basic idea is that a node which recognizes aduagthor in the path,
starts a newpATH BUILD REQUEST N the appropriate direction. Such a situation is
shown in Figure 4.14.

W@ o— - L
equest

(a) Path that loses a member (b) New request due to a lost member

Figure 4.14: Malfunction of Path Member#.a path member gets lost as shown in
Subfigure (a), both nodes in the path which recognize theumatibn start a nevpATH
BUILD REQUESTIN the appropriate direction as illustrated in Subfigure.(b)

In the consequence of the way creating the path as alreadyilues above in Sub-
sectionBuilding the Backbonesach path member knows the nodes as well as the order
of those, and thus sendPaTH BUILD REQUESTby adding the nodes of the still exist-
ing path to satisfy th&Ax PATH LENGTH. If the malfunction occurs to both sides of
a path member, theATH BUILD REQUESTIs sent in both directions.

In addition, if a endpoint gets lost, the connected onesgrize a missing path, and
thus start alEw PATH REQUEST

Path Joining It is not required that a path is composed of exactlyx PATH
LENGTH members. Hence, there may be several very short paths thatdbe joined
if possible.

Each endpoint knows the length of the connected paths. ladded lengths are
not greater thamAX PATH LENGTH, the one with the higher ID sendsraTH JOIN
REQUESTmMessage to the connected endpoint. The condition of the pbstilated to
avoid a concurrent sending of join requests. The node tbatwes the message, sends
aPATH JOIN ACCEPTback, changes its role to be a link, and stam®®B+4 UPDATE On
the former existing path. On receiving the acceptance, pipeogriate endpoint also
performs the change of role as well as Ha@H UPDATE.

In case that a endpoint of the joining process was conneotadl least one other
path, it fulfills both rolesBB ROLE ENDPOINT and BB ROLE LINK as already de-
scribed above with respect to the joining of paths afterivétg a PATH BUILD RE-
QUEST. Again, aCANCEL CONNECTION REQUESTIS sent, by waiting for &ANCEL
CONNECTION ACCEPTED If the request succeeds, the role changes to be only a link.
Otherwise, the node still fulfills both roles and is calleBBAROLE HYBRID.

In addition, the initiation of a join request must consideotspecial cases. On the
one hand, an endpoint may have different alternatives oirjgithe paths. In such
a case, the prospective longer one is chosen, followed bgédhision for the higher
ID on equality. On the other hand, an endpoint may receiveentitain one request.

31

4 Algorithms

Then, simply the first request is accepted, by rejecting dter lones with &ANCEL
CONNECTION REJECTEDMeESSage.

Variation of the Water Level The last discussed case of dynamics is the variation
of the water level. In such a case, the minimal hop distancth¢owaterline may
change, and thus either existing paths must be canceledvonmes created.

If a node’s minimal hop distance to the waterline was greidian MAX WL HOPS,
but changes to be less or equal, it is a potential new path mefabthe rough back-
bone structure. Thus, if there is no path in the neighborhadcglich a node, it starts
the initial phase as already described above. Otherwigigeiié is at least on member
in the neighborhood, the node waits for an incommgH BUILD REQUEST.

On the other hand, if the minimal hop distance of a path mernbanges to be
smaller tharmIN WL HOPS, it tries to leave the path and consequently the backbone
structure. In the consequence of the assumption that ageisicig waterline is noticed
by many path members on the lower side of the backbone, it igemhto let single
nodes leave a path. Instead, the whole path of such an oncarigcanceled.

However, if a node is below theiN wL HOPS range, it sends BATH CANCEL RE
QUESTalong the path to both endpoints to inform them about theeesing waterline,
and thus the unreliability of the actual path. Of coursenieadpoint recognizes such
a variation, the message is sent to the other one. The endpoiturn try to cancel
the whole path by sendingreDRCE CANCEL CONNECTIONO the connected paths, so
that those ones are also informed about the potential abikdy. In case that there
is an alternative path, an endpoint of the designated cadhqelth receives @ANCEL
CONNECTION ACCEPTEDbY the appropriate connection, and forwardsasiH CAN-
CELED message through the path. A member that has received suctsageddy both
endpoints, leaves the path.

Routing inside the Backbone

In the consequence of the structure of the backbone, thimgopitocess can be simpli-
fied, because a continuous connection is provided by the& patrs. Hence, routing
is done by forwarding a message to the next path member, amdain endpoint to the
appropriate connections.

Nevertheless, in consequence of the path building protess tare some special
cases that must be considered. An endpoint is generallyosed@o be connected to
multiple paths, and thus messages are branched and mertfeaberpoints. Moreover,
each path member has specified successors and predecsesdbed,the reliability of
delivery of messages can be improved. Both cases are degénildetail below.

Branching and Merging There are several cases in which a path member is con-
nected to multiple nodes, and thus a node can either receixe tllan one of the same
message, or must send a message to more than one neighhaoe #ig5 illustrates
different examples.

The branching of messages is obvious, because an incomisgpgeeis sent to all
connected nodes that are directed in the appropriate idinect

On the other hand, the merging of messages is also a simplebsimlis method,
but requires additional resources. Hence, a routing cachedd that stores the ID of

32

4.4 Communication Backbone

Branch Branch Branch

Ex

Ey 2 E.
; E, O, o
£, 49\9/9 Eyy H\ (131 \\@L/ e
M \C\\\A £ E,p o '
E%\®/®\E® G\@/Q Elé)v
Merge Merge Merge
(a) Multiple Connections (b) Hybrid Path Member (c) Overlapping Paths

Figure 4.15: Branching and Merging in Routing Procedgbfigure (a) shows a stan-
dard case of an endpoint;s connected to two paths over the nodés and F;.
Thus, if a message is sent from the left to right; sends the message to both nodes
FE5; and E53;. The other way around, by sending a message from the righiettett,
the same one is received two times on nfge Hence, by enabling a routing cache of
message IDs, the second one can be discarded. In Subfigutee(b)is an analogous
case, but in contrast to the former mentioned, the appropneodeH is a link as well

as an endpoint. At last, in Subfigure (c) the focused nbdg only a link, but also
connects two paths.

a forwarded message as well as the timestamp of the evertie X of a received
message is found in the cache, the message is discarded.

Although the contents of the routing cache are very smatlabse it contains only
the ID and a timestamp, old ones must be cleared after a given By taking into
account the maximal path lengthaX PATH LENGTH, each content with a timestamp
older than the average time a message is transmittedcv@nX PATH LENGTH hops
is deleted.

Improving Reliability of Message Delivery For improving the reliability of
message delivery, it is postulated that there are pericgiighbor detection messages
sent. If such a message is no longer received by a neighleogppropriate node is
assumed to be dead. Furthermore, the interval is giveNEDgHBOR DETECTION
INTERVAL.

To enable a message cache that contains the forwarded reessdghe neighbor
to which it has been sent to. If there is another messagevestéy that neighbor,
it is supposed to be still alive, and thus the messages whilassociated with the
neighbor are deleted from the cache. Otherwise, if the theigis supposed to be dead
after theNEIGHBOR DETECTION INTERVAL there is a new path built as described
above in the section aboDlynamicsandMalfunction of Path Membergfter that has
been done, the cache is cleared and the appropriate messagemnt along the new
path.

Characteristics

The Short Path Mix Uphas been designed for reliability reasons on the one handd, an
dynamics on the other. The latter is provided by the shostoéshe paths, so that the
maintenance of each path is hold tolerably local to only ariedes. The reliability

33

4 Algorithms

on the other hand is assured due to the general path strudtiua¢ means, each node
that belongs to the backbone has got at least one successonampredecessor which
allows for an improvement of the reliability of message \d&ly. Moreover, messages
are sent over multiple paths to provide additional robisstne

34

5 Implementation Detalils

This chapter presents the used simulation environment #dsaweémplementation

details. At first, the used discrete event simulgsbrawn is presented by a short
overview. Then, the additionally implemented visualiaatiramework is introduced,
followed by details about the implementation and environtved the designed algo-
rithms.

5.1 Simulation Environment

The algorithms were implemented and simulated using theretes event simulator
Shawn, which has been designed for simulating large wirelessoseretworks on an
algorithmic point of view. For portability reasons it is Wen in Standard C++, which
in turn allows the usage on different platforms, but at l&HstX and Windows sys-
tems providing a recent compiler version. Moreover, thecdbpriented design struc-
ture leads to an easy extensibility, and thus a comfortatssipility of implementing
the designed algorithms.

However, as already mentioned above, the central poiShafwn is the simulation
of very large sensor networks containing up to hundredsafgands of nodes, as well
as the principal functionality of conceptualized algamth This means that there is
less focus on representing the physical layers of sensaspant the support of real
time applications. Instead, an abstraction of the desigifamctionality of algorithms
comes to the front. The simulation process is divided intdtipia iteration steps, each
allowing a sensor node to do its work, send messages, angingcenessages which
have been sent in previous iterations.

As a rough description of the representation of the simdlaterld in Shawn, the
topology consist of a given number of nodes. Each node inigiable to contain
multiple processors, which are able to execute distribatgdrithms on the network.
In addition, it is possible to implement so callsinulation taskshat allow a central
point of view onto the network, and can be executed eithee ancepeatedly on given
points in time.

When the simulation is started, the boot method of each nedalied, which in
turn let the associated processors start their initiatimaphase. The same process is
done in each iteration step by executing the working phaskeohodes, and thus the
appropriate procedure of the processors. In addition, ppssible to send messages
that are broadcasted, and received by each neighbor whHiteited in the given com-
munication range. The decision whether a neighbor is ingaag be done by several
communication models which are available in the core lijprdviessage delivery in
turn is simulated by different transmission models. Thelalke models vary from a
reliable one that delivers each sent message, over a ranggmubdel that simulates
a random packet loss, up to several MAC layer models.

35

5 Implementation Details

In contrast to the simulation of the nodes in each iteratibis also possible to
execute simulation tasks. They are started either befordter one step, and can
additionally be added to the repeatedly execyed or poststep-tasksSuch a task has
access to the whole simulation environment, and can be @@edxample, to iterate
through all nodes and collect wanted information or eleetsdior special purposes.

The simulation environment provides additional featurest tan be used for the
assistance of added extensions. With respect to the implatien that has been done
for this thesis, a short description of the most importarsiollows.

In the consequence of the general and basic interface thedvuled by the classes
of the core library, daggingconcept has been realized. This concept allows each class
derived from theshawn: : TagCont ai ner to store additional arbitrary data. One
can therefore add Bagto such a class. ThEagis identified by its name, and contains
an integer, a string, a reference tshawn: : Node, and further information. Each
other class is now able to read the stored data, without kigpwiho has written the
content.

Next, there are thReadings A reading returns a defined value such as an integer or
a double value for a given position in the simulated worldafléan be, for example,
the current temperature at the appropriate position, dn wspect to this thesis the
moisture penetration in a dike. In addition, a reading cap bk used for computing
the height at a given 2D-coordinate.

The logging ability is the feature presented at last. Setkcdasses such as a
shawn: : Si mul ati onTask, shawn: : Processor, and so on, are able to use
additional logging libraries, and are associated with an mgger object. This leads
to the possibility of customizing each logger separatelyt éxample, a logger of an
implemented processor can be completely disabled, or setvented logging level.

The structure of the source code can be divided into twordiffeparts. On the one
hand, there is the core library which provides access to th@evsimulation and is
responsible for the fundamental functionality such as emgsdransfer, execution of
the iteration steps, and so on. On the other hand, there féeeedi applications, or,
as better said, modules, which can contain implementatiéradgorithms, separate
extensions of the core library, or the like. By building thHadry, each module must
be enabled on purpose to be compiled. Hence, especiallpsaies that use external
libraries should be implemented as modules.

36

5.2 Visualization Framework

5.2 Visualization Framework

For debugging purposes on the one hand, and the possililég appealing demon-
stration of the used algorithms on the other, the discretatesimulatoiShawn needed

to be extended by an visualization framework that allowsegfdimensional view on
the simulations as well as running in real-time with respgedhe current simulation
instance. Thus, the issue was divided into three differaskd. At first, an adequate
library for the visualization itself had to be selected amiggrated into the simulator.
Second,Shawn had to be extended to be able to allow multi-threaded apjuita

At last, a general and mostly simulation independent pdigibf displaying different
scenarios irShawn had to be realized. A rough design overview is given in Figure
5.1.

Concur rent_Adapt er opensG Adapt er

<<interface>> : oot oo L
ConcurrentAdapter <t - | TaskSupplyConcurrentAdapter |— e ittt B ->| OpenSGAdapter | | OpenSGRuleset |
T

| : | TaskAlterOpenSGRuleSet |

| ConcurrentAdapterProvider | | TaskAddConcurrentAdapter

(CpensG Vi sual i zati on

<<interface>> <<interface>>
OpenSGSceneManager |< - A

OpenSGBasicMaster OpenSGBasicWindow
OpenSGScenegraph 1 1
1 1
1 1
1 1

| GlutOpenSGMaster | | GlutOpenSGWindow

Figure 5.1: Visualization Overview.The visualization framework consists of three
different parts, each performing a separate function. Thecurr ent Adapt er,
which is responsible for a multi-threaded, parallel exémutof applications, is shown
on the top left. Th&®penSG Vi sual i zat i on at the bottom acts as an interface to
OpenSG by implementing an own scene manager. OplesnSG Adapt er enables
the network topology ddhawn to be visualized by OpenSG, and is shown on the top
right.

The design goal of this solution was an almost independetizadion of the sev-
eral parts. Hence, the only purpose of @encur r ent Adapt er is to provide an
easy to use interface for enabling an arbitrary applicatibbe executed in parallel
to the simulation. Furthermore, ti@enSG Adapt er connected with th€penSG
Vi sual i zat i on has been designed to allow to be easily replaced or appended b
other graphic libraries.

A more detailed description of the different parts folloveddav.

37

5 Implementation Details

5.2.1 Concurrent Adapter

As already mentioned above, the responsibility of@emcurrent Adapter isa
multi-threaded execution of tasks. For a realization of thhjective, there are gen-
erally two different basic concepts which have both its atlkges and disadvantages.
On the one hand, the core library$tfiawn can be extended to handle multiple threads,
that have all access to all the available data in every poitime. Such an approach
would result in a very powerful, flexible, and almost unrestd solution, but would
also require a deep intrusion inghawn’s system libraries. On the other hand, the
multi-threading ability can be implemented as an additionedule, which would be
the more restrictive solution, but would also not need arange in the core library.

The decision has been made for the latter concept of implengeooncurrency as
a module, and is based on the following reasons. The mostrtamgargument is the
requirement of an optionally use of the multi-threadingctionality due to the need of
an inclusion of an additionally external library for muitireading support in C++ that
also provides portability, by a coexistent lack of impodarof concurrency in most
simulations. Furthermore, as already mentioned in Seé&tibnthe simulations run in
multiple steps, which would require a synchronization bffaleads at the end of each
iteration by use of the concept of an integration in the cdmaty. Additionally, it
should be defined what happens on an alteration of the sametatultiple threads
during one iteration. However, the module concept is théebehe for this purpose,
and is designed as follows.

At first, the multi-threading ability itself must be provididy a portable solution.
For this purpose, there is the chance to implement this ifumatlity either from scratch
or to use an external library. Due to stability reasons, a$ asenot to reinvent the
wheel, the latter has been done. Hence, by selecting a politatary for C++ that also
provides object-oriented support, the decision has beeferita ZThread, that is, for
example, well documented in [EA03]. The most importantsiaikunnabl e which
provides an interface to enable inherited classes to beutsgt@s a thread. Those
classes can be either run separately by creating alievead object, or handled by
so called executors. Executors are responsible for the geament of created threads,
and thus reduce the coding overhead as well as acting as evisope Furthermore,
the ZThread library offers different types of mutexes andditions for controlling
the access of multiple threads on the same resource. Epdogusage of mutual
exclusions is provided by an additional feature cal&chr d, which allows a safer
as well as simpler handling of mutexes. The library offercmmore possibilities of
implementing multi-threaded applications suciTasead Local Storageseveral types
of executors, and so on, but the most important featuredreated above.

