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Abstract. Experimentally driven research for wireless sensor networks
is invaluable to provide benchmarking and comparison of new ideas. An
increasingly common tool in support of this is a testbed composed of real
hardware devices which increases the realism of evaluation. However,
due to hardware costs the size and heterogeneity of these testbeds is
usually limited. In addition, a testbed typically has a relatively static
configuration in terms of its network topology and its software support
infrastructure, which limits the utility of that testbed to specific case-
studies. We propose a novel approach that can be used to (i) interconnect
a large number of small testbeds to provide a federated testbed of very
large size, (ii) support the interconnection of heterogeneous hardware
into a single testbed, and (iii) virtualise the physical testbed topology
and thus minimise the need to relocate devices. We present the most
important design issues of our approach and evaluate its performance.
Our results indicate that testbed virtualisation can be achieved with high
efficiency and without hindering the realism of experiments.

1 Introduction

Experimentally driven research for wireless sensor networks has been instrumen-
tal in advancing the state of the art in recent years; new sensing applications,
network architectures and protocol stacks have been optimised to operate over
varied radio technologies, restricted resources and specific deployment strategies.
The most commonly applied technique is simulation which allows rapid devel-
opment, offers debugging tools and enables easy repeatability. A natural step
beyond this is to implement the system on real hardware platforms and per-
form experiments in controlled testbed environments. This allows researchers
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to escape the inherent limitations of simulation regarding the available hard-
ware characteristics (e.g. buffer sizes, available interrupts) and communication
technology behaviour (e.g. transmission rates, interference patterns).

In the majority of cases, due to the costs of hardware, researchers evaluate
their solutions in local testbeds of limited size. While small testbeds provide
useful insights into the effectiveness of the system in real conditions, they tend
to offer limited support in terms of heterogeneity, scalability and mobility. Fur-
thermore, in most cases, a tightly coupled network and software architecture is
followed on a testbed, thus limiting the number of possible configurations of that
testbed.

In order to overcome limitations in scale, a number of testbeds of significant
size have been developed in the last few years. Their size currently ranges up to
1000 nodes, and there is a trend towards building even larger testbeds as seen
by projects such as WISEBED [14] and SENSEI [10]. This trend continues to
serve more accurate experimentation – and therefore high quality research – in
realistically-sized networks towards the scales imagined by the initial vision of
sensor networking that dealt with using thousands or even tens of thousands of
nodes.

Given this clear and continuing need for large open testbeds in WSN research,
certain critical questions are posed: i) how do we deal with the ever-increasing
total-number-of-nodes demand, ii) how do we combine large testbeds with het-
erogeneity (in available sensors, radios, computational resources, etc.), iii) how
can we maintain a very large WSN testbed efficiently? Furthermore, how can
we cater for hybrid simulation approaches, i.e., the combination of real and
simulated testbeds in order to produce extremely large-scale WSN testbeds?
Moreover, how do we utilize the facilities provided by these testbeds and adapt
them to each experiment’s needs; i.e. how can we define and use specific network
topologies that fit into our target application domain?

We argue here that an efficient and flexible answer to such problems is the
use of federated testbeds that unite isolated WSN testbed “islands” with the use
of a virtual links concept. We propose the use of virtualised network links in the
following ways:

– Between physically distinct testbeds of varying features (location, size, etc.)
as a whole, but also between specific nodes of such testbeds, resulting in
larger testbeds with customised cross-network edges,

– Between nodes inside a single testbed, thus defining a customised network
topology,

– Between real and simulated nodes, enabling hybrid simulation for massive
network sizes.

A virtual link essentially enables two testbed nodes, that have otherwise no
direct physical radio connection, to communicate in a way that is transparent to
the user applications; additionally, existing ‘links’ (i.e. reachability within one-
hop radio range) can be selectively deactivated between neighbouring nodes.
Both kinds of virtualisation are done in a way that is entirely transparent to a
deployed application.
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The major challenge arising from using such an approach is in the extent
to which this virtualisation affects the realism of the experiments conducted –
the tradeoff between the ability to extensively scale and reconfigure testbeds in a
straightforward way and its impact on the realism of results. In relation to this we
currently target only experiments which use higher layers of network abstraction,
avoiding those which operate at the the MAC layer. However, we believe that
the “simulation” of network links and the resulting federated testbeds will prove
itself largely beneficial to the research community.

