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Abstract—We present three approaches for algorithmic im-
provements on distributed adaptive transmit beamforming in
wireless sensor networks. These algorithms reduce the time to
synchronise carrier signals among nodes compared to the global
random search approaches commonly applied to this problem.
For a local random search heuristic we provide an asymptotic
bounds on the optimisation time. All approaches are also studied
in mathematical simulations on greater networks sizes.

I. INTRODUCTION

By phase coherent superimpositioning of RF transmit signal
components from wireless sensor nodes, the characteristics
of the received RF sum signal can be improved [1], [2]. In
particular, the transmission distance of tiny sized, low power
sensor nodes can be increased by such collaborative trans-
mission schemes. The general idea behind these transmission
schemes is similar to multiple input, single output (MISO)
schemes [3]. In order to improve the transmission quality,
spatial diversity is deployed. However, as single nodes are
typically of very restricted computing capabilities and, more
importantly, are designed to have minimum dimensions, the
integration of several antennas together with the respective
computing logic is not feasible.

Alternatively, antennas of distinct transmit nodes are com-
bined to build the antenna array. Since communication among
nodes in a sensor network is wireless and unreliable and
as oscillators and clocks in distinct nodes are independent,
the main issues of these approaches lie in the accurate syn-
chronisation of clocks and carrier phases that is required in
order to concentrate a transmission beam on the location of a
remote receiver. Furthermore, as wireless sensor nodes might
be brought out in a random manner, for example, when nodes
are dropped from a plane or when they are placed on non-solid
ground like water, nodes have to provide these transmission
schemes through self organisation.

One approach to achieve this synchronisation among nodes
is virtual MIMO in wireless sensor networks [4]. In virtual
MIMO, single antenna nodes are cooperating to establish a
multiple antenna wireless sensor network. Virtual MIMO has
capabilities to adjust to different frequencies and is highly
energy efficient [5]. However, the implementation of MIMO
capabilities in WSNs requires accurate time synchronisation,
complex transceiver circuity and signal processing that might

surcharge the power consumption and processing capabilities
of simple sensor nodes.

When the receiver node is also involved in the synchro-
nisation of nodes by providing a feedback on the chan-
nel quality this is typically referred to as feedback-based
approaches. For the synchronisation of nodes we generally
distinguish between closed-loop and open-loop feedback based
approaches, depending on whether the feedback is computed
in an open-loop or closed-loop communication. Closed-loop
feedback based approaches include full-feedback techniques,
in which carrier synchronisation is achieved in a master-slave
manner. The phase-offset between the destination and a source
node is corrected by the receiver node. Diversity between
transmit signals is achieved over CDMA channels [6]. This
approach is applicable only to small network sizes and requires
sophisticated processing capabilities at the source nodes.

A simpler approach is the one-bit feedback based closed-
loop synchronisation considered by Mudumbai, Hespanha,
Madhow and Barriac in [7]. The authors describe an iterative
process in which the source nodes randomly adapt their carrier
phases. This random process is guided by a one-bit feedback
on the synchronisation quality that is computed by the destina-
tion node. For a network size of n nodes and k possible phase
offsets for transmit signal components the synchronisation
time of the approach was bounded by O(n · log(n) · k) [8].

For the calculation of this bound the process to alter the
phase offsets of carrier signal components was considered
to follow a uniform distribution. Other authors assume a
normal distribution for this process [9], [10], [11]. In [12]
it was shown that the optimisation time is improved by factor
two when a node as response to a negative feedback from
the receiver applies a complementary phase offset instead of
simply reversing its modification.

In both cases, general purpose global search mechanisms
are applied. We present in the following sections algorithmic
approaches that better exploit the properties of the problem
scenario and show in mathematical simulations that the per-
formance can be improved by the proposed algorithms.