However, using the ZThread library, a multi-threaded esitam for Shawn had to
be written, and designed to be an optional module. As meati@bove, a simulation
in Shawn is composed of multiple iteration steps, each allowing tbdes in the
network to work, as well as sending and receiving messagesicé{ the idea is to
create ashawn: : Si mul ati onTask that can be added to the simulation as a so
calledpre- andpoststep-taskrespectively, which is run before, or after, each iteratio
This task in turn contains a provider that is maintainingséeeral applications. Figure
5.2 shows a class diagram of the implementation.

http://zthread.sourceforge.net/

38

5.2 Visualization Framework

Concurrent Adapt er

TaskSupplyConcurrentAdapter

0 <<interface>>
~ ConcurrentAdapter -concurrent _adapter_provider_: Concurrent Adapt er Provi der
P -executor _: ZThread: : Concur r ent Execut or -—--
+boot (shawn: : Si nul ati onControl | er &) +run(shawn: : Si nul ationControl ler&: void
+not i fy(shawn: : Si nul ati onCont rol | er &) +concurrent _adapter _provi der_w(): Concurrent Adapt er Provi der &

+concurrent _adapt er_provider(): const ConcurrentAdapter Provi der &

ConcurrentAdapterProvider TaskAddConcurrentAdapter

L—<>t-adapter_: st.: : map<s.td: :s(r! ng, Concur r ent Adapt erl—.hndl e> + = {+run(shawn: : Simul ationControl er&: void
-wakeup_condi tion_, fin_condition_: ZThread:: Condition 1
-wakeup_cond_nutex_, fin_cond_nutex_: ZThread:: Fast Mut ex 1
-fin_nutex, adapter_nutex_: ZThread:: Fast Mit ex

I<<add i npl ementations of Concurrent Adapt er >>
+run(): void 1
+wakeup(): void 1
+wait_for_finish(): void 1

+add_concurrent _adapter (const std::string& < =
add_concurrent _adapter): void

I
|
|
|
r
|

friveas] [shavo]
\V4 V

<<interface>> . . .
Runnable | ConcurrentExecutor | | FastMutex | Condition SimulationTask
—

+run(): void
+~Runnabl e()

Figure 5.2: Class diagram of the Concurrent Adapléis class diagram demonstrates
the functionality of the Concurrent Adapter. TGencur r ent Adapt er Pr ovi der
maintains implementations of th@oncur r ent Adapt er, which acts as an in-
terface for potential applications. Furthermore, it is glipd by the simula-
tion task TaskSuppl yConcurrent Adapter. That means, each time this
task is started, it calls theConcurrent Adapt er Provi der to wake up,
which in turn notifies the appropriate applications. At lashe simulation task
TaskAddConcur r ent Adapt er is supposed to add those applications to the
provider.

Considering the above description, a potential applicataist implement th€on-
current Adapt er,and add the result to the provider with the aid of Tless k Add-
Concurr ent Adapt er . Moreover, theTaskSuppl yConcur r ent Adapt er
should be added as a pre- or poststep-task.

5.2.2 Visualization Library

By selecting a capable library for the visualization praceise decision had to be made
out of several libraries. One of the most significant ratimjugs was the demand
on portability, so that the library can be used at least onddiivs as well as Linux
systems. Further important requirements were an Open &tinense like the GPL,
a relatively easy to use but potent interface, preferablyable release, and a well
documentation.

39

5 Implementation Details

OpenSG

The choice had been made for OperfS@ portable and Open Source scenegraph
system using OpenGL, that provides a fully object-orienBet interface, and was
designed, in contrast to other scenegraph systems, foi-thedading support. The
advantage of scenegraph systems compared to other gramlaigels is the internal
organization of the drawable components in a graph of cdedecodes building a
tree structure, which in turn allows a rise of performanceisplaying scenes due to
the efficient possibility in optimizing the data passed @ timderlying OpenGL layer,
as well as an easy handling of the data that should be showddigica removing,
or modifying appropriate nodes in the graph. Especiallyléiier characteristic can
be directly used for visualizing a simulation 8hawn, and is described in detail in
Section 5.2.3.

However, OpenSG, in always the same manner like other sgrtegystems, hold
the whole scene in a graph structure that allows multipleqtarfor nodes. An example
is shown in Figure 5.3.

(a) Graph Structure with Multiple Par- (b) Graph Structure of OpenSG
ents

Figure 5.3: Graph Structures of ScenegrapBsibfigure (a) shows a typical graph
structure of scenegraphs with multiple parents per node ekample, by representing
a car that is built of a body and four wheels, the geometry efvtheels can be stored
only once. By keeping the multiple graph structure in minge@5G uses a more
complex structure that is shown in Subfigure (b) on the rijftdes are used only for
a representation of the hierarchy of the graph, and contaiteptial children as well
as acore in any case. The core in turn is the most importantsire, and can contain
the geometry, transformations, and so on.

The scene in turn is maintained by a scene manager that Hwdsoot node of
the graph structure, and thus all geometries, transfoomstiand so on. Furthermore,
lights and cameras, a navigation for an interaction withuber, and a window with
an assigned viewport should be provided. In OpenSG theteiSitnpl e Scene
Manager that is designed for a simple beginning, and manages alllibeeamen-

2http://www.opensg.org

40

5.2 Visualization Framework

tioned things. Nevertheless, in the consequence of thdifedesign there are only
the basic features provided, e.g. one single viewport pedowi.

For a more flexible usage of the available features, it is ofs® also possible to
implement an own scene manager to avoid the above menties&ittions. For this
purpose, one must create an own window and add one or morpaitsycreate lights
and a camera, integrate a navigator, and enable the interdetween those.

However, the used window, either in ti8& npl e Scene Manager or a self
created scene manager, is generally based on an extemzay lguch as GLUY or
QT*. The former one is the simple alternative, but widely ald#aand portable. It
only manages a window in which the scene is drawn, and canldasdr input via
mouse or keyboard. The latter, QT, is a common and platfodagandent GUI toolkit
that can be used for developing an interactive user interfac

Integration in Shawn

The integration of OpenSG in the discrete event simul8toawn has been done by
implementing an own scene manager, and additional classespiresenting the scene
itself as well as different windows that can be used for ttseialization process. A
class diagram of the implementation is shown in Figure 5.4.

The center of the integration process is @uenSGSceneManager that holds all
the important information for displaying a scene. Thusigbtes @sg: : W ndowPt r
and connects a viewport to it, provides a camera and lightshas access to the graph
of the scene that contains the drawable objects like ge@sglines, and so on.

The OpenSGScenegr aph in turn provides access to the scene, and thus can be
used for adding objects that are supposed to be shown in shialigation. The ap-
propriate methods use the structure of the underlying sgeagh, and hold references
to the important nodes in the graph. For example, if one wauatdd a node to the
scene, there is a group as well as a geometry needed. Themgumnesents the parent
in the scene graph, and the geometry is the object that isddiwth are identified by
their name and are looked up in the appropriate data stestittence, before adding
a node, the required information must be added. In gendmlwhole access to the
important information is done by the identification by namasd thus can be easy
handled.

Moreover, theosg: : W ndowPt r that is provided by th€penSGSceneManager
must be shown on the screen. This is done, as already aboweonesh by an addi-
tional library. For this purpose, GLUT and QT are support&tie basic classes are
OpenSCGBasi cW ndowandOpenSGBasi cMast er ,and both are implemented for
one of those libraries separately.

The window acts as an interface between the scene managénended library.
The main purpose, beside the display on the screen, is thiimguof user input. On
the one hand, the scene manager must be notified if the usemimgnthe mouse,
and thus changes the view of the scene. On the other handpdelyimput can be
forwarded and processed somewhere else. In this case, impansformed in a
Tr ansf er Message, and added to the message queue of the connected master which
in turn processes the messages in given points in time.

3http://freeglut.sourceforge.net
“www.trolltech.com

41

5 Implementation Details

OpenSGScenegraph

OpenSGSceneManager
ool scene osg Nodertr vork on the same scene [-groups_: std::map<std::string, osg::NodePtr>
canera: osg:: Perspect | veCamer aPtr -geo_cores_: std::map<std::string, osg::GeonetryPtr>
- -geometries_: std::map<std::string, struct Geometry>

-viewport _: 0sg:: Vi ewportPtr
- wi ndow_: 0sg: : W ndowPt r +r 00t _w(): 05g:: NodePt T
+init()

+set_wi ndow(0sg: : WndowPtr): voi d G onde(\ st N ot .
. . +add_node(const std::string& const std::stringg&
+wi ndow_w() : 0sg: : W ndowPt r doubl e, doubl e, dotbi e, const std: :strings): void

+set_scene(osg: : NodePtr): voi d +add_group(const std: : string& const std::string&): void
+scene_w(): osg:: NodePtr +add_nat erial _group(const std::string& const std::string&
+show_al | () TransferMessage const o0sg: : Col or 3f & osg: : Real 32): void
*’:‘d’?:‘“ “type_: Transfer MessageType +add_spher e_geol et S r gy 050° s U nt 16,
+idi e !
content_: std::string +add_| i ne(const std::string& const shawn: :Vec&,
Const shawn: : Vec&): voi d

+Tr ansf er Message(Tr ansf er NessageType)

1 +~Tr ansf er Message() +cont ai ns_dr awabl e(0sg: : NodePtr): bool
I ear_graph(): void
+type(): Transfer MessageType *c -9
<senurerati on>> _'_*ssticunler\l(std string): void #cl ear _nodes(osg: : NodePtr): void
TransferMessageType +content(): const std::string& #cl ear _geonetries(): void
#creat e_node(const std: : string& doubl e, doubl e,
+TM.ock doubl e, const std::string&): osg::NodePtr
+TMnl ock
+TBhowTagl nf o 0..*
+ThMBhowiessages
2Thr ead
<<interface>> -
OpenSGBasicWindow Runnable
-master_: CpenSGBasi cMaster* JA\
+manager (): CpenSGScenemanager * T
+aspect (): o0sg::Ulnt32 1
+begi n_updat e(): void <<interface>>
+end_update(): void y
+add_message(const Transf er Message*): voi d N OpenSGBasicMaster
+set_mast er (OpenSGBasi cMaster*): voi d -cond_: ZThread: : Condi tion
+master_w(): OpenSGBasi cMaster & -init_nutex_, cond_mutex_, message_nutex_: ZThread:: FastMitex
+master_w(): const QpenSGBasi cMaster & - message_queue_: std: : queue<const Transf er Message*>
+run(): void
______________ +aspect (): o0sg::Uint32
| \ begi n_update(): void
0. N +end_update(): void
| I
GlutOpenSGWindow \ +process_nessages(shawn: : Si mul ationCont rol I er&: void
- nyr_:_OpenSGScenenmnager * | +add_message(const Transf er Message*): voi d
| +has_message(): bool
+next _nessage(): const Transfer Message*

QtOpenSGWidget
myr_: Op *

GlutOpenSGMaster QtOpenSGMaster

Figure 5.4: Classes of OpenSG Visualization.The main classes of the in-
tegration of OpenSG inShawn are the QpenSGSceneManager and the
OpenSGScenegr aph. The former one manages the whole visualization process by
proving a window that displays the scene, creating a cameddights, connecting the
window to a viewport, and holding the scene that represdrssimulated data. The
scene in turn can be handled by the already above mentiGpett SGScenegr aph
that provides methods to add nodes, geometries, lines, @od.sMoreover, different
windows that are associated with an appropriate master carcreated, either using
GLUT or QT. In the consequence of the functionality of GLUT @, the master runs
in an own thread, and provides access for a message queuss tlegponsible for the
handling of user input.

The master is responsible for mainly two kinds of functidayalAt first, it is able
to process the current message queue and the correspandamgf er Messages.
This is done on calling the method

process_nessages(shawn:: Simul ati onControl | er &)

which provides access to the actual running simulatiddhiawn. Consequently, it has
been realized that moving the mouse pointer on a node in ti@hzation associated
with an appropriate keyboard input, shows either the adiizdé, or the received and
sent messages of the node. Moreover, the current simulegioie paused for taking
screenshots of the shown scene.

The second responsibility of the master is the managemeiechssociated win-
dows as well as initializing and running the main applicatid the used library. Both
alternatives, either thgd ut Mai nLoop() in GLUT orQAppl i cat i on- >exec()

42

5.2 Visualization Framework

in QT do not return after calling. Consequently, the mastatso a thread by deriving
it from ZThr ead: : Runnabl e.

5.2.3 Visualization of Simulations

The visualization of simulations uses both above descripgaoaches, and provides a
customizable control for the user. An overview of the class®sd associations is given
in Figure 5.5

Concurrent Adapter

ConcurrentAdapter

+boot (shawn: : Si nul ati onControl l er&): void
+not i fy(shawn:: Si nul ati onControl ler&: void

[

OpenSG Adapt er !
t
<<adding_and nodifying rul es>>
OpenSGAdapter <- - - === -==
-execut or _: ZThread: : Concurr ent Execut or TaskAlterOpenSGRuleSet
-mester_: OpenSGBasi cMaster * +run(shawn: : Si nul ationControl | er&: void
-scenegraph_: OpenSGScenegr aph +nane(): std::string F -
-rul eset_: QpenSGRul eset +description(): std::string
+boot (shawn: : Si nul ati onControl ler&): void - -
+not i fy(shawn: : Si nul ationControl | er&): void |<<appl ying rul es>>
L OpenSGRuleset

T

}

1 -node_rules_: std::list<NodeRul e>

1 -conn_rules_: std::list<ConnRul e>

1 -topo_rules_: std::map<std::string, TopoRule>
1 -scenegraph_: OpenSGScenegr aph*

1

1

}

+appl y_rul es(const shawn:: Node&): void

+appl y_t opo_rul es(const shawn:: Sinul ationController&: void
+add_node_rul e(*): void

1 +add_conn_rul e(*): void

+add_t opo_rul e(*): void

__________ I +set _scenegr aph(OpenSGScenegr aph&) : voi d

(OpensG Vi sual i zati on | ! ZThr ead Shawn 1
v v V
| OpenSGSceneGraph | | OpenSGBasicMaster |— =---|-1> SimulationTask

Figure 5.5: Classes of OpenSG Adaptiofihe class diagram shows the idea of a
customizable control of the integrated OpenSG. ThenSGAdapt er implements
theConcur r ent Adapt er, and thus is notified in each iteration step as already de-
scribed above. In addition, itis connected to the implem@@penSGScenegr aph,
and is able to add drawable objects to the displayed scene.cdhfiguration of the
visualization is done by rules which are provided by @peenSGRul eset . Arule in
turn defines, if and how parts of the simulation are drawn.

At first, the OpenSGAdapt er implements theConcur r ent Adapt er for en-
abling the multi-threading support, and is added to theigethat in turn is supplied
by the appropriate task as already described above in 8¢clol.

In addition, the adapter uses the integration of OpenSGlustrdted in Section
5.2.2. The important associations are @renSGScenegr aph and the appropriate
implementation of th€&penSGBasi cMast er . The latter manages the display on the
screen, and is told on each iteration to process its messsgegThe scene graph in
turn holds the data that is supposed to be shown, and prowidétods to add objects
to the graph.

43

5 Implementation Details

Basic Concept

The objective is to display a running simulation $3hawn with the aid of the inte-
grated OpenSG library, and hence enable a three-dimemhsi@vaon the simulated
network. The main design goal was the realization of a smiuthat is completely
independent of the used simulation scenario, and can bebyseakch implementation
without modifying the source code for the visualizationgass. For this purpose, two
conditions must be fulfilled. At first, the visualization gfescial properties of nodes is
only allowed to use information that is provided by the cdvedry of Shawn. Second,
the customization must be done by a configuration file thaidéd when a simulation
is started.