In this work, we provide a systematic definition of our testbed virtualisation
concepts, discussing in-depth design, architecture and implementation issues of
our approach. We provide an evaluation of our work to demonstrate the feasi-
bility of testbed virtualisation, comparing results from real network topologies
against virtualised ones. Our results show that in many cases virtualisation can
be efficiently integrated into testbeds without having a profound effect on the
experimental results’ realism.

This paper is structured as follows: a description of related work follows in
Section 2. An in-depth discussion of our virtual link service follows in Section 3,
with a set of experiments and results described in Section 4. This is followed by
an example application (i.e., an experiment using virtual links) in Section 5. A
discussion of our results is provided in Section 6.

2 Related Work

There is a significant body of existing work in the area of sensor network sim-
ulation and testbed infrastructures, with a number of works following a hybrid
approach in the last few years; charasteristic examples of this approach are
[7,8,3,12]. In such approaches part of the experiment is conducted in simula-
tion and part on real hardware, with the ratio varying in different approaches.
In some cases, only the wireless communication channel of the real devices is
utilised with the rest of the software being executed inside a simulator. In other
cases the software is executed iteratively on real and simulated devices with
certain arbitration and timing schedules applied. These concepts are somewhat
related to our own, but we aim at using virtual links between real and simulated
devices in real time and simultaneously.

There is also significant work regarding WSN testbeds and their respective
management and debugging software. Large testbeds such as Trio [2], Mote-
lab [13], TWIST [4] or SIGNETLAB [1] are accompanied by software that pro-
vides users with the facilities to conduct experiments with the testbed nodes, but
are generally limited in their adaptability and configurability to the users’ needs.
Capabilities such as reconfiguring the network topology, or federating multiple
testbeds to form a larger virtualised facility are to our knowlegde not provided
in these cases.

Virtualised network links or federated testbeds and their use in network
testbeds are in themselves not a new concept, with projects such as Planet-
lab implementing similar concepts. Additionally one recent approach dealing
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with similar issues is [5], where the infrastructure and software of the Kansei
testbed is combined with that of GENI in order to provide a unifying solution
for discrete testbeds. Also, the Senslab project [11] aims to unify 4 discrete het-
erogeneous testbeds into a single one of 1000 nodes. However, all of these works
lack a generalised approach allowing arbitrary configurations between real and
virtual. Overall, our approach aims at providing a unifying abstraction for dis-
crete testbeds and increased flexibility in defining network topologies, without
hindering the efficiency and realism of using a testbed versus pure simulation.

3 Virtual Links and Federated Testbeds

In this section we describe in detail our approach to virtualising testbeds. We
define a virtualised testbed as either a single physical testbed with a virtualised
topology; two or more physically distinct testbeds federated into a single unified
testbed; a simulated testbed similarly federated with a physical testbed; or any
combination of the above.

Fig. 1. The architecture of virtualised testbeds

The key components of our architecture are shown in figure 1. Each testbed
– physical or simulated – is represented by a testbed server which acts as the
Internet-facing gateway to the testbed. A testbed itself is composed of a number
of sensor nodes which can communicate with the testbed server (potentially via
gateway devices inside a physical testbed).

A virtual link is then a (unidirectional) connection between two nodes – in the
same or in different testbeds – which would not normally be able to communicate.
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An arbitrary number of virtual links can thus be created to define a virtualised
topology and federate distinct testbeds. We can also deactivate existing physical
reachability between two nodes by selectively dropping packets to allow complete
topology control.

In more detail, virtual links are enabled with a special piece of software on
each sensor node – a virtual radio – which contains a routing table of the form
{ID, interface}, such that when sending a message to a specific node ID the radio
can decide on which ‘interface’ to send this message; the node’s real radio or the
virtual interface which forwards the message to the testbed server (where it is
routed onwards as appropriate).

In the remainder of this section we discuss the virtual radio software in detail
and its interaction with a testbed server. Following this we describe the unified
message format which allows heterogeneous nodes to communicate, we discuss the
ways in which virtualised topology can support link quality modelling, and finally
we describe how simulation is integrated into real-time testbed experiments.

3.1 Topology Virtualisation

Virtualising topology involves two key elements, virtual radio components, and
testbed servers, shown in Figure 2.