The idea is to manage the visualization by so calRedeswhich are used to de-
cide whether an object is drawn or not. Furthermore, thezettaee different kinds
of Rules First, there aré&Node Ruleghat are applied on eaghawn: : Node which
in turn represents a sensor node in the simulator. The semomonnection Rules
are used to describe relationships between two nodes, ode awd its neighbor-
hood. At last,Topology Rulesepresent structures in the network, and work with a
shawn: : Readi ng. Each type oRuleis described in detail later in this section.

The basic container is th@penSGRul eset in which all used rules are stored.
Moreover, the class got a reference to @mEenSGScenegr aph for adding appro-
priate objects to the displayed scene, which in turn is dbnee of theRulescan be
applied.

For enabling the possibility of a flexible configuration, ttantents of th&QpenSG
Rul eset are controlled by the simulation taSlaskAl t er OpenSCRul eset that
allows the conception and modificationRiiles Thus, a customized visualization can
be completely controlled by an appropriate configuratia fil

However, to provide an insight into the functionality of tluée concept, and a rough
overview of how they are used, a more detailed descriptiaaoh kind of rule as well
as the idea of integration follows.

Building a Graph

As already indicated above, tRailesare used to decide, whether an object is drawn on
the screen or not. But before thoRelescan be applied, it must be defined what kind
of object is supposed to be drawn on success. Again, the sdieaaillow a maximal
amount of flexibility to the user by a concurrently incregsacomplexity.

All available data is hold in a graph structure that corresjsoto the one that is
used by OpenSG. Hence, the user is able to create differpes tyf nodes that are
identified by their name, and are supposed to have an exiséirant in the graph. A
typical node can be, for example, a group node or a materiedugsnodes are only
used to enable the possibility of creating a hierarchy ingitagoh, but are not needed
in the visualization process. In addition, the user can @eate material nodes. These
ones define the used material of a drawable object, for exathplcolor and level of
transparency. At last, there is also an existing root noderttust be used for creating
the whole graph structure.

In addition, it must also be possible to draw different kind®bjects. Remember,
OpenSG distinguishes betwenadesandcoresin its internal structure. Aore can

44

5.2 Visualization Framework

be added to mode and may contain the geometry of the drawn object. Agairs, thi
structure is adopted to the customizable visualizatioméaork inShawnThe user is
able to create several kinds of geometries, e.g. a sphemxpthat are again identified
by their name.

At last, after creating the graph structure and differemngetries, the rule concept
is used for displaying objects on the screen. If a rule canppdiead, the associated
object is drawn by using the associated material. The widel is indicated in Figure
5.6.

. eighbor
Material 01 a
(Connections

Figure 5.6: Graph Structure and Rule Concéjte figure shows an overview of using
the visualization framework iBhawn. At first, a graph structure must be created, and
added to the already existing root node. For example, sucbce may be a Material
that describes the color and kind of drawing of a potentiglech In addition, there
can be so called Geometries created that define the struofuae object, e.g. a sphere
or a box. At last, the Rules are used to combine this approadhe visualization
process. If a Rule can be applied, the connected Geometryaisndby using the
appropriate Material.

However, the main design goal was a maximal amount of fléiibilThus, all
of the mentioned tasks are done by the user. For this purplesesimulation task
TaskAl t er QpenSGRul eset has been implemented that allows the creation of a
graph, defining geometries, and the set up of different rdleg latter is described in
detail below.

Rule Description

The general concept has already been indicated above. brajemaRule defines
whether an object is drawn or not. An object is thereby arrabistiescription and can
be, for example, a geometrical figure like a sphere or a bokngls line, or, in later

45

5 Implementation Details

implementations, even a complete model. There are thréetit kinds of rules that
can be usedNode RulesConnection RulesandTopology Rules

Node Rules TheseRulesare applied on eachhawn: : Node in the network, and
allow the display of a geometrical figure at the appropriagsitpn. The available
conditions of theRuleare shown in Table 5.1.

NODE RULE
Rule Name Unique name of a Node Rule
Parent Name Name of the parent in the graph

Geometry Name Name of the used geometry
Tag Comparison Provide the use of tags to decide whetherjantad®drawn or not

State Access to the internal state afteawn: : Node, e.g. the active ones
Position Either the real position or the estimated one

Offset Allows the movement of objects by the given offset

Priority The Rules are ordered due to their priority

Close Ift r ue, no further Rules are applied on success

Table 5.1: Basic Contents of ad¥bE RULE.

At first, the unique name of tHeulemust be set, and can also be seen as an identifier.
Then, a parent in the graph structure is needed. Mostly tiosld be the potential
material of the drawn object that in turn is given by the naride geometry.

In addition, it is possible to define conditions that spewifyether aRuleis applied
successful or not. On the one hand, there isTag Comparisorprovided. As al-
ready described in the introduction 8hawn, the so calledagscan be added to a
shawn: : Node and may contain a string, a bool value, an integer, or a dowdiles,
and can be read by each other class that has access to thpragiproode. The imple-
mentation of thé&Node Rulallows the comparison of a tag with a given value, e.g. ifa
bool content is true, or an integer one is greater than trengime. On the other hand,
the state of the node can be checked. That is, provided bythdedor, an active state,
an inactive one, or sleeping.

Moreover, also the position of the drawn object is custobiza As the variable
one, the position is either the real or the estimated onedf pade. Furthermore, itis
possible to define a fixed offset by that each object is movtwiRuleis applied.

At last, there is the chance to assign priorities toRugesto define the order they
are applied. The standard valuelisand a smaller one represents a higher priority,
whereas a greater one let tRelebe applied later. In addition, on processing multiple
Rulesin the given order, a successfully applied one is checkedéorg a final one.
That means, no furthdRulesare applied on the appropriate node.

Connection Rules Again, theseRulesare applied on eackhawn: : Node in the
network, but in contrast to the former introducdde Ruleghere are only relation-
ships shown. That means, a successfully apgtietdraws a line between two nodes.
Table 5.2 shows the customizable data.

Atfirst, a uniqgue name by that tfRulecan be identified, and the name of a geometry
object to that the drawn lines are added must be given.

46

5.2 Visualization Framework

CONNECTION RULE

Rule Name Unique name of a Connection Rule

Line Name Name of the used geometry object where the linededd
To Eithersr c ornei ghbor s

Tag Comparison Allow the comparison of tags

Source Position Either the real position or the estimatedarthe source
Source Offset Allows the movement of the source by the givtsebd
Source Rule Node Rule that is applied on the source

Destination Position Either the real position or the estadane of the destination
Destination Offset Allows the movement of the destinatigrttie given offset

Destination Rule Node Rule that is applied on the destinatio
Priority The Rules are ordered due to their priority
Close Ift r ue, no further Rules are applied on success

Table 5.2: Basic Contents of a0BINECTION RULE.

Next, the kind of destination is chosen. The standard caseiseighborhood in
which potential connections are drawn between a node amkighbors, but it is
also possible select a destination relative to the handbelgé.nThe latter can be, for
example, drawing a line from the real source position to #tierated one, or otherwise
to a given offset.

By using the relationships to the neighborhood, the tagh®fhibdes can again be
compared. In this case, the only implemented possibilithéscomparison of integer
lists. A node must therefore write an appropriate value egesl ones separated by
commas, in a tag. If one value is part of both lists of the camgbaodes, the line is
drawn.

In addition, the source and the destination can be speciadhe one hand, both
can be drawn on the real or estimated position, moved by arggitdffset. Moreover,
both ones need an assigngdde Ruldhat is applied on the appropriate node.

At last, the possibility of assigning priorities to tiRulesas well as the check for
being a final one are provided again, as already describedsabo

Topology Rules The third kind ofRulesare theTopology Ruleshat are used to
display structures, terrains, and so on. In contrast todimadr presented ones, they are
not applied on nodes. Instead, theawn: : Readi ng concept is used. The contents
are shown in Table 5.3

ToPOLOGYRULE
Rule Name Unique name of a Node Rule
Topology Name Name of the used geometry where the drawntdbjadded
Height Reading Name of the height reading
Bool Reading Name of the bool reading
Step Iterate through trehawn: : Wor | d by the given step

Table 5.3: Basic Contents of ®0POLOGY RULE.

The first parameters are already known from@umnection Rulesand describe the

a7

5 Implementation Details

name as an unique identifier and the geometry for adding theaiie objects. For
now, it is only possible to add lines to the geometry, and treate a wire frame of
the topology.

The procedure of drawing is very simple and operates aswsllolt is iterated
through the x and y coordinates of the world by using the ddfstep counter. On
each point the given height reading that is identified byaisa returns the appropriate
z value to enable a three-dimensional view on the topologgditfonally, the bool
reading is used to decide whether the point should be drawptor

48

5.3 Algorithms and Dike Representation

5.3 Algorithms and Dike Representation

The simulation of the designed algorithms in a sandbag dikeario has been done
by using several options @hawn. Figure 5.7 shows a rough overview of the most
important classes.

Sandbag

I SandbagDirectionModule I I SandbagRoutingModule]E<Ef WaLeZ —>| SandbagRoutingMessage I
T T 1

1 V

! SandbagMessage

1
<<access_vi a SandbagProcessor >>
SandbagModule I— ————————— 0= gessy 2 +

I SandbagWetnessSensor

|_I

I SandbagWetnessReading I
T
1

1
1
e 4
. y
I SandbagProcessor }—{ SandbagNeighborhood I

T

1
1 I SandbagTransmissionModel I
1 T

T
! 1
! 1

v v \Y

I DoubleReading II DoubleSensor I I Processor I I TransmissionModel I

Shawn 1

Figure 5.7: Algorithms and Dike Representation Overvi&e class diagram shows
the most important classes for the simulation of the desigalgorithms in a sand-
bag dike scenario. The central unit is tlandbagPr ocessor that provides the
possibility of implementing the algorithms in so called Mia$ that are divided in
arbitrary ones, direction ones, and routing modules. Theéetaare used for allow-
ing the routing of appropriate messages from a source to argsink. In addition,

it is possible to simulate the behavior of soaked sandbage.th® one hand, the
SandbagTransni ssi onMbdel can be enabled to drop messages sent through
wet sand. On the other hand, tBandbagWet nessReadi ng simulates the mois-
ture penetration of the sandbags, and can be used by an ireptation over the
SandbagWet nessSensor that allows the simulation of errors in the measurement
process.

At first, the implemented processor is presented by desgritie principal tasks
to give a general design overview. Then, the used moduleegbns shown in de-
tail. At last, the simulation of an increasing waterline dahd consequently moisture
penetration of the sandbags is illustrated.

5.3.1 Sandbag Processor

The SandbagPr ocessor is the central unit for a simple and flexible implemen-
tation of the designed algorithms. To allow exchangeabit different approaches
as well as a potential extensibility, a module concept hah lestablished. That is,
the processor can contain multiple modules that are definadhetime per configu-
ration file, and provides a basic functionality like a woikiphase in each iteration,
sending and receiving of messages, and an one-time boat.pNase precisely, the

49

5 Implementation Details

relationship between the processor and the modules isHikedlationship between
ashawn: : Node and ashawn: : Processor , but allow a more intensive connec-
tion. For example, all modules have access to the neighbdrlbba node provided
by the SandbagPr ocessor . In addition, a very simple energy model is realized
on the processor. At last, each sent and received messageesped, which in turn
is used to manage the routing of messages. Figure 5.8 sholassadiagram of the
implementation of the processor.

Sandbag

SandbagProcessor H SandbagNeighborhood I

-modul e_factory_keeper _: SandbagMbdul eKeeper
-energy_send_: double

-energy_rcv_: double

-nodul es_: SandbagMbdul es

-direction_nodul e_: SandbagDirectionMdul e* H SandbagRoutingModule I
-routing_nodul e_: SandbagRouti nghbdul e*
- nei ghbor hood_: SandbagNei ghbor hood 4

-node_type_: NodeType |
+boot (): void 1
+process_nessage(const shawn: : Const MessageHand| e&) : bool 1

+work(): void
+energy_l evel (): doubl e SandbagModule Shawn

+node_type(): NodeType
+f orwar d_cached_nessage(SandbagRout i ngMessage*): voi d !
#send_nmessage(SandbagMessage*): voi d !

#pr epar e_sandbag_message(SandbagMessage*) : voi d v Processor
#f or war d_nmessage(SandbagRout i ngMessage*): void
#pr epar e_nessage(SandbagRout i ngMessage*): voi d H SandbagDirectionModule I A

#fi ni sh_message(SandbagRout i ngMessage*): void
-init_nmodul es(): void

Figure 5.8: ClasSandbagPr ocessor . The class diagram shows a basic overview
of the implementation of thBandbagPr ocessor . The main purpose is the man-
agement oSandbagModul es that can fulfill different tasks. In addition, there is
exactly one direction as well as one routing module assedial he latter is used for
the routing of messages that can be prepared, forwarded,raceived. Moreover,
there is access to thBandbagNei ghbor hood and the type of the node provided.
The latter can be either a normal one or a base station. At thstremaining of energy
is hold.

The several aspects of tBandbagPr ocessor are presented in detail below.

Modules

The main design goal for the module concept was exchanggedsl well as extensi-
bility. For this purpose the factory pattern also usedlirawn has been taken. The
processor got therefore a module keeper object that carfitories which in turn are
able to create instances of appropriate modules. The ay@aof this procedure is that
an implemented module can be load at run-time by adding theeria an appropriate
parameter. On booting, the processor reads the content gigttameter and loads alll
wanted modules. Figure 5.9 gives an overview of the laagimdbagModul e and the
appropriate factory.

In general, the module provides access to the most impartemiénts of the proces-
sor such as the neighborhood, the associatemwn: : Node, access to the direction
and routing module, and so on. Moreover, sent messages ssedot the processor.
In addition, the module is derived froshawn: : Logger , and thus is in possession

50

5.3 Algorithms and Dike Representation

Sandbagl

SandbagModule - =

- sandbag_processor _: SandbagProcessor*

+boot (shawn: : Si nul ati onControl ler&: void
+process_nessage(const Const SandbagMessageHand| e&): bool
+work(): void

+set _owner (SandbagPr ocessor &) : void

+owner (): const SandbagProcessor &

+owner _W(): SandbagProcessor &

+node(): const shawn:: Node&

+node_w(): shawn:: Node&

+node_type(): NodeType

+set _node_t ype(NodeType): void

+nei ghbor hood(): const SandbagNei ghbor hood&

+nei ghbor hood_w(): SandbagNei ghbor hood&

+si nul ation_round(): int

+send(SandbagMessage*): void

+di rection_nodul e(): const SandbagDirecti onMdul e&
+di rection_nodul e_w(): SandbagDirectionModul e&
+routing_nodul e(): const SandbagRouti ngMbdul e&
+routing_nodul e_w(): SandbagRouti nghbdul e&

Shavml
- - -D' RefcntPointable |

|m—mrmm e e m]

hl
1
SandbagModuleFactory | - _Sscreate module>>

+~Sandbaghbdul eFactory() = | = = = = = = = = = = = = = = = = - A -Dl KeeperManaged |
+create(): Sandbaghodul e*

Figure 5.9: ClasSandbagModul e. The sandbag module concept has been designed
by keeping the factory pattern in mind. Each module has aocet®d factory that is
able to create an instance of the module. The module in tuoriges access to the
basic functionality of the processor.

of an own logger object to customize the logging output diedént implementations
of modules.

A more detailed description as well as the special purpoktealerived modules
is done in Section 5.3.3.

Neighborhood

In general, the implemented algorithms need an awarendhs tifical neighborhood.
That can be, for example, the point in time of the last agtitat recognize potential
dead neighbors, the remaining energy level, or in case thatrieeded, the 2-hop
neighborhood. The latter means that a node is also inforrhéteaeighborhood of
its neighbors.

For this purpose, the processor provides information ofdbal neighborhood that
can be accessed by each module. In the consequence for thefriifferent informa-
tion in the algorithms, the processor do not update the atsiaf the neighborhood.
Hence, an appropriate module has been implemented, anskistgbal in Section 5.3.3.

However, the implementation allows the building of the pm@ighborhood in the-
ory, because it contains information about the neighbasithturn use the neighbor-
hood class. An overview is given in Figure 5.10.

51

5 Implementation Details

SandbagNeighborhood

- - SandbagNeighborinfo
+nei ghbor hood_: Nei ghbor I nf oMap

+source_: const shawn:: Node*
+silence_limt_: int

-node_: const shawn:: Node*
-last_activity_: int

- wet : doubl

+inactive_count(int): int ﬁe?essi doj;l ee
+wet _count (doubl e): int 0..* backg)o/:e . bool
+cnt _nei ghbors_w _hops(int): int L W _hops - int
+nei ghbor hood_w(): Nei ghbor I nf oMap& . - . "
+nei ghbor hood() : const Nei ghbor I nf oMap& -nei ghbor hood_: const SandbagNei ghbor hood

X -sil limt_: int
+begi n_nei ghbor hood_w(): Nei ghbor | nf oMapl t er at or ?I en_ce* it
+end_nei ghbor hood_w(): Nei ghbor I nf oMapl t er at or +is_alive(): bool
+begi n_nei ghbor hood(): Const Nei ghbor I nf oMapl t er at or +has_nei ghbor hood() : bool
+end_nei ghbor hood(): Const Nei ghbor I nf oMapl t er at or +nei ghborhood() : const SandbagNei ghbor hood&
+size(): size_t +has_nei ghbor (const shawn: : Node&): bool
+find_w(const shawn:: Node&) : Nei ghborI|nfoMaplterator
+find(const shawn:: Node&) : Const Nei ghbor | nfoMaplterator

Figure 5.10: ClassSandbagNei ghbor hood. The SandbagNei ghbor hood
contains multiple instances of tiandbagNei ghbor | nf o which in turn describes
the available information of an appropriate neighbor. Theghbor info is again asso-
ciated with a neighborhood to allow the building of a n-hojpgéorhood. The class
diagram shows the basic information that is provided by theses, but leaves all the
get and set methods out.

Energy Model

The main focus of this thesis is the maintenance of a comratiait backbone near
to the waterline, which is responsible for forwarding andtimg messages. Although
this is done primarily for energy efficiency reasons, thekbaoe can also be rated
by the number of messages routed by nodes belonging to thdbdiae in contrast
to nodes which do not. Thus, there is only a very simple energgel which only
considers sent and received messages. Each node got adtandayy level of 100%
whereas sending and receiving decrease this value by 0B.ah, respectively. A
node is dead, if its energy level 15 0.

Message Sending and Routing

The handling of messages is divided in two parts. On the oneé,haere are the
SandbagMessages that can be used for the standard case of broadcasting. On the
other hand, there arBandbagRout i ngMessages that are used for the routing
process to a given sink in the network. Figure 5.11 shows ssalgagram of both
classes.

The basis for the message sending process in the implenoanisthe Sandbag
Message which is used for each local broadcasted message. The ajgteomethod
in the module passes a sent message to the processor whiam ifotwards it. In
addition, the processor adds basic information about tlie o the message, such
as the actual energy level and the hop distance to the waderlConsequently, the
neighbors can update their knowledge of the sender by eaelveel message.

For enabling the routing of messages from an arbitrary gotra given sink, there
is the SandbagRout i ngMessage that is derived from thé&sandbagMessage.
The general routing process as the sending and receivingchfreessages is done in
the processor, whereas the preparation is passed to agontidule, and is described
later in theModule Concept The routing message provides suitable information for
the appropriate module. Hence, there is a list of wantedwexseon the one hand, and

52

5.3 Algorithms and Dike Representation

Sandbag
SandbagRoutingMessage
-id_: long
-ttl_:oint
-hops_: int

-origin_: const shawn::Node*
-sink_: const shawn::Node*

-recv_set _: NodeSet

-pre_defined_path_: NodeLi st SandbagMessage

+set _i d(long): void -energy_: double Shawn
+id(): Iong -w _hops_: int

+new_id(): |ong -wet ness_: doubl e

+set _hops(int): void - - —D +set _ener gy(doubl e): void —-—--t
+hops(): int +energy(): double

+set _ttl(int): void +set _wW _hops(int): void

+ttl(): int +w _hops(): int

+set _origin(const shawn::Node&): void +set _wet ness(doubl e): void

+has_origin(): bool +wet ness(): doubl e

+origin(): const shawn::Node&

+set _si nk(const shawn:: Node&): void
+has_si nk(): bool

+sink(): const shawn::Node&

+has_recei ver (const shawn:: Node&): bool
+receivers_w(): NodeSet&

+pre_def _path_w(): NodeList&

Figure 5.11: ClassSandbagMessage. The SandbagMessage is the basis for
message sending in the implementation of the dike scenathisothesis. Each sent
message is derived from this one, and thus general infoomadf the node such as
the energy level and the current hop distance to the waterire stored. The data
is set by the processor, so that a potential module does read tedo this on each
sent message. In addition, there is also a special messagésthsed for the routing
process. It contains the source and the destination of thesage, as well as the time
to live. Moreover, a set of receivers in the local neighbarth@an be set just as well a
predefined routing path.

the possibility to add a predefined routing path on the othreover, each created
routing message get a unique ID by which it can be identifiacaddition, the origin
and the sink are stored. At last, the message contains tleetditive, and the actual
hop count.

5.3.2 Module Concept

The module concept has already been indicated in Sectioh, &8d shown in Figure
5.9. There are three different kinds of modules: First, thadard ones that have only
access to the data provided by tBandbagModul e. Second, a direction module.
A potential implementation must provide a rough locatioraeemess that enables at
least aleft-right feeling. The third one is the routing module. If a messageusead,
the processor passes it to the routing module for prepatafitie objective is either
adding nodes to the potential receivers, or build a predgfioeting path.

Miscellaneous Modules

The Miscellaneous Modulelave been implemented to fulfill basic tasks, and can be
auxiliary for the implementation of backbone or directidgaaithms. Figure 5.12
gives an overview of the available modules.

53

5 Implementation Details

SandbagModule

1
. 1
| 1
I SBMWaterlineBase I I SBMDummyData || I SBMAvailability I : SBMEvaluation
1
A 1 !

U S I

\ SBMPeriodicNeighborCheck II SBMNeighborhood I

1
1
1
SBMWaterlineMeasurement I 1
1

1
I SBMWaterlineNeighborDeath I

Figure 5.12: Miscellaneous Module§.he figure shows the implemented additional
modules. The waterline identification has been implemdnjading a base class that
fulfills tasks of both methods. TBBMDumy Dat ais used for sending a routing mes-
sage to a particular node. The availability one checks wiethnode malfunctions,
and the evaluation one collects data in each iteration. Mwgs, the neighborhood
module updates the local neighborhood, and the last onesserssages in periodic
intervals to inform the neighbors of being alive.

Waterline Identification The waterline identification has been implemented as a
standardsandbagModul e. There is also a base class that fulfills common tasks. For
instance, the update of the minimal hop distance to the \iraéas done here.

Sending Routing Messages TheSBMDummy Dat a sends routing messages from
a given node to a particular sink. The destination is chosensing theDirection
Module and selecting the base station with the greatest hop distan

The number of sent messages is stored in a tag, and thus caad®r evaluation
issues. The other way around, the receiving node also dfoeesumber of received
routing messages in a tag.

Availability The availability module checks in each iteration whetheodenis still
alive or not. It reads the current wetness of the surroundargl, and deactivates the
node on demand.

Evaluation The evaluation module has been implemented for evaluatasons.
On the one hand, the important data of the current simulagiavritten to the associ-
ated logger object. On the other, the result can be writtexrfile that can be analyzed.

Periodic Neighbor Check This module sends messages in periodic intervals to
inform the neighbors of being still alive. If there has no ssge been sent in a given
interval, a small dummy message is broadcasted. Thus,ef otlodules are sending
messages anyway, this one recognizes the sending, andataend a message itself.

Neighborhood The neighborhood module is responsible for the update dota
neighborhood. It receives each message that is sent to sbeiat®ed processor, and

54

5.3 Algorithms and Dike Representation

reads the contained data if it isSandbagMessage. In addition, it sends periodic
messages to enable an ongoing 2-hop neighborhood.

Direction Module

The direction module is responsible for a rough locationraweass, and provides ab-
stract methods that must be implemented by an derived digare 5.13 shows the
class diagram of the module.

SandbagModule SandbagMessage
/\ /\
P, A
1 1 1
| 1 1
SandbagDirectionModule SDMPathFound SDMPathRequest
“nei ghbor s(Di rect | on, Nei ghbor I nf 0Set & : voi d -path_: Nodelist sidint
+nei ghbor s(Di recti on, Nei ghbor | nf oSet & const shawn: : Node&) : voi d -request _fd_: int St int
+opposi t e_nei ghbor s(const shawn: : Node&, Nei ghbor | nf 0Set & : voi d W _hops_: int chops_:int
+start_path_request (Direction,int,int): int _nearer_nbs_: int _mon_w _hops_: int
+start_bb_pat h_request _ref (const shawn: : Node&, +path(): const Nodelisté& +id(): int
int): int +request _id(): int +tl(): int
+hop_di stance(const shawn: : Node&): int +w _hops(): int +hops(): int
+base_station(): const shawn::Node& +nearer_nbs(): int +min_w _hops(): int
1 1 1
1 1 1
1 1 1
SBDMSimpleCoordination SBDMSimpleCoordinationPathFound | :
1

| SBDMSimpleCoordinationPathRequest |

Figure 5.13: Direction ModuleThe class diagram shows the responsibility of the di-
rection module. At first, a potential implementation pr@gd direction decision for
selected neighbors. Second, it is possible to start pathesig that are either sent
over all neighbors or only to backbone ones. By starting tath pequest, an unigue
ID is returned. This ID can be used by processiBigVPat hFound messages. If
such one is received, the ID can be compared to the requestedia last, a direction
module must be aware of base stations in the near, and sterenthimal hop dis-
tance. There has also an implementation of the directionuieobdeen done, namely
SDVSi npl eCoor di nat i on.

The first responsibility for a direction module is the cléissition of the neighbor-
hood in directions. Thus, it must be possible to select nébes a given set that are
located in the given direction. Moreover, for a given nodehsas a base station the
ones which are located towards or contrary can be elected.

Next, an implementation of the direction module must previde processing of
path requests. That is, each module can start the requése igiven direction by
calling the appropriate method. In addition, the time te land the minimal hop
distance to the waterline can be given. The latter ensueggtih request is sent only
to nodes with a greater value. However, the request retutmsgaie 1D that must be
stored by the initiator. If the path has been found, the ngesisarouted backwards, and
contains the requested path. Then, the initiator procedisgRat hFound messages,
and compares the stored request ID to the one in the messhgs, iffis assured that
the correct path is received. Moreover, it must also be ptesd send requests along
the backbone, and only the backbone. For this purpose, twdeshown request
method is responsible.

55

5 Implementation Details

At last, the direction module provides information abousdatations. On the one
hand, such a node can be requested. On the other hand, thistaoze to a given one
can be asked for.

The idea of théRelative Reference Pointsis been implemented as a direction mod-
ule, namelySDVSI npl eCoor di nat i on, and provides all required possibilities.

Routing Module

The routing module is responsible for the routing of messai@SandbagRout i ng

Message is going to be routed, the processor callsphepar e_r out i ng method

to add wanted receivers to the message. The module provideselpful methods
for potential implementations as shown in Figure 5.14.

SandbagModule

/\

SandbagRoutingModule

-max_hi story_age_: int
-nessage_history_: std::map<long, int>

+pr epar e_r out i ng(SandbagRout i ngMessage*): voi d

#f i ni sh_message(SandbagRout i ngMessage*, Nei ghbor | nf 0Set & : voi d
#backbone_count _ni s(const Nei ghbor|nfoSet&): int
#nonebackbone_count _ni s(const Nei ghbor|nfoSet&): int

#reduce_ni s_t o_backbone(Nei ghbor I nfoSet & : void

#reduce_ni s_t o_nonebackbone(Nei ghbor I nfoSet & : voi d

#reduce_ni s_by_m n_hops(Nei ghbor I nf oSet &,
int): void

#reduce_ni s_to_si ze(Nei ghbor I nfoSet& int): void
#reduce_ni s_t o_near est (Nei ghbor I nfoSet & : void

#sel ect _near est (Nei ghbor I nfoSet & : const shawn: : Node&
#| ast _received(long): int

#exi st _i n_history(long): bool

#add_t o_hi story(long): void

#cl ean_up_hi story(): void

I SBRMWaterlineStripe I I SBRMShortPathMixup I

Figure 5.14: Routing Module. The figure shows a class diagram of the
SandbagRout i ngvbdul e. The most important method g epar e_r out i ng
that is called by the processor to prepare the routing messagl add the wanted re-
ceivers. In addition, there is some helpful functionaldy otential implementations
provided. On the one hand, there are methods to work on a geeaf neighbors. On
the other hand, a message history is handled, and contatniash received messages.

The processor owns exactly one instance of a routing motfuderouting message
is sent, it calls the module to prepare the message. Thathisy @dding nodes to the
receiver set, or defining a predefined routing path. Therlatte be used to cover short
distances, for example, by adding the nodes of a path reqitst the preparation of
the message, it is finished by the processor and then braadcasgain, the receiv-
ing processor decides whether the message should be drapdedvarded and thus
prepared by the routing module.

The routing module also provides auxiliary methods whiahloa used by potential
implementations of the module. For instance, a set of neighban be reduced only

56

5.3 Algorithms and Dike Representation

to backbone ones, or the neighbor that is nearest to thelimatean be selected.

Moreover, a message history is provided. The ID of eachvedeaiouting message
is put into the history by additionally storing the simutatiround of the reception. In
each iteration, message IDs that are older than a given eatueleared.

In the consequence of the close relationship between thgoprocess and the
backbone algorithms, the appropriate implementation bagptetely been done in a
routing module. Hence, there are the clasSBRMMat er | i neSt ri pe and SBRM
Shor t Pat hM xUp.

5.3.3 Dike Representation

In addition to the implementation of the designed algorghthe behavior of a sensor
node in a sandbag must be simulated. For this purpose a inat&sIneeded to let

the nodes decide whether they are below the actual levethémnore, the moisture
penetration of the dike must be simulated, and a sensor ¢lmubble to measure
the current wetness of its environment. At last, if a sandBagetting soaked, the
transmission of messages is possibly reduced by a givearfagthe implemented

approaches are described in detail below.

Readings and Sensors

As already mentioned in Section 5.1shawn: : Readi ng returns a computed value
for a requested position. This is used for the represemtatidhe waterline and the
moisture penetration of the dike as shown in Figure 5.15.

I SandbagWaterlineReading I<— -

I<<uses for conputation>>

<<uses for jdeci si on>>

|
L I<<read val ue>>

I SandbagUnderseaReading I

1
- - 'I SandbagWetnessReading I<— -

1
-- '{ SandbagWetnessSensor I

Figure 5.15: Sandbag Reading Overviéite figure shows the realization of the sim-
ulation of the dike representation. The waterline readiagresents the actual height
of the waterline, and is used by the undersea reading as wdheawetness one. The
former decides for a given position whether it is locatedobethe waterline. The
latter takes the information into account for a computatmfnthe moisture penetra-
tion. At last, the sensor is used to read the actual amountethess by allowing the
integration of measurement errors.

At first, a waterline reading has been implemented. The ouitpgse is to manage
the actual height of the waterline by returning the sameevétu each position in
the topology. That means, the reading is not aware of a palelike in the topology
which would block the water, and represents a completelyliidscenario. It possible
to customize the waterline, and define increasing, decrgaand stalled periods.