Fig. 2. The communication beween virtual radio drivers on sensor nodes

At the start of an experiment, the IDs of virtual radios across the entire
virtualised topology are configured by an overall controlling component, ensuring
uniqueness. Virtual topology itself is configured by each testbed server informing
its local sensor nodes of their virtual neighbours, where a virtual neighbour entry
in a sensor node’s virtual radio simply consists of an ID along with ‘virtual’,
meaning any packets to this ID should be sent to the testbed server for further
routing. How messages reach the testbed server depends on the architecture of
the deployed testbed – routing may be via an out of band backbone infrastructure
when sensor nodes are connected 1:1 with gateway devices, or alternatively may
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reuse the wireless medium of the sensor nodes in testbeds where not every sensor
node is directly connected to a gateway device. In either case the procedure is
transparent to the application software.

The process of sending a message thus works as follows: applications on a
sensor node send a packet to its virtual radio component. On some operating
systems (e.g., TinyOS), using a virtual radio instead of a real one is simply a
matter of component configuration. On others, it may require changing radio
function calls in the application’s source. The virtual radio component then uses
its local routing table (configured by the testbed server as above) to decide on
which interface to send this message – via the real radio or the virtual topology
service via the testbed server. When broadcasting, a packet is simply sent on
both interfaces.

If the message is sent to the testbed server, the server examines the destination
ID of the packet and forwards this either to another testbed server which is
responsible for that node, or to the corresponding node in the local testbed. If
the packet is broadcast, the testbed server forwards the message to all virtual
neighbours of this node (i.e. generating one message for each neighbour).

Finally, when receiving a message on the real radio interface, the virtual radio
component checks its routing table to determine whether or not the sender is
configured to be a neighbour in the currently configured topology, and if not
then the packet is simply dropped and so never reaches the application. All
parts of this procedure can be completely transparent to the application, which
can simply see a radio component conforming to a common radio API.

3.2 Message Format

Packets traveling over virtual links between testbed servers have a common for-
mat, and in cases where virtual links exist between nodes of different types, the
local testbed server performs appropriate translation of the packet to a format
suitable for use at the destination node. This process is also used when a single
testbed has heterogeneous nodes – or nodes running different operating systems
– with virtual links between them.

The common packet format therefore abstracts over different concepts of link
quality between platforms (such as LQI or RSSI values) and other differences in
the types of fields present in packets, different offsets for the same fields within
packets, or different lengths of addresses. For this reason, we define a generic
representation of a packet that is used when testbed servers forward messages
from a virtual link between nodes. An example of a generic packet is shown
below:

1 <?xml version ="1.0" encoding ="UTF -8">
2 <Node2Node_Packet>
3 <sender_ID ID="urn:testbed1:node1" />
4 <destination_ID ID="urn:testbed2:node2" isBroadcast="false" />
5 <message >A1 DF 63 8B</message >
6 <LQI>200</LQI>
7 <RSSI>199</RSSI>
8 <Options >ACK</Options >
9 </Node2Node_Packet>
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This example contains the ID of the sender node (sender ID), the ID of the
destination node (destination ID), whether the message is a broadcast, the pay-
load of the message, an LQI value, an RSSI value and optional flags such as
whether the sender needs an acknowledgment.

3.3 Modelling Link Characteristics

In addition to the basic routing functionality involved in virtualisation, testbed
servers may perform traffic shaping on messages sent over virtualised links ac-
cording to some desired model, for example emulating lossy channels or inter-
ference. Although beyond the scope of this paper, it is easy to plug such models
into the software used at testbed servers.

3.4 Simulation Considerations

Connecting a simulator to a real testbed presents some unique challenges. Our
motivation behind it is to enable ultra-large-scale experiments in which a large
number of simulated nodes provide the macro-view of an experiment and serve
as a test load to a relatively small number of real sensor nodes, on which the
experiment outcome is measured. Using topology virtualisation the real nodes
can be placed anywhere within the broader simulated topology.

Simulator integration follows the same implementation pattern as physical
testbeds, i.e., the simulator is connected to a testbed gateway. A real-time en-
abled network simulator can be easily adapted to such an architecture. We chose
the Shawn [6] network simulator for our experiments. The required modifications
are also possible in other simulation environments.

Virtual link integration involves three major steps:

– Real-time simulation is required for a shared time basis between real and
simulated nodes.

– Multi-threaded injection of messages into the simulation whenever a real
sensor node (or alternatively a simulated node from another simulator) sends
a message over a virtual link.

– Appropriate message ‘routing’ inside the simulator must be added, such that
the simulator’s testbed gateway routes messages sent from simulated to real
nodes over its network connection.