For the purpose of a consideration of the dike, the undeessgirrg can be used. It
returns, whether a given position in the topology is locdietbw the waterline. For
example, a DPOLOGYRULE as described in Section 5.2.3 can be created by assigning

57

5 Implementation Details

the waterline reading as the height one, and the undersdeget@ decide whether a
point is used.

Moreover, also the wetness reading uses the waterline omegrésents the moisture
penetration of the dike. That is, for a given position therentr amount of wetness is
computed. The implementation considers also an approkimaf the seepage of the
dike as described in Chapter 3 by customizing the amouneétige, the draft, and so
on.

At last, there is a wetness sensor that can be used by a madsietlate the
measurement of the surrounding moisture. In addition, éms@ supports also errors
in the measurement process. For example, a sensor can bé&etaynmalfunctioned,
or returns diverged values.

Message Transmission

For the simulation of message transmission through wetied,sa newshawn: :
Transm ssi onModel has been implemented. TigandbagTransni ssi on
Model drops messages that are either sent or received by nodes ettewegion.
A message is dropped with a given probability that dependsheractual amount
of wetness and a given threshold, and works as followstualW etnessLevel -
Threshold < Random|0, 1].

5.3.4 Additional Tasks

By implementing the above described classes there havénadsadditional tasks been
created.

The Si nul at i onTaskSandbagEval uat i on collects important information
of the current simulation. On the hand, it shows the resulth® routing process,
the remaining energy of backbone and none-backbone nd@esumber of sent mes-
sages, and so on. On the other hand, it uses the data of theattealmodule and
collects average, minimal, and maximal values of the sitiarigporocess. The infor-
mation is written to console as well as logged in a given file.

The other implemented task is tBermul at i onTaskSandbagSel ect Node is
able to select a node and write wanted content in a given thag. s€lection process
is done by defining a position, and electing the nearest ndthe. task is used, for
example, to elect base stations or the node that startsukiaggrocess.

58

6 Evaluation

This chapter presents the results of the simulation of tegyded algorithms. They are
tested in different scenarios, under several conditidesthe variation of the commu-
nication range, and by modifying essential parameters.rstt the waterline identifi-
cation methods are evaluated by taking their individualiaggions of the environment
into account. Then, by using the waterline identificatiorthnds and the approach for
a rough location awareness, the results of the backbonetaigs are shown.

6.1 Waterline Identification

At first, the waterline identification is evaluated. This e by varying the commu-
nication range, allowing the detection of false positia®] analyzing the parameters
of the algorithms.

The most important rating factor is the amount of false pestand false negatives,
respectively. The former are the nodes which have identifiedvaterline albeit they
should not do so, whereas the latter are the ones which ddewtify it albeit they are
located in the near. The results are given in absolute nuofeodes as well as the
relative fraction. In addition, the average real distanicialge positives is presented.

Both waterline identification methodsleighbor LossaindLocal Measurementre
rated separately. This is done in the consequence of trealiff assumptions on which
they are based. Thideighbor Lossassumes that nodes malfunction on contact with
wetness, wherealsocal Measurementequires on appropriate event to identify the
waterline.

Nevertheless, for the evaluation process both methodssteitin the same scenario
which is described in Section 6.1.1. After that, in Sectidh®and 6.1.3 the results of
the simulations of the different methods are presented.

6.1.1 Scenario Description

Both waterline identification methods have been simulated simple standard sce-
nario as shown in Figure 6.1. The network consist2@f0 nodes that are placed
randomly in the given region. The communication range i2®di8 units which in
turn results in a connectivity of 15 which defines the avemagmber of neighbors of
the nodes.

The message transmission is done in a reliable manner. Tdaisneach sent mes-
sage is delivered to the receiver without loss or delay. biitemh, a diskgraph com-
munication model is used to assure that if a nead&n receive messages from nade
nodew in turn always receives the broadcasted messages ofinode

The processor provides several implemented modules.AVagability one simu-
lates an arbitrary node loss on the one hand, and a wetnessdrathe other hand. The
Neighborhoodmodule allows the use of the information of the 2-hop neighbod,

59

6 Evaluation

(a) Top View (b) Side View (c) Diagonal View

Figure 6.1: Standard Scenario for Waterline Identificatidhe figure shows the used
standard scenario for the waterline identification. It cmis of 2000 nodes that are
represented by the grey spheres. It is assumed that the shoaas were inserted into
sandbags which in turn are placed on the riverside of a dike.

and is updated every 5 rounds. In addition, each sent messen@ins the energy
level, the hop distance to the waterline if known, and theepiil measured amount
of wetness. Such information is updated on each recepti@sskbes in turn are sent
at least every 3 rounds which is assured byRkeodic Neighbor Checknodule that
sends dummy messages in case of need.

The simulation runs for 100 iterations after that the resale evaluated. In addition,
the waterline is increased in the first 30 iterations by 13sunifter that, it holds it
current height up to the end of the simulation. The heighhizsen to put abouls& of
the network below the waterline.

To allow accurate results, each simulation has been doné&rh@8, and the below
presented results represent the appropriate averagesvalue

In addition, Figure 6.2 shows a situation in the scenarionoinareasing waterline
and identifying nodes.

6.1.2 Neighbor Loss

The neighbor loss method uses the standard parametereagyattescribed above. In
addition, algorithm specific parameters must be set.

To increase the possibility of false detections, an anbitreode loss has been en-
abled. From iteration 25 to 35 each node malfunction withabability of p = 0.01.
This configuration has been chosen with respect to the isicrgavaterline that stops
at iteration 30.

Nodes are supposed to be dead if there has no message beéor Serunds. In
addition, nodes with a last activity of more than 10 rounds aige ignored, as well as
nodes with a lower energy level than 10%.

At last, the relative loss bound is set to 30%.

60

6.1 Waterline Identification

Figure 6.2: Example for Waterline Identificationhe figure shows a situation of nodes
identifying the waterline which is represented by the wged. The red nodes below
the grid are soaked, and thus already dead. The small greg anthe upper side are
still alive and have not identified anything. The bigger dgr&y ones have identified
the waterline, and enable the other ones to determine th&immal hop distance to
the waterline.

61

6 Evaluation

Variation of Communication Range At first, the variation of the communica-
tion range is evaluated. The parameter varies from 14 to B&hneads to connectiv-
ities from 8 to 30. Figure 6.3 shows a more detailed overvieth® used ranges.

60

‘ Min-Max +——i
Neighbors

50

40

30

Connectivity

20

10

0 Il Il
14 16 18 20 22 24

Communication Range

Figure 6.3: Connectivity by the Variation of Communicatigange.The figure shows
the resulting connectivity by the variation of the commatian range in the standard
scenario. In addition, the minimal and maximal humber ofyhbbrs of a node are
shown. For example, a communication range of 18 leads to aegdivity of 15. In
addition, there is at least one node that has only got onehiiig as well as at least
one node with 33 neighbors.

However, Figure 6.4 shows the results of the simulationsrdlare the false posi-
tives, the false negatives, and the distances of the falsg torthe waterline evaluated.

In (a), the absolute number of false positives is shown. Tdieevvaries between
0.5 and 1.8 nodes that have detected the waterline albgititieenot in the immediate
near. A small communication range as well as a bigger one leduktter results than a
middle range one between 17 and 20. Nevertheless, the &bsoimber is quite small
with about one false positive per simulation. In almost thmne manner the relative
fraction of false positives is proportionally small as simaw (b). It varies from 3.5%
to 0.5%, and is constantly getting smaller with an increasimmmunication range.

The number of false negatives in (c) varies from 98 to 135, iannuch greater
than the absolute values of (a). With an increasing comnatioit range, the value is
continuous rising. Considering the relative fraction iy, {tlis continuous increasing,
too, but still relative small with a span from 9.8% to 14.7%.

In (e), the average real distance to the waterline is shownvaBying from 38 to
70, there are nodes that have detected the waterline butdtiplstimes the commu-
nication range away. The other way around, the false neggtiv(f) are mostly more
than the half of the communication range away.

62

6.1 Waterline Identification

18 . — . 35 35 . — . . 35
/Q\Nelghb%oss Method —=— B\EI*/‘EK Neighbor Loss Method —5—
16 \R/ \ 4 30 5 3 {30
° P S—8
£_ 14 £8 25
50 /ﬁ \ 25 98 1 25
To > = 2
LIPS g 58 2 A g
T ° o] B/ B
g° 17/ \ 20 2 =2 12 ¢
I3
28 1 5 To 15 5
a § (¢} o3 o
3z 15 ®%s 115
< 0.8 g 1
) g u\b\
0
4 [4
06 10 < o5 gy 10
m/ \B,/E]
04 5 0 5
14 16 18 20 22 24 14 16 18 20 22 24
Communication Range Communication Range
(a) Absolute Node Count of False Positives (b) Relative Fraction of False Positives
135 . — . . 7 35 15 . — : . 35
Neighbor Loss Method —H&— Neighbor Loss Method —5— n
130 “ 5 145 "
J 7 7 1
T é 123 135
T 25 = 125
35 120 > 53 13 1/ >
= z ge 2z
32 J 3 £8 125 2
85 s 20 8§ 5 i 120 8
T £ g8 12 £
as 5 EE] /“ 1
85 110 © BZ 115 ©
z2Z 15 0% /z(115
8 8% 11
§ 105 Zs8 D/z/
// 10 2% 105 1 10
100 VE/W 3 10 /M
m B/fﬂ'
95 5 95 5
14 16 18 20 22 24 14 16 18 20 22 24
Communication Range Communication Range
(c) Absolute Node Count of False Negatives (d) Relative Fraction of False Negatives
80 T T T T 25 T T T T
Min-M: Min-M:;
Distance to Waterline Distance to Waterline
75
70 20
65
2]
5 6 T
3]
= T =
e 55 2
g Wl 3
é 50 t é 10
g g
45
40 5
35
2 o
14 16 18 20 22 24 14 16 18 20 22 24
Communication Range Communication Range

(e) Average Distance to Waterline of False Posi{f) Average Distance to Waterline of False Nega-
tives tives

Figure 6.4: Neighbor Loss: Variation of Communication Rang

63

6 Evaluation

Variation of Random Node Malfunction The variation of node malfunctions is
done in multiple iterations as described in ®&andard ScenarioFrom round 25 to
35 a node dies with the given probability. The evaluatedesiary from 0 to 0.05.
The results are shown in Figure 6.5.

Up to a node loss of 0.015 the absolute number false posisvasceptable small
as shown in (a). After that, the false detections increaseipitously to number of
nearly 250 nodes by a node loss of 0.05 per round. A similagrwason can be done
in (b) that shows the relative fraction of false positivesitie beginning, only a small
fraction identifies the waterline albeit it is incorrect.teg by a probable loss of 0.05,
the fraction reaches 80%.

On the contrary, the number of false negatives decreas¢isgounsly with a greater
probability of node loss. If there is no node loss, an averageber of 125 nodes do
not identify the waterline albeit they are in the immediadam If the probability is set
to 0.05 per round, only 20 nodes do so, too. The relativeitradalls from about 12%
to 6%, and is shown in (d).

The average real distance to the waterline is multiple tithescommunication
range, if the probability of a node loss is greater or equaht®.01, and is averaged
to 60 units. Otherwise, if the probability is smaller tha®X).the mean distance is
acceptable inside the communication range, or even 0 ietleeno node loss. The
distance of the false negatives is constantly 13 units byranmoenication range of 18.

64

6.1 Waterline Identification

250

80

Neighbor Loss Methodl —5— ' ' Neighbor Ii)jl\ée/tbﬂ —8—
70
200 /zf
/ ” 4
150 50 ?/
/ w
100
0l -

False Detected Waterline
(Number of Nodes)

False Detected Waterline Fraction
(% of all Detected Nodes)

30 %
20
=

0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.01 0.02 0.03 0.04 0.05 0.06

Death Fraction Per Round Death Fraction Per Round
(a) Absolute Node Count of False Positives (b) Relative Fraction of False Positives
140 Neighbor Loss Method —&— 2y ' ' Neighbor Loss Method —&—
120 [;K \S

AN RN
SN RN
. N 8 N

0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.01 0.02 0.03 0.04 0.05 0.06

False Not Detected Waterline
(Number of Nodes)
(% of all Not Detected Nodes)

False Not Detected Waterline Fraction

Death Fraction Per Round Death Fraction Per Round
(c) Relative Absolute Node Count of False Nega- (d) Fraction of False Negatives

tives

120 18

Min-Max +——+— In-Max +——+—
Distance to Waterline Distance to Waterline

16
100

14
80

ig’ é 12

2 60 2 10
40

6
20

.

. ‘ ‘ ‘ ‘ ‘ . ‘ ‘ ‘ ‘ ‘
0 0.01 0.02 0.03 0.04 0.05 0.06) 0.01 0.02 0.03 0.04 0.05 0.06
Death Fraction Per Round Death Fraction Per Round

(e) Average Distance to Waterline of False Posi{f) Average Distance to Waterline of False Nega-
tives tives

Figure 6.5: Neighbor Loss: Variation of Random Neighbor Mattion.

65

6 Evaluation

Variation of Parameter Relative Loss Bound The variation of theRelative
Loss Boungbarameter defines the relative fraction of nodes that atevess to be dead
to identify the waterline. In addition, the additional meds given in 4.2.1 to allow for
a more reliable decision are also applied, but not variedvéder, theRelative Loss
Boundhas been tested from 10% to 50%, and the results are showgurefe.6.

If the bound is set to at most 20%, there are between 11 anddiEartbat identify the
waterline albeit they should not. By a minimal loss of 25% 0%3 the number drops
to only 4 and 2 nodes, respectively. After that, on the sgtiire parameter to 35% or
greater, there are nearly no false positives. Proportitméhe absolute humber, the
relative fraction is decreased from 12% to 0% by having timeesmentionable points.

In contrast to the false positives, the number of false megmincreases with a
higherRelative Loss BoundFrom 10% to 20% the number is constant by about 80
nodes. After that, it rises linear to over 140 nodes. Agdia,frocess of the relative
fraction is proportionally, and varies from about 8% to ové%s.

The distance of the false positives is approximately 50sujt a communication
range of 18, if theRelative Loss Bounis less or equal than 40%. In the consequence
of a lack of such ones at 45% or 50%, the distance is 0 at thedingopositions.
False negatives must be again in communication range to #terlime, and are ap-
proximated 14 units away. With an increasing parameter,ntiies draw near the
waterline to 12 units.

66

Neighbo} Loss Method —5—

12 .
B/\
10

False Detected Waterline
(Number of Nodes)
o

2 M\S\m\
0 o &

10 15 20 25 30 35 40 45 50
Relative Loss Bound

(a) Absolute Node Count of False Positives

150

!\‘leighbor‘ Loss Method —5—
140 H1
120 /
100 /

0 /-
80 /

B—a—g

110

False Not Detected Waterline
(Number of Nodes)

70

10 15 20 25 30 35 40 45 50
Relative Loss Bound

(c) Absolute Node Count of False Negatives

Min-M:
Distance to Waterline

Distance to Waterline
=
8

10 15 20 25 30 35 40 45 50
Relative Loss Bound

(e) Average Distance to Waterline of False Posi{f) Average Distance to Waterline of False Nega-

tives

False Detected Waterline Fraction
(% of all Detected Nodes)

False Not Detected Waterline Fraction
(% of all Not Detected Nodes)

6.1 Waterline Identification

l‘\leighbo‘r Loss Method —E—

m\%

10 15 20 25 30 35 40 45 50
Relative Loss Bound

(b) Relative Fraction of False Positives

15

l‘\leighbo‘r Loss Method —E—
14 A

) //Z/
12 /Z/
11 /Z/
) /z/
9
[M/B/
10 15 20 25 30 35 40 45 50
Relative Loss Bound

8

(d) Relative Fraction of False Negatives

Min-Max
Distance to Waterline

Distance to Waterline
e
5

tives

10 15 20 25 30 35 40 45 50

Relative Loss Bound

Figure 6.6: Neighbor Loss: Variation of ParameRalative Loss Bound

67

6 Evaluation

6.1.3 Local Measurement

The Local Measuremenias been tested by using the standard parameters in almost
the manner as thideighbor Lossnethod. Again, the communication range, the error-
proneness, and the setting of the important parametervalieaed.

In general, 10% of the sensors are faulty. Consequentlis, seresors do not measure
wetness albeit they should, or identify wetness in dry sagdb

As already described in Section 4.2.2, a positive sensatsadeast 30% of neigh-
bors that have done so, too, whereas a negative one idetitifiegaterline if 75% of
its neighbors have measured wetness.

Variation of Communication Range At first, a variation of the communication
range is evaluated. The resulting connectivity is the sasrshawn in Figure 6.3. The
results can be seen in Figure 6.7.

The number of false positives is shown in (a). With an indrepsommunication
range the number of such nodes drops from 16 to 10 wherebytdbpest descent
occurs from a communication range of 14 to 17. After thatytiee is nearly constant.
A similar process occurs by considering the relative fracshown in (b). The fraction
varies from 2.5% to 1.5%.

The number of false negatives is relative high in comparisatiine Neighbor Loss
method, but is also hardly affected by the communicatiogeahere is a flat ascent
from about 250 nodes to 260. Again, the relative fractiorcpeals similar, and varies
from 18% to 19%.

The distance to the waterline of the false positives showshnagetter results than
the ones of thé&leighbor Lossnethod. With a communication range of at least 19, the
average distance as well as the maximal measured one iseaiegthan the range.
Also the results at 17 and 18 are acceptable with being natgréhan two times the
communication range. Nevertheless, a smaller range leadsrse results, although
the average distance is near to the communication range.diStance of the false
negatives is always 0, because such nodes are already Wedomaterline to be able
to measure potential wetness.

68

6.1 Waterline Identification

16 32 25 32
i Measurement Method —&— i Measurement Method —5—
i 1 30 241 1 30
15 4 28 s \ 128
© 126 S 23 {26
2 <
E'g’? 14 4 o4 t% 2.2 1 24
sz 122 2 £2 422
LIt S S s
35 12 % g8 2 123
28 18 g 38 \ 118 ¢
z 5] E= 19 3
=35 \ 4116 O o3 - b\ 116 O
32 414 g“\f 18 114
fid D—D\L A 112 8= 17 i — 112
2 .
10 = 4 10 & 110
By \E/E] 16 A
18 = \/3 8
9 6 15 6
14 16 18 20 22 24 14 16 18 20 22 24
Communication Range Communication Range
(a) Absolute Node Count of False Positives (b) Relative Fraction of False Positives
262 32 18.9 32
Measurement Method —5— Measurement Method —%
o...q 30 18.8 4 30
260 c -
f\E] 28 2 \\ 28
o 258 S 187
£ 1 26 8 g6 1 26
S 256 1 24 v3 - 1 2
o9 g 2
=3 p—e-d 12 » 55 185 P 122 2
32 £ g3 g
8z 120 2 =3 184 420 F
8% 252] o 8
23 o o 128 E wmay ps ry
St 250[{ - {116 S g2 182{ [116 S
zZz k-] :
€ 4 14 ol 1 14
8 248 85 181
T 712 FEA 412
110 2 110
244 ¥ 18 w 17.9 W 4 g
242 . . : : 6 17.8 . . : : 6
14 16 18 20 22 24 14 16 18 20 22 24
Communication Range Communication Range
(c) Absolute Node Count of False Negatives (d) Relative Fraction of False Negatives
100 T T T T 1 T T T T
Min-M: Min-M:;
Distance to Waterline Distance to Waterline
90
80
05
70
g]
g 3
) g
= =
s 50 s o
g]
a o
30
-0.5
20 },
| Ioors
10
[
o) \ ,) "
14 16 18 20 22 24 14 16 18 20 22 24
Communication Range Communication Range

(e) Average Distance to Waterline of False Posi{f) Average Distance to Waterline of False Nega-
tives tives

Figure 6.7: Local Measurement: Variation of Communicafange.

69

6 Evaluation

Variation of Sensor Malfunction The reliability in the sense of measurement
failures is simulated by a variation of the fraction of fgubensors. As already men-
tioned above, a faulty sensor measures wetness if there @woand detects one if it
is not supposed to do so. The fraction varies from 0% to 50%ufyf sensors, and is
shown in Figure 6.8.

Up to a fraction of 25% faulty sensors there are less than 126 faositives. Even a
fraction of 0% results in false detections, but occurs inseguence of the 75% limit
on which nodes that have not identified the waterline arevaltbto do so. Hence, such
a situation occurres only in the near of the waterline andégptable. However, from
a faulty fraction of 30% on the number of false positives peits a steep ascent that
results in over 120 nodes. The same process is shown in (bAuk wf 50% leads to
more than 20% false detections.

The number of false negatives proceeds a linear increasingZ00 nodes to nearly
450. In the consequence of the fraction of failed sensoradldes are no longer able
to provide an accurate identification of the waterline.

In (e) itis shown that the false positives with 0% faulty sessccur in the very near
of the waterline. The average as well as the maximal distahsech nodes is smaller
than the communication range and can thus be tolerated nrgle the average value
is acceptable up to a fraction of 30%, and overwhelms the asmigation range by a
mentionable amount only with greater fractions.

70

140 T u
Measurement Method —5—

il
120]

=
o
S

80 /B
60 /
40

20 /Z/Z/
[k—H—E/E’M

0 0.1

False Detected Waterline
(Number of Nodes)

0

0.2 0.3 0.4
Fraction of Faulty Sensors

0.5

(a) Absolute Node Count of False Positives

450 T u
Measurement Metj:d/gg.*/{]

400
[
£
£ /Z/
sy 350
£
8z
85 300
33 /
= E
22 250
[
@
(]
S 200 /

id
150
0 0.1 0.2 0.3 0.4 0.5

Fraction of Faulty Sensors

(c) Absolute Node Count of False Negatives

140

Min-M
Distance to Waterline

100

Distance to Waterline

0 01 02 03 04 05
Fraction of Faulty Sensors

(e) Average Distance to Waterline of False Posi{f) Average Distance to Waterline of False Nega-

tives

False Detected Waterline Fraction
(% of all Detected Nodes)

False Not Detected Waterline Fraction
(% of all Not Detected Nodes)

05

Distance to Waterline
°

05

tives

6.1 Waterline Identification

25 u T
Measurement Method —=—

. i
: /
5 //
[k’E—‘?/E,/E/E/ﬂ

0 0.1 0.2 0.3
Fraction of Faulty Sensors

o ‘
0.4 0.5
(b) Relative Fraction of False Positives

32

' ' MeasUrement Method —E—
30 %
2 e
26 /
; re
s =
, pal
ol
Wl 7
14 [/

0 0.1

0.2 0.3 0.4
Fraction of Faulty Sensors

05

(d) Relative Fraction of False Negatives

Min-M
Distance to Waterline

0 01 02 03 04 05

Fraction of Faulty Sensors

Figure 6.8: Local Measurement: Variation of Random Neigh@alfunction.

71

6 Evaluation

Variation Relative Bounds Finally, a variation of the parameters for an identifi-
cation of the waterline is presented. There are two menienparameters. On the
one hand, the one that accepts an own detection if at leastaB0& neighbors has
done so, too. On the other hand, the one that allows a nodemtifithe waterline,

if itself has not detected such ha occurrence, but 75% of éighbors have done so
indeed. However, both parameters are varied concurretliye former one is set to
10%, 15% or 20%, the latter is set to 75%. The same relatiprishgiven between
25%-35% and 80% as well as 40%-50% and 85%. This graduatigaieg the steps
in Figure 6.9 which shows the results of the variation of taemeters.

The number of false positives as shown in (a) is decreased fbto 7. The first
three values are settled down at 15, the next three at appated 11, and the last ones
at 7. The same proceeding occurs in the relative fractionréd@hes from 2.4 to 1.2.

An increasing of the parameters leads to a higher numbers# faegatives. The
steps are settled down at 220, 250, and 300 which is propailjoto the relative
fraction of 16.5, 18.5, and 21, respectively.

The distance to the waterline of the false positives is lyaaffected by a variation
of the parameters. The average value is constantly by alfiouhits which in turn is
approximated half of the communication range. In addittba,maximal distances are
also acceptable, because none of them is greater than twe time communication
range.

72

16
15 /
141

13

"Measurement Method —5—

12 <\

11 a—
10

False Detected Waterline
(Number of Nodes)

9

8
E\m/a
7 i

10 15 20 25 30 35 40 45 50
Relative Loss Bound

(a) Absolute Node Count of False Positives

300 T T T T T T
Measurement W]

290

280 /

270 /

260

250 E*n/

False Not Detected Waterline
(Number of Nodes)

240

230
[3—«‘3/*‘2{

220
10 15 20 25 30 35 40 45 50
Relative Loss Bound

(c) Absolute Node Count of False Negatives

Min-M:
Distance to Waterline

Distance to Waterline

10 15 20 25 30 35 40 45 50
Relative Loss Bound

(e) Average Distance to Waterline of False Posi{f) Average Distance to Waterline of False Nega-

tives

6.1 Waterline Identification

24

/E‘I\‘% Measurement Method —B—

22
o

18 /Ji
[

1.6

14
E\M/EJ
12 ;

10 15 20 25 30 35 40 45 50
Relative Loss Bound

False Detected Waterline Fraction
(% of all Detected Nodes)

(b) Relative Fraction of False Positives

2 ' ' ' Measurémenl etl i
205 /
20 /
195 /
19 /
185 /
18 /d\H
175

17
EM

16.5
10 15 20 25 30 35 40 45 50
Relative Loss Bound

(% of all Not Detected Nodes)

False Not Detected Waterline Fraction

(d) Relative Fraction of False Negatives

Min-M
Distance to Waterline

05

Distance to Waterline
°

05

10 15 20 25 30 35 40 a5 50
Relative Loss Bound

tives

Figure 6.9: Local Measurement: Variationi®élative Bounds

73

6 Evaluation

6.2 Backbone Algorithms

The backbone algorithms are evaluated in different scesdy using both waterline
identification methods. In addition, the communicationganthe velocity of an in-
creasing waterline, and important parameters of the dlgos are varied.

The are several rating factors of interest. Firstly, theai@mng energy level of the
nodes belonging to the backbone can be compared. Then,tiigenof messages that
are used for coordination differs in the algorithms. Anottaing factor is the number
of nodes belonging to the backbone as well as the averagestapck to the waterline.
Finally, the reliability and velocity of the routing algdnims is of interest. The former
is the number of messages that are received by the sink otiagouessage, whereas
the latter describes the number hops taken by the messageceinto the minimal
hop distance of source and destination.

At first, the different scenarios are described in Sectiéhl6. Then, examples of
both algorithms are presented in Section 6.2.2 and 6.2speotively. Finally, the
evaluation is presented in Section 6.2.4.

6.2.1 Scenario Description

The algorithms have been simulated in three different seenaFirst, the standard
scenario that has already been used by evaluating the inatéténtification, and is
shown again in Figure 6.10. Second, a scenario that contai@snissing part in the
dike structure as shown in Figure 6.11. Third, a scenarib mitltiple missing parts
which can be seen in Figure 6.12.

The network in each scenario consists of 2000 nodes whicplaced randomly in
the given region. The communication range is set to 18 units.

In general, the same settings are used as in the scenarioefovaterline identifi-
cation and described in Section 6.1.1. Hence, the trangmis$ messages is done in
a reliable manner. The communication is simulated by a digky model to assure
bidirectional connections between neighbored nodes.

The simulation runs for 200 iterations. The water level &istfor the first 100
rounds, and increases for the next 80 rounds. The standardtaln height is set to
20 units.

The simulation is repeated 10 times in each scenario whioseguently leads to
30 results per parameter variation. Each presented diagfams the aggregation and
average of all scenarios.

74

6.2 Backbone Algorithms

“ e
&

(a) Top View (b) Side View (c) Diagonal View

Figure 6.10: Normal Scenario for Backbone Algorithms.

(a) Top View (b) Side View (c) Diagonal View

Figure 6.11: Scenario containing one Hole in the Topology.

(a) Top View (b) Side View (c) Diagonal View

Figure 6.12: Scenario containing multiple Holes in the Toge.

75

6 Evaluation

6.2.2 Waterline Stripe

To illustrate the behavior of thé/aterline StripeFigure 6.13 shows an example of a
running simulation.

Figure 6.13: Example diVaterline Stripe The figures show an example of the Water-
line Stripe. The waterline is represented by the wired githe orange spheres are
the nodes belonging to the backbone structure which is gludtt above the waterline.
The remaining nodes are represented by the grey spheres.

The waterline is identified by the measurement method. Tménmai hop distance
is set to 2 hops, and the maximal one to 3 hops. The result lativeebroad structure
in which messages can be routed.

76

6.2 Backbone Algorithms

6.2.3 Short Path Mix Up

An example of théShort Path Mix Ugds shown in Figure 6.14. The backbone consists
of only a small number of nodes, but builds a continuous cot@akstructure.

(d) Cutout

Figure 6.14: Example ddhort Path Mix Up The figure shows an example of the Short
Path Mix Up. The wired grid represents the waterline. Thenge spheres are the
nodes belonging to the communication backbone, whereagefi@nes are the none-
backbone ones. In addition, the short paths are illustrdigdhe lines which connect
the appropriate members. In Subfigure (a), the path builgihgse is shown, whereas
(b) and (c) enable the view on a continuous connected baekl€inally, (d) shows a
cutout of the built structure to allow for a more detailedwie

1

6 Evaluation

6.2.4 Comparison of the Algorithms

For the comparison of the both backbone algorithi¥ederline Stripeand Short Path
Mix Up, each has been combined with both waterline identificatiethodsNeighbor
LossandLocal Measurementence, there are four different combinations compared.

The evaluated parameters are the communication rangeelihety of the increas-
ing waterline, and the minimal and maximal hop distance far initial backbone
building process.

On comparing the number of sent messages, the results énaludent messages
that are used for coordination. This includes periodic dymmssages, neighborhood
updates, and so on. Such messages do not depend on the Udszhieaaigorithm, and
thus the comparison can be done by the difference of additlmackbone coordination
messages. However, this approach takes advantage of Haagoarate also none-
backbone nodes.

Variation of the Communication Range

At first, the communication range is varied from 17 to 24. Tbeoading connectivity
is shown in each diagram.

Figure 6.15 shows the number of nodes belonging to the baeksioucture and the
average hop distance of the backbone nodes to the waterline.

o
[}

450 : — 34 g 4 : : : : — 34
@ NLoss - Stripe —H&— z NLoss - Stripe —&—
S NLoss - Path N 32 2 38t NLoss - Paths 132
£ 400 - Tipe —A-= s Measure - Stripe —A—
§ i; ure - Paths —+— 4 30 X 36 Measure - Paths —¥— 1 30
o 350, . 3 1
£ % 5 34 2
°
< 300 4 26 > g 32[k v\v\i, 26 >
5 124 2 g 124 2
5 250 9] g 3 3
° 122 £ g " 2 ¢
3 s 2 28 3
g 200 420 © g “ 20 ©
3 § 26
£ 150 118 z S—g a—a]
s 1 16 g 24 \S\ \ 16
g 10ge 114 T 22 4 14
5 = g sy

50 . . . X A f 12 @ 2 12

[
17 18 19 20 21 22 23 24 z 17 18 19 20 21 22 23 24
Communication Range Communication Range
(@) Number of Backbone Nodes (b) Average Hop Distance to Waterline

Figure 6.15: Variation of Communication Range: Number otiBmne Nodes and
Average Hop Distance to Waterline.