This approach implies that the simulator is able to execute the simulation of
nodes fast enough to keep up with real time; Shawn is a high-level simulator,
and can easily do this for thousands of simulated nodes.

4 Evaluation

In this section we evaluate the realism of virtual links in experiments conducted
over a federation of separate physical testbeds. Furthermore, we evaluate the
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efficiency of our implementation in terms of latency (transmission delay of mes-
sages exchanged over virtual links) and scalability (increase in latency as the
volume of messages over virtual links increases).

We implement the virtual radio component (see section 3.1) on three WSN
operating systems: TinyOS, Contiki, and iSense. This makes our approach oper-
able on a wide variety of hardware platforms such as the Crossbow mote series,
Tmote Sky, ScatterWeb motes and iSense nodes. Our testbed server software is
implemented in Java using Web Services for inter-server communication.

We evaluate the time to transmit a message over (i) the physical hardware
radio, as a benchmark, (ii) a virtual radio using the UART to send virtual link
messages to a directly connected gateway device (referred to as Setup-I), and
(iii) a virtual radio implemented using the physical radio to forward virtual link
messages to a gateway-connected sensor node (referred to as Setup-II).

We test the hardware radio in a simple two-node topology, providing a refer-
ence result for the speed of real radio messages. For the virtual radio tests we
use two physically separate sensor nodes that are in different testbeds, in one
case such that each sensor node is connected directly to a gateway device, and
in a second case where each sensor node must use its hardware radio to forward
virtual link messages to another sensor node which is directly connected to a
gateway device – these represent the two most common kinds of WSN testbed
deployments. In the virtual radio tests we have two testbed servers (one for each
testbed) connected via gigabit Ethernet in the same LAN, thus simulating a full
virtual link message transport procedure (as illustrated in figure 2).

For each type of link and each hardware platform considered we transmit
a total of 1000 messages. Table 1 shows the minimum, maximum and average
times taken for a message to be sent from an application at one sensor node and
arrive at the other1.

Table 1. The min/avg/max message transit times for 3 platforms using a physical
radio, a virtual link over UART (Setup-I) and a virtual link over radio (Setup-II)

Hardware Physical Radio Setup-I Setup-II
Platform min avg max min avg max min avg max

ScatterWeb 72.2ms 75ms 81.6ms 4.7ms 5ms 5.2ms 149.4ms 155.3ms 167.5ms

telosB 38.7ms 40.2ms 43.3ms 4.7ms 5ms 5.3ms 81.2ms 85.6ms 92.4ms

iSense 6.3ms 7ms 8.1ms 4.7ms 5ms 5.2ms 14.1ms 17.9ms 20.6ms

The results show significant variation in the message transit times when us-
ing the physical hardware radios of the different platforms; this is caused by
differences in hardware design. In the iSense platform for example the JN5139
microcontroller integrates an on-chip CC2420 radio module thus increasing the

1 To accurately measure the transmission time over the ScatterWeb platform we used
a high-precision external clock, as the internal hardware clock has low accuracy.
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speed of communication. By contrast, on the TelosB platform, the MSP430 con-
troller has an external CC2420 radio module accessed via an SPI bus, and the
ScatterWeb node has an 868Mhz radio with a 19.2 kbit/s data rate.

When we use virtual radio links sending messages via UART on the other hand
we see that all platforms perform almost identically. This is because the UART
modules used by the different hardware platforms conform to the same serial
protocol and apply the same settings (115200 bps 8N1). When using virtual radio
links sending messages via the physical radio modules, we of course see similar
variations in transit times caused by the hardware differences noted above.

These results demonstrate that the transmission times using virtual radios
over UART are in fact faster than using physical hardware radios for all hardware
platforms considered, even though this involves transport through the testbed
servers. This allows us to potentially do further processing on virtual radio pack-
ets (such as modelling link characteristics) before delivering them to the final
device without impacting on realism, or to simply impose a delay on such packets
to make them comparable to physical radio message transit times. Alternatively
we could send virtual radio messages between testbeds over the Internet and still
deliver them in reasonable time.

Period Setup-I Setup-II

A-B 2.06ms 6.93ms
B-C 0.4ms 0.4ms
C-D 0.01ms 0.01ms
D-E 0.14ms 0.12ms
E-F 0.01ms 0.01ms
F-G 0.39ms 0.4ms
G-H 2.05ms 6.93ms

Total 4.96ms 14.69ms

Fig. 3. The timing of a transmission for each layer invoked of the sender, receiver and
intermediate nodes for two different physical testbed setups

To further explore the sources of delay in sending messages over virtual radio
links we instrumented as many steps as possible in each stage of the transport
procedure, shown in Figure 3, from the application on the sending sensor node
to the gateway device (labelled stage A-B), processing inside the gateway device
(B-C) and testbed server (C-D), and the reverse of this for the second testbed.
We use the same two virtual radio link implementations as before; Setup-I being
over UART and Setup-II over virtual link message transported via the physical
radio to a gateway. The average delays were again calculated based on a total
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Fig. 4. Execution time for different number of virtual links on different testbed setups

of 1000 message exchanges for each setup considered. These results only show
the iSense platform, since the periods A-B and G-H can otherwise be calculated
from Table 1 for the other hardware platforms.

We conclude our performance evaluation by examining the scalability of our
implementation. To do this we use a single testbed only with 10 sensor nodes.
Nodes 1–9 are in one hop physical radio range of node 0 (the sink), to which they
each transmit 1000 messages. We begin by using real hardware radio transmission
for all nodes, then replace each of nodes 1–9’s links to node 0 with virtual radio
links. In each case we measure the total execution time for the sink to receive
all 9000 messages. The results of this experiment are shown in Figure 4. The
results indicate that testbed setup I, using UART for all virtual radio messages,
is capable of delivering all 9000 messages over the virual links with almost no
delay when compared to physical links. On the other hand, the total execution
time of the experiment under testbed setup II, using the hardware radio to
transport virtual radio messages via a single gateway device, linearly increases
with the total number of messages transmitted over the virtual links. This is
because in the latter case the single gateway node creates a bottleneck, and thus
the total execution time increases with the number of messages transmitted
over the virtual link (this is a worst-case scenario where only one gateway node
exists).

5 Example Experiments Using Virtual Links

Having demonstrated the raw performance of our virtual radio implementations
we now examine two characteristic WSN applications: sensor data aggregation
and detection of a network partition. We execute these on testbeds using a
mixture of real and virtualised topology, aiming to show that our approach does
not impact the application’s view of the network’s behaviour – and therefore
does not negatively affect results of experiments with these applications.

We use 3 different configurations: (i) a single testbed without any virtual
links, (ii) two testbeds federated using virtual links whose testbed servers are on
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Fig. 5. Testbed Configuration

the same LAN, and (iii) two testbeds federated with virtual links whose testbed
servers are at different locations within the same country and communicate over
the Internet. Each configuration uses the same total number of nodes in the
same topology, but in the virtualised cases some nodes are in different testbeds.
For each configuration we evaluate how the applications perform to assess the
effect of virtual links.

Sensor Data Aggregation. In this classic application, each node maintains
an aggregate value (e.g. average) of a sensor reading (e.g. temperature) from all
its neighboring nodes. Periodically all nodes report these aggregated values to
the control center of the network (i.e. the sink). Each node broadcasts its sensor
reading every 5sec. Nodes collect all data received and maintain the average
value. Every 50sec each node sends the value to the sink using a simple flooding
algorithm.

We deploy a single testbed without any virtual links (configuration I) that
consists of 20 nodes arranged in two parallel lines of equal size with 1 meter
distance between each node. The power output of radio interfaces is configured
to achieve a maximum communication range of 1.5 − 2m. The sink is placed at
the top-left corner of the network (see Fig. 5a).

For the experiments with virtual links (configurations II and III), the testbed
is separated in two parts consisting of 16 nodes and 4 nodes (Figure 5b). All
nodes are directly connected to gateway devices via USB links (i.e. virtual ra-
dios using UART). We configure four virtual links between the border nodes of
the two separated testbeds. In configuration II the two testbeds are within the
same university LAN and are connected via a 100mbit Ethernet backbone. In
configuration III the two testbeds are at different universities in the same coun-
try and are connected via the Internet. The connection between the two testbed
servers in configuration III achieves an average ICMP echo request time of 12ms
(over 100 echo requests) and a traceroute reported 15 hops.

For our evaluation we measure the average number of messages (i) sent by each
node, (ii) received by each node via the actual radio component, (iii) received by
each node via the virtual radio component and (iv) received by the sink for each
50sec cycle. We executed 10 experimental runs of 15min each for each testbed
configuration. Table 2 shows the results for each metric over the three different
testbed configurations when using iSense nodes (with similar results holding for
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the other hardware platforms), demonstrating that the overall network behaviour
in terms of messages received at the sink node is comparable in all cases, and
general network behaviour in terms of messages sent and received is similar.