In (a) it can be seen that tWaterline Stripeconsists of more nodes than tShort
Path Mix Up With an increasing communication range it rises from al3&0tnodes to
400, nearly independent from the waterline identificaticethmd. By usingNeighbor
Loss there are only a few more nodes belonging to the backboneitheombina-
tion with Local MeasurementIn contrast, theShort Path Mix Upconsists of about
150 nodes and is decreased 70 with an increasing commuamiaainge. Again, the
Neighbor Losdeads to few more members.

By comparing the average hop distance to the waterline agrstm(b), theWater-
line Stripeis closer to the waterline than tfghort Path Mix Up The hop distance of
the stripe is decreased from 3.3 to 2.2, whereas the one ghths drops from 3.9 to

78

6.2 Backbone Algorithms

3.1. In general, the combination wilreighbor Los$eads to a smaller distance except
for the Waterline Stripdoy a communication range that is greater or equal 21.
Figure 6.16 shows the remaining energy level and the nunftssn messages.

80 34

©
o

34

" NLoss - Stripe =

[NLoss - Paths 4 32
80 L Measure - Stripe —A—
E\S\ easure - Paths —¥— 30
I~ 128
70 ==y
1 26
60

124

' i ' ' NLoss‘—Stripe =

8 NLoss - Paths 9 32

70 e 5. Stripe —A—

\S\ Measure™: Pa 1 30

y

60 128
4

\ \S\ 4 26

%0 \\ \S\S\ 12

0 12

20

1 22

. 5
: N

Connectivity
Connectivity

Remaining Energy Level of Backbone Nodes

Remaining Energy Level of None Backbone Nodes

) \S\R 15 4 18
g
4 16 4 16
20 30
1 14 1 14
A
10 12 20 12
17 18 19 20 21 22 23 24 17 18 19 20 21 22 23 24
Communication Range Communication Range

(a) Remaining Energy on Backbone Nodes (b) Remaining Energy on None-Backbone Nodes

300 T — 34
0S5*= H—

ms 32

Measure - Stripe —&-~

250 4 Measure - Paths —+— - 30

/B/EI—E‘/E\HJ 28
1 26
200

1 24

N
N}
o

34
32

T T T
NLoss - Stripe —H—
NLoss ki
200 - Measw€ - Stripe —A~
sure - Paths —+— 4 30

A

180 _f1 28

ﬁ 1 26
160 , ;
1 22

{20
12018 {18

122
120
1 18

140 4

Connectivity

nN
EN
Connectivity

150

100

v s s g% 16

1 16
1 14

100

1 14

Number of Messages of Backbone Nodes
o

Number of Messages of None Backbone Nodes

- vy —¥——F x x x
50 12 80 L %

. n ! n
17 18 19 20 21 22 23 24 17 18 19 20 21 22 23 24
Communication Range Communication Range

12

(c) Number of Sent Messages by Backbone Node@l) Number of Sent Messages by None-Backbone
Nodes

Figure 6.16: Variation of Communication Range: Energy LLerel Number of Sent
Messages.

As shown in (a), the usage 8hort Path Mix Udeads to a higher remaining energy
level than the usage &Vaterline Stripe The former drops from 75 to 65, whereas the
latter is decreases from a mean value of 64 to a mean one of 28.cdmbination
with Neighbor Losdeads to a higher level than wittbcal Measuremertty using the
stripe. In contrast, there is no mentionable difference $igaithe paths.

The remaining energy level of the none-backbone nodes shof) proceeds sim-
ilar to the one of the backbone nodes in (a), but each with atgrevalue of about
10.

The number of sent messages in (c) makesSthert Path Mix Updistinguishable
from the Waterline Stripetoo. The former proceeding is constantly by about 100
messages in combination with both waterline identificativethods. In contrast, the
combination of the stripe wittNeighbor Lossvaries from 175 to 220, and in com-
bination with Local Measurementrom 250 to 300. The latter has a maximum by a
communication range of 19, and is then decreased down to 280.

Again, the none-backbone nodes show a similar proceedingaeh with a smaller
amount of sent messages. By using the paths the value isaotigsby about 80

79

6 Evaluation

messages, whereas the usage of the stripe leads to drafitd #® to 180 and 140 to
210, depending on the used waterline identification method.
Figure 6.17 shows the results of the routing process.

40 T T 34 100 T T 34

ipe —H S ipe —Hl
NLoss - Paths — 4 32 NLoSs - Paths — 132
38 - Tipe —A— 95 fipe —A—
Measure - Paths —%— 1 30 Measure - Paths —¥— 1 30
36 T N 28 %0 TN 28

%/)J 126
34 /\/ 24
32 122
/ 1 20

3

{ F*/ 426
85 /\/ 124
80 122
/ 120

Connectivity
(% of 40)
Connectivity

Number of Received Routing Messages
(40 messages sent)
Fraction of Received Routing Messages

30 418 75 418
1 16 4 16
28 70
! 1 14 / 1 14
261 1 65 12
17 18 19 20 21 22 23 24 17 18 19 20 21 22 23 24
Communication Range Communication Range

(a) Absolute Number of Received Routing Mes-(b) Relative Fraction of Received Routing Mes-

sages sages
50 . — 34 30 . — 34
NLoss - Stripe —5— NLoss - Stripe —5—
A NLoss - Paths 1932 4 NLoss - Paths 132
\ Measure - Stripe —&~ 28 b Measure - Stripe —4&—

451 Measure - Paths —¥— 4 30 Measure - Paths —¥— { 30

N i
N
) P

14
12

26 4 28
1 26

24 \ 1 24
2 122

\\ 1 20
20

4 18
1 16

Connectivity
Connectivity

18

Average Hop Count of Routing Messages

20

16

12

Average Real Minimal Hop Count of Routing Messages

17 18 19 20 21 22 23 24 17 18 19 20 21 22 23 24
Communication Range Communication Range

(c) Average Hop Count of Routing Messages (d) Theoretical Minimal Hop Count of Routing
Messages

Figure 6.17: Variation of Communication Range: Routing afddages.

In (a), the absolute number of received routing messagdsoisrs Both combi-
nations with theWaterline Stripeproduce a noticeable reliability with an increasing
communication range. The combination whieighbor Losgises from 26 messages
to 40, the combination withocal Measuremerfrom 32 to 40. The latter reaches 40
messages by a communication range of 20. $hert Path Mix Upin combination
with Local Measurementaries from 30 to 37, whereas the combination viNtkigh-
bor Lossvaries from 37 to 40. In (b), the results are shown as theivel&iaction of
received routing messages, and produce the same proceeding

The average hop count of routing messages decreases withraasing communi-
cation range as shown in (c). The hop count of$hert Path Mix Ugdrops from 40 to
24 nearly analog with both waterline identification methodlke Waterline Stripen
combination withNeighbor Losgirops from 45 hops to 26, whereas the combination
with Local Measuremenralls from 46 to 27 in parallel. The theoretical minimal hop
distance between the source and the sink is shown in (d) aps dhom 29 to 18.

80

6.2 Backbone Algorithms

Variation of Velocity and Height of the Increasing Waterlin e

The velocity of the increasing waterline has been simuldgdarying the overall
height of the waterline. In the standard case, the incrgasirihe waterline starts at
iteration 100. Then, the height rises by 20 units for 80 ra@urthis results in 0.25 per
round.

To simulate different water levels, the parameter of theaVieight varies from 0
to 50, each for 80 rounds. The latter results in 0.625 perdoun

Figure 6.18 shows the number of nodes belonging to the baeksioucture and the
average hop distance of the backbone nodes to the waterline.

4.4

P
Q
450 . . vy = § — . 0 ™
1 0Ss - Stripe 4%‘ 0ss - Stripe —=—
5 NLoss - Paths_~H 2 42 / \ NLoss - Paths 4
£ 400 Measure - e —A— S \ Measure - SfNpe —&—
§ - Paths —v— 3 4 Measure ;Paths —v— |
o 350 & \/v\ Pa
£ —a A s 387
s e T o 4 \/ Vv
) 300 £ 36
> 2
c ©
™~ T ol e
- 2 32
g 200 S 3
3 g T~ A A,
2 s 3
< 150 B \
° Q 53 = e N
% 5 5 2 '
€ 100 z\F”’*\v\F 7 PN \ A
2 Y———v v, :.j, : =
50 £ o4
0 10 20 30 40 50 z 0 10 20 30 40 50
Variation of Waterline Level Variation of Waterline Level
(a) Number of Backbone Nodes (b) Average Hop Distance to Waterline

Figure 6.18: Variation of Waterline: Number of Backbone Wsdand Average Hop
Distance to Waterline.

The number of nodes belonging to the backbone structurecassih (a) points the
differences between thghort Path Mix Upand theWaterline Stripeout again. The
former varies from 140 to 100 in combination whteighbor Lossand from 120 to 70
with Local Measurementn contrast, the stripe varies from 310 to 350 in combimatio
with Local Measurementnd from 310 up to 450 witNeighbor Loss

By analyzing the average hop distance to the waterline intiile)Waterline Stripe
combinations are closer than ti&hort Path Mix Upones. Applying together with
Local Measuremenit drops from 3.7 to 2.9, and from 3.2 to 2.6 witeighbor Loss
The paths drop from 3.8 to 3.2 combined widkighbor Lossand vary from 3.6 to 4.4
with the measurement method.

Figure 6.19 shows the remaining energy level and the nunftsan messages.

Except for the static waterline with a variation of 0, tBhort Path Mix Upleads
to a greater amount of remaining energy than\tfegerline Stripe The former rises
from 58 to 81 with similar results for both waterline idert#tion methods. The stripe
combined withNeighbor Lossvaries from 62 to 76, and withocal Measuremernit
drops from 69 to 60 by having a minima of 45 at a waterline atten level from 15
to 25.

There are similar results for the none-backbone nodes dwiridp greater remaining
amounts of energy. Th@/aterline Stripeapplied together with.ocal Measurement
drops from 82 down to 66, whereas the combination \Wigighbor Losgalls from 82
to 80 with minima of 73 by an alteration of 25 to 35. In contrdke Short Path Mix

81

6 Evaluation

85 T T 84

7
T T @ T T T T
2 NLoss - Stripe —=— ¥ 3 NLoss - Stipe
k] NLoss - Paths Z gyoB 55~ Paths 1
S 80 Measure<Stripe—A— 2 easure - Stripe —&—
e - Paths —v— S W Measure - Paths —v—
§ s /,,/w»e 4 3 80 /< /]
E / /E/E/ @ 78]
a8 70t 2 /Z(
R —— N ——
2 65 5 74 !
8 \E/E/m 3 \ \B‘/G\E/
= A g 72
S 60 -
2 / 3 70 \& /A\
w A [
2 55 & / T
< =)
® 50 i)
§ w .é % I
45 . n . . g 6
0 10 20 30 40 50 0 10 20 30 40 50
Variation of Waterline Level Variation of Waterline Level

(a) Remaining Energy on Backbone Nodes (b) Remaining Energy on None-Backbone Nodes

300

180

" NLoss - Str‘ipe =
NLoss - Paths
160 leasure - Stripe

/‘ Meas| —v—
140 /
o Z/Z/B\B/E\S\

100
e o

T T
NLoss - Stripe —H&—
NLoss - Paths
asure - Stripe —&—

250 Me: e - Paths —»— |

200

150
‘B\B\EJ

100 R e]

80

Number of Messages of Backbone Nodes
Number of Messages of None Backbone Nodes

50 . . . 60
0 10 20 30 40 50 0 10 20 30 40 50

Variation of Waterline Level Variation of Waterline Level

(c) Number of Sent Messages by Backbone Node@l) Number of Sent Messages by None-Backbone
Nodes

Figure 6.19: Variation of Waterline: Energy Level and NumbESent Messages.

Up leads to an increasing remaining energy level. Both contioinsirise from 78 to
84.

The number of sent messages of backbone nodes is nearlyaabft theShort
Path Mix Upand decreases from 100 to 90 in both combinations.\Waterline Stripe
applied together witiNeighbor Lossaries from 200 to 125 by starting at 160. Com-
bined withLocal Measuremerit proceeds from 150 to 240 by having a maximum of
290 at an alteration level of 25.

The Short Path Mix Upleads again to nearly constant results for the number of
sent messages for none-backbone nodes. Combined_withl Measuremens per-
manently at 85, whereas the combination wikkighbor Losslrops from 85 to 78. In
contrast, th&Vaterline Stripeapplied together withocal Measuremeritcreases from
85 up to 180. Combined witNeighbor Losst proceeds from 85 to 100 with maxima
of nearly 140 by waterline alterations from 25 to 35.

82

6.2 Backbone Algorithms

Figure 6.20 shows the results of the routing process.

40 T T T 100 T T T
i NLoss - Stjipe —H5— i NLoss - Stnpe —H=—
Loss - Paths

Mea - e
95 - Measure -/Paths —v— 7

NPV S

) VERPAY,

75 AR
N

. . . . 70
0 10 20 30 40 50 0 10 20 30 40 50
Variation of Waterline Level Variation of Waterline Level

NLoss - Paths
e

R R\
) N~ R
) VAR

, N/ N
\,

28

(% of 40)

Number of Received Routing Messages
(40 messages sent)
Fraction of Received Routing Messages

(a) Absolute Number of Received Routing Mes-(b) Relative Fraction of Received Routing Mes-
sages sages

43 T T T T 27 T T
NLoss - Stripe —H&— NLoss - Stripe —H—
PPy NLggs - Paths A NLoss - Paths
Sure Stripe
Measure - —v—

26.8 Measure - Stripe —A— |

0
[
i=2]
@
2
"
) 2
a E’ Measurg - Paths —v»—
R m/E/E*/B\B\ j 3 ﬂ A P }\ o
EREEN / 9:5 2664 XJ/K]
£ By
3 - x z
€ 39 5 264
E 5 [/X/\ y / ><)
S o
€ 38 5]
A N s VAV
FY E
8 \\ g .
t Y
g \'\ 1 E s
:® \/ A
N &
a ‘ ‘ ‘ ‘ € ‘ ‘ ‘
0 10 20 30 40 50 Z 0 10 20 30 40 50

Variation of Waterline Level Variation of Waterline Level

(c) Average Hop Count of Routing Messages (d) Theoretical Minimal Hop Count of Routing
Messages

Figure 6.20: Variation of Waterline: Routing of Messages.

The number of received routing messages shows no advarftagpecial backbone
algorithm. TheShort Path Mix Upgcombined withNeighbor Loswaries from 36 to 40.

A similar result with the same variation is obtained by appdythe Waterline Stripe
together withLocal Measurementin contrast, the&short Path Mix Upcombined with
Local Measuremenproceeds from 40 to 33 with a minimum of 29 at the waterline
alterations 25 and 30. Th&aterline StripeandNeighbor Losglrop from about 40 to
30 with a local maximum of 37 at an alteration level of 35, atdcal minimum of 32

at 20. Again, the same results are shown in (b) with the weditaction.

The average hop count of the routing messages is shown inT{ag Waterline
Stripe combined withLocal Measuremenieads to a nearly constant value of 42. If
the Neighbor Lossmethod is applied, the stripe uses a nearly constant hop obun
40. TheShort Path Mix Upproceeds from 37 to 35 in both combinations, but with
different amplitudes.

The theoretical minimal hop distance between source antihd#@en is approxi-
mated 26.4 as shown in (d).

83

6 Evaluation

Variation of the Hop Distance to the Waterline

Finally, the minimal and maximal hop distance to the waterfor the initial phase of
the backbone algorithms is varied. The appropriate valeestzown in the diagrams
on the x-axis with the minimum as the first value and the marinas the second one,
respectively.

Figure 6.21 shows the number of nodes belonging to the baeksioucture and the
average hop distance of the backbone nodes to the waterline.

500 T T 5 T T
NLoss - Stripe —5— NLoss - Stripe —5—

2 B/E}?’éa/

. . . .
11 1-2 1-3 2-2 2-3 3-3 11 1-2 1-3 2-2 2-3 33
Variation of Minimal and Maximal Hop Distance Variation of Minimal and Maximal Hop Distance

o

é 450 /Q NLoss - Paths i NLoss - Paths

= Measure - Stripe —&— Measure - Stripe

8 Measure - Paths —v— 4.5 Measure - Paths

@ 400

2 JZI/ /\

S 350 A 4 v

2 A ;
S 300 //‘é
5 / \B/ 35 v

g 250

o

3 W \E A /
@

3 3

z

S

]

-}

15

5

=4

Average Hop Distance to Waterline of Backbone Nodes

(@) Number of Backbone Nodes (b) Average Hop Distance to Waterline

Figure 6.21: Variation of Distance Parameters: Number akBane Nodes and Aver-
age Hop Distance to Waterline.

The number of nodes belonging to the backbone as shown ire@nds on the
span of the minimal and maximal hop distance. Biert Path Mix Upcombined
with Local Measuremerieads to the smallest values. It varies from 50 to 100 nodes,
depending on the given span. Applied together Wtsighbor Lossthe variation is
from 75 to 150. ThaVaterline Stripecombined with the measurement method varies
from 200 to 400, and witiNeighbor Losgrom 250 to 475.

The average hop distance to the waterline depends particalathe given minimal
parameter. For thé/aterline Stripecombined withNeighbor Lossit increases from 2
to 3.6, together with.ocal Measuremerfrom about 3 to 3.8. Th&hort Path Mix Up
applied together withleighbor Lossises from 2.5 to 4.5, and withocal Measurement
from about 3.5 t0 4.8.

84

6.2 Backbone Algorithms

Figure 6.22 shows the remaining energy level and the nunflsamn messages.

84

" NLoss - St}ipe —8—
¥ NLoss - Paths
82 [

asure—--Stripe —&—
Measure.- Paths
80
78
h z\:>\.\\e\a\\//g
74 —A

72

80 T ™
] NLoss - Stripe —H—
Ntess - Paths r
75 \ easure - Stiipe J

e - Path
70
A\ \SI\
65
\E/ \Yf/ A
60
1-3

2 il

55

50

70

p'4

Remaining Energy Level of Backbone Nodes

Remaining Energy Level of None Backbone Nodes

45 L L L 68 L L L .
1-1 1-2 2-2 2-3 3-3 1-1 1-2 1-3 2-2 2-3 3-3

Variation of Minimal and Maximal Hop Distance Variation of Minimal and Maximal Hop Distance

(a) Remaining Energy on Backbone Nodes (b) Remaining Energy on None-Backbone Nodes

280

160

‘ ‘ " NLoss - Stgipe —H5— § ‘ ‘ " NLoss - Stjpe —&—
3 260 A NLoss - Pétks . 8 150 NLoss - P]
B Measure - &trips, —A— i Measure 5/Stripe
Z 240 Measure/ Paths 1 c Measurg’- Paths
® § 140
=2 N
8 220 S
% 20 @ 130 ~ /\
@
o
£ 10 A A \ 5 120 B
2 4 Z/ = /E\‘/ T \E]
S 160 @ 110
&] @
¢ 140 h-of ° [a/
s L % 100
% 1200 2
s 2 o
@ s v
£ 100 fro g g g ; - v
2 80t § 80
60 Z 7
11 1-2 1-3 2-2 2-3 3-3 11 1-2 1-3 2-2 2-3 33

Variation of Minimal and Maximal Hop Distance Variation of Minimal and Maximal Hop Distance

(c) Number of Sent Messages by Backbone Node@l) Number of Sent Messages by None-Backbone
Nodes

Figure 6.22: Variation of Distance Parameters: Energy Lamel Number of Sent
Messages.

The remaining energy of the backbone nodes as shown in (ahden the used pa-
rameters for th&Vaterline Stripewhereas th&hort Path Mix Ups nearly not affected.
The latter varies from 70 to 80 for both combinations, andipogs only marginal dif-
ferences. Thé&Vaterline Stripevaries from 65 down to 45 for the combination with
Local Measurementaind from 75 down to 60 withNeighbor Loss

Except for a minimal as well as maximal hop distance of 1,3hert Path Mix Up
can be averaged to a remaining energy level of 82 for the bankbone nodes. The
Waterline Stripecombined withNeighbor Lossdecreases from 80 to 76 but with a
local minimum of 74. The combination wittocal Measuremerroceeds similar, but
from 76 to 72 and a local minimum of 68.

The number of sent messages of backbone nodes is nearlyacbasto0 for the
Short Path Mix Ugn both combinations. Depending on the parameterswaterline
Stripevaries from 120 to 200 if applied together witteighbor Lossand from 160 to
260 combined with_ocal Measurement

The number of sent messages for none-backbone nodes piogka. TheShort
Path Mix Upcan be averaged at 85, ak¢hterline Stripedepends again the used pa-
rameters. Combined witheighbor Losét varies from 100 to 130, and in combination
with Local Measuremerit varies from 120 to 150.

85

6 Evaluation
Figure 6.23 shows the results of the routing process.

40 . . 100 . .
/\ NLoss - Sttine p NLoss - Strine D
381 NLoss -P y 951 NLoss - P 4
Measure - e —A— Measure - Stfipe —&—
36 Measl P%s —~— % |- Measur Pai%s ——ff
34 /\f/ X, 85 _—

= -

32 80

(% of 40)

Number of Received Routing Messages
(40 messages sent)
Fraction of Received Routing Messages

30 / 75 /
28 70
26 65
24 —pp—] 60 s —
2y 55y
20 50
1-1 1-2 1-3 2-2 2-3 3-3 1-1 1-2 1-3 2-2 2-3 3-3
Variation of Minimal and Maximal Hop Distance Variation of Minimal and Maximal Hop Distance

(a) Absolute Number of Received Routing Mes-(b) Relative Fraction of Received Routing Mes-

sages sages
7
Q
44 . . . - g 268
oA NLoss - Stripe —5— @ " NLoss - Stripe —B5—
8 43 NLoss - Paths 1 g NLoss - Paths
2 /g\ Measure - Stripe —A— > 266 Measure - St e —a—
a2 42 re - Paths —v— c - Measure -
2 = \u\ £
2 @ e g /\ A
S 40 N \F‘ 8 5 264
« 39] A
5 / s O 2624
E 384 g /
2 37 - g 26
£ 36 £
% E
g 35 g 258
3 & {
Z 34 Py i
33 E 256 . . .
11 1-2 1-3 2-2 2-3 3-3 z 11 1-2 1-3 2-2 2-3 33

Variation of Minimal and Maximal Hop Distance Variation of Minimal and Maximal Hop Distance

(c) Average Hop Count of Routing Messages (d) Theoretical Minimal Hop Count of Routing
Messages

Figure 6.23: Variation of Distance Parameters: Routing eSbages.

In (a) the number of received routing messages is shown.SHoet Path Mix Up
combined withNeighbor Lossand theWaterline Stripeapplied together with.ocal
Measuremenshow the best results by varying from 34 to 40, each with ifie ad-
vantages in parameter settings. THlgort Path Mix Upin combination withLocal
Measuremenproceeds best on "1-3", "2-2", and "2-3" with a result of 3436. For
"1-2" and "3-3” there are 29 and 28, respectively, messagesived, and for "1-1"
only 22. TheWaterline Stripecombined withNeighbor Losdeads to a value of 24 if
the minimal hop distance is set to 1, and 36 otherwise. Tlaivelfraction of received
messages is shown in (b), and shows the same proceedings.

In (c), the average hop count of the routing messages is shovine results of
the stripe in combination withocal Measuremendre decreased from 43 to 41. The
combination withNeighbor Losdeads to 42 down to 39 hops. TB&ort Path Mix Up
combined withNeighbor Losstarts with 36 hops at "1-1", rises to 39 at "1-2", and is
then constantly at about 34 hops. Combined Witical Measuremenit starts at 38,
rises to 40, and can be averaged to 37 for the following.

The theoretical minimal hop distance between source antihe#@en is approxi-
mated 26 as shown in (d).

86

7 Conclusion

This thesis examined the potential usage of sensor netirfl®d protection. It has
been assumed that the nodes are therefore inserted intbaggnahich in turn are
used to protect an area against flooding. They are at most@bieasure the actual
wetness of the surrounding sand. In addition, they eithse kheir communication
ability due to physical restrictions, or fail on an incre®simoisture penetration if
not water resistant. Consequently, a valuable idea is tawsthparticularly nodes
close to the water level by routing messages through theanktwsuch an approach
requires the construction of a continuous connected corwation backbone, and the
definition of a routing algorithm that operates on the stitet Finally, the nodes are
not aware of their global position, neither in an absoluteina relative coordinate
system. Hence, the algorithms must be designed in a stdat foanner, and are only
allowed to use the information of their immediate neighbors

This thesis presented different algorithms for the cow$iban of such a commu-
nication backbone by separating the several tasks. Fitattymethods of waterline
identification were designed, each with a particular maicu$oon the behavior of
the nodes. Thé&leighbor Losanethod takes only the loss of communication to the
immediate neighbors into account, whereasltheal Measuremenequires the avail-
ability of appropriate sensors. Both methods were extetgeadditional conditions
to improve the robustness against false detections. Sbt@ndoordination method
was designed by taking only the minimal hop distance to ssfemeference points
into account. The main design goal hereby was robustneslaasvsimplicity. Fi-
nally, two different backbone algorithms were presentedhevith an adapted routing
method. The main design goal of tNéaterline Stripewas a wide backbone struc-
ture that provides a preferably simple coordination ph&ensequently, the routing
method operates on the comparative high density and pmeidead balance when
forwarding messages. In contrast, tBlkort Pathanethod was designed for a more
reliable backbone structure. Each node is associated wi#ast one successor and
one predecessor. The paths are maintained as local aslppssibprovide a contin-
uous connected backbone. The routing method makes use givére structure and
operates in a simple but reliable manner.

The designed algorithms were implemented and simulatdkidiscrete event sim-
ulator Shawn. The evaluation has shown that the waterline identificasiocceeds in
an acceptable area. On greater perturbations, the methibdls the consequence of
the strict local decision process. To avoid such situafitims methods must be ex-
tended to operate over multiple hops and gather the usdbrhiation. However, the
Local Measuremeris more reliable than theighbor Lossnethod, because false de-
tections occur mostly in the near of the waterline, wherbaddlse ones in the latter
method are spread over the network. Furthermore, also ttidbae algorithms have
shown different results. In general, tB&ort Pathsshould be preferred to thé&/ater-
line Stripe Nevertheless, the reliability of both algorithms can bpiiaved, especially

87

7 Conclusion

with respect to a rapidly increasing waterline.

88

Bibliography

[Bra03] Landesumweltamt BrandenburgHochwasserschutz in Brandenburg
Land Brandenburg - Ministerium fur Landwirtschaft, Umtsehutz und
Raumordnung, 2003.

[BW99] Peter G. Burnett and John J. Wanner. Reducing leattagagh sandbag
dikes using a bentonite or other clay mud slurry. Patenie 11999.

[CDAO3] Shruti Chugh, Sagar Dharia, and Dharma P. Agrawah ehergy ef-
ficient collaborative framework for event notification inreliess sensor
networks. InLCN, pages 430—. IEEE Computer Society, 2003.

[CEO04] Alberto Cerpa and Deborah Estrin. Ascent. Adaptied-sonfiguring
sensor networks topologie$EEE Trans. Mob. Compuyt3(3):272-285,
2004.

[CIEQQ] R. Govindan C. Intanagonwiwat and D. Estrin. Diegtiffusion: a
scalable and robust communication paradigm for sensoramksw In
Proceedings of the sixth annual international conferencd/mbile com-
puting and networkingpages 5667, Boston, MA USA, 2000.

[CIBMO1] Benjie Chen, Kyle Jamieson, Hari Balakrishnand &obert Morris.
Span: An energy-efficient coordination algorithm for tampl mainte-
nance in ad hoc wireless networks. Ntobile Computing and Network-
ing, pages 85-96, 2001.

[Dav64] Rotislaw Davidenkoff.Deiche und Erdmme - Sickersfimung, Stand-
sicherheit Werner-Verlag, Duisseldorf, 1964.

[EAO3] Bruce Eckel and Chuck AllisonThinking in C++. Volume 2: Practical
Programming Prentice Hall, 2003.

[Fle02] G. Fleming Flood Risk ManagemenThomas Telford Publishing, 2002.

[Gad88] Peter E. Gadd. Sand bag slope protection: Desigrstremtion, and
performance. IrArctic Coastal Processes and Slope Protection Design
pages 145-165, New York, 1988.

[Gra05] Michael GrabeMeasurement Uncertainities in Science and Technology
Springer-Verlag, 2005.

[IPPRO3] Prakash Ishwar, Rohit Puri, S. Sandeep PradhadniKannan Ramchan-
dran. On rate-constrained estimation in unreliable senstworks. In
Zhao and Guibas [ZGO03], pages 178-192.

89

Bibliography

[IM96]

[KI03]

[KJ85]

David B. Johnson and David A. Maltz. Dynamic sourcetiing in ad
hoc wireless networks. In Thomasz Imielinski and Hank Koeitiitors,
Mobile Computingvolume 353, chapter 5, pages 153-181. Kluwer Aca-
demic Publishers, 1996.

Bhaskar Krishnamachari and S. Sitharama lyengaficieht and fault-
tolerant feature extraction in wireless sensor networks. Zthao and
Guibas [Z2G03], pages 488-501.

Nobuhisa Kobayashi and Brian K. Jacobs. Experimesttaly on sand-
bag stability and runup. IProceedings of the Fourth Symposium on
Coastal and Ocean Management, Coastal Zone '85, ASGCkime 2,
pages 1612-1626, Baltimore, MD, 1985.

[KSPSV02] Farinaz Koushanfar, Sasha Slijepcevic, Miod?atkonjak, and Alberto

[Kup97]

[NDH*03]

[Ohl04]

[PP92]

[RMS03]

[SCCO4]

[YF04]

[2G03]

90

Sangiovanni-Vincentelli. Error-tolerant multi-modahser fusion, 2002.

Klaus Kupfer. Materialfeuchtemessung - Grundlagen, Messverfahren,
Applikationen, Normenexpert-Verlag, 1997.

Tim Nieberg, Stefan Dulman, Paul Havinga, Lodewijk vaoedel, and
Jian Wu. Collaborative algorithms for communication ineléss sensor
networks. InAmbient intelligence: impact on embedded system design
pages 271-294. Kluwer Academic Publishers, Norwell, MAAJZ03.

Christoph Ohlig. Wasserhistorische Forschungen - Schwerpunkte
Hochwasserschutz/Elbe Schriften der Deutschen Wasserhistorischen
Gesellschaft (DWhG)e. V., 2004.

Paul Profos and Tilo Pfeifddandbuch der industriellen Messtechnik, 5.
Auflage R. Oldenbourg Verlag GmbH, 1992.

RMS. Central europe flooding, august 2002. Technggort, Risk Man-
agement Solutions, 2003.

H.O. Sanli, H. Cam, and X. Cheng. Eqos: An energyiefitcqos pro-

tocol for wireless sensor networks. Rroc. of 2004 Communication
Networks and Distributed Systems Modeling and Simulatiomfé€ence

(CNDS'04) 2004.

Ossama Younis and Sonia Fahmy. HEED: A hybrid, en&ffigient,
distributed clustering approach for ad-hoc sensor netsy@®04.

Feng Zhao and Leonidas J. Guibas, editdréormation Processing in
Sensor Networks, Second International Workshop, IPSN, 208 Alto,
CA, USA, April 22-23, 2003, Proceeding®lume 2634 ot ecture Notes
in Computer Sciencé&pringer, 2003.