Table 2. Evaluation metrics for the Data Aggregation Example Experiment

Average number of messages Configuration I Configuration II Configuration III

sent per node 373.53 377.95 386.95
received per node via real radio 1667.05 1085.47 954.95
received per node via virtual radio – 771.25 806.75
received by sink per cycle 13.11 12.88 13.61

In performing these experiments, due to the speed of virtual links over real
ones, it was necessary in configuration II to introduce a random delay of 1–3ms
per virtual link message in order to match the behaviour of the physical radios;
no such delay was imposed for configuration III, as the inherent delay of the
national-level Internet link made the virtual links comparable to the real radio
links. For comparison, using the ScatterWeb platform, with its slower hardware
radio, we found random delays of 70–80ms (configuration II) and 50–65ms (con-
figuration III) appropriate, while for the TelosB platform we used 32–40ms and
20–28ms respectively.

Partition Detection. Here we use the same network topology as in the previ-
ous application but position an additional sink at the other side of the network.
In this application we wish to detect if the network is partitioned due to the
failure of an intermediate node or due to a lossy radio link; in case of a partition
we issue an alarm at the sink. To do this we implement the algorithm of [9], in
which each sink essentially sends a beacon message every 5sec to the other sink
by flooding it through the network. If a beacon message gets lost between the
two sinks then an alarm message is generated.

For our evaluation we measured the average messages (i) sent by each node,
(ii) received by each node via the real radio, (iii) received by each node via the
virtual radio, (iv) sent by both sinks and (v) received by the sink for each 50sec
cycle, with results shown in Table 3 (where partition alarms are occasionally
raised due to lossy radio channels).

The results in Table 3 show that the network behaviour from the applica-
tion’s point of view (in terms of generated alarms) is comparable in both real
and virtualised testbeds, and that network behaviour otherwise in terms of the
numbers of messages sent and received is comparable.

Finally, table 4 shows how long it takes to send a partition beacon from one
sink to the other and return to the initial sink. The roundtrip times here are
almost identical for configurations I and II while for configuration III they are
slightly higher due to latency introduced by the Internet link.
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Table 3. Evaluation metrics for the Partition Detection Example Experiment

Average number of messages Configuration I Configuration II Configuration III

sent per node 343.33 320.94 341.87
received per node via real radio 1395.45 870.45 857.05
received per node via virtual radio – 611.51 687.76
sent in total by both sinks 355.12 361.60 360.32
Generated alarms (both sinks) 19.33 20.25 18.71

Table 4. Roundtrip times for one beacon message

Configuration I Configuration II Configuration III

Minumum [ms] 46.66 42.24 49.39
Average [ms] 75.09 73.15 88.73
Maximum [ms] 110.99 100.51 139.22

6 Conclusion

Virtual network links, as defined and used in this work, are a means of easily
reconfiguring and federating testbeds into large-scale networks with direct con-
trol over the topology. We have demonstrated that the approach is both realistic
and performant enough for experiments at the higher network layers such that
applications cannot distinguish between a fully real topology and a partially
virtualised one. While we expect that experiments with MAC layer algorithms
may reveal more subtle artifacts of virtualisation, and so would need care in
deriving results, we believe that our approach is nonetheless highly beneficial in
enhancing the utility of a single testbed beyond its fixed physical topology, in
federating testbeds to enable extremely large scale experiments on real hardware
and in enabling the integration of simulation for even larger networks.

When building federated testbeds for scale, we have shown that the intercon-
nection of two closely located testbeds, i.e. with short delays between testbed
servers, works very well in practice – as the virtual links operate significantly
faster than physical links, an experiment can be tuned so that applications can-
not detect that they are running in a physically separated network.

When moving to wider-area networks, we are limited by the existence of a suf-
ficiently fast Internet backbone. While connections over 15 hops in a university-
connecting national network fulfill such a requirement, we acknowledge that
latency may degrade and affect realism too much in large intercontinental fed-
erations. However, we believe that future high-speed broadband networks will
make this issue diminish in time.

We conclude that topology virtualisation is a promising approach to create
large federations of physically separated and heterogenous networks. Building
nationwide testbeds is achievable with today’s technology, and we believe that
worldwide networks are viable in the near future.
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