Fig. 1. A schematic overview on feedback based closed-loop distributed
adaptive transmit beamforming in wireless sensor networks

II. DISTRIBUTED ADAPTIVE BEAMFORMING IN WIRELESS
SENSOR NETWORKS

Distributed adaptive transmit beamforming can be imple-
mented as an iterative process to synchronise signal phases of
RF transmit signal components at a remote receiver without
inter-node communication [9]. We assume that, for a network
of size n, initially the phase offsets γi of carrier signals
<
(
ej(2π(f+fi)t+γi)

)
; i ∈ {1..n} are arbitrarily distributed.

When a receiver requests a transmission from the network,
carrier phases are synchronised in an iterative manner as
depicted in figure 1.

The four phases detailed in the figure are iterated repeatedly
until a stop criteria is met (e.g. maximum iteration count or
sufficient synchronisation). The computational complexity for
each one of the transmit nodes is low in this approach as only
the phase and frequency of the RF transmit signal is adapted
according to a random process.

III. ANALYTIC CONSIDERATION

Recent approaches to distributed adaptive transmit beam-
forming in wireless sensor networks utilise a random search
approach that could in each iteration reach any point in the
search space with positive probability. We define a search
point as one combination of phase offsets for all RF signal
components and a neighbourhood relation over the difference
in phase offsets in these configurations. As the search space
is multimodal, no local optima exist so that in an arbitrary
neighbourhood around a given search point the fitness value
is either optimal or search points with an improved fitness
value exist.

We can also show that, when the distance to the optimum
and to the worst point is greater than the neighbourhood radius,
the algorithm has an equal chance to improve or worsen the
fitness score. We see this as follows. Assume that the fitness of
the sum signal is proportional to the amplitude of the signal.
When n−1 signal components are received simultaneously at

Fig. 2. Example of sinusoid sum signals. The amplitude of the sum
signal degrades symmetrically when the phase offset between the two signal
components increases

a given frequency f the resulting sum signal is of the same
frequency as the individual RF signal components. When the
phase offset of the n-th signal component is identical or com-
plementary to the phase offset of the sum signal, the amplitude
is at its maximum or minimum, respectively. Inbetween these
two values it degrades symmetrically. Consequently, when the
minimum or maximum is not inside the neighbourhood, an
equal number of points incorporate better or worse fitness
values (cf. figure 2).

This means that an algorithm with restricted neighbourhood
size has a probability of 0.5 to increase the fitness value
for a long time during the optimisation until the optimum
point is within the neighbourhood. The price for this high
probability to improve the fitness value in each iteration is that
the chance to reach the optimum in one step (as possible with
an unrestricted neighbourhood size) is lost. Since this event
is very unlikely, we are easily prepared to pay this price. We
provide an upper bound on the optimisation time of a local
random search approach for distributed adaptive beamforming
in wireless sensor networks.

To ease the analysis we model the optimisation problem in
a binary representation. We assume that each one of the sensor
nodes is able to apply k distinct phase offsets of transmit
RF signals. For each of the n nodes, we binary encode the
distinct phase offsets by log(k) bits. Overall, a binary string
of length n · log(k) describes the contribution of phase offsets
in one iteration. The neighbourhood of a given configuration
is defined by all configurations with hamming distance up to
κ for suitable κ. We assume that configurations are encoded
such that the hamming distance between two configurations
increases with increasing difference in phase offsets.

A. An upper bound

We analyse the count of bit mutations of this representative
bitstring until a bitstring is found that encodes the phase
configurations of a global optimum. We choose the mutation
probability as 1

n for a network of n nodes. In this case, the



log(k) bits that represent the phase offset of the corresponding
node are altered uniformly at random inside the neighbourhood
boundaries. With Chernoff bounds we can show that w.h.p.
the hamming distance to an optimum is not much smaller
than n·log(k)

2 . As long as the optimum is far away (i.e. outside
the neighbourhood boundaries), the probability to reach a new
search point with better fitness value is at least 1

2 as detailed
above. During the synchronisation, when i signal components
are already in phase, the fitness value is thus improved, when
one of the n − i non-optimal signal components is improved
and the i already optimal ones are left unchanged. This
happens with probability at least

(n− i) · 1
n ·

1
2 ·
(
1− 1

n

)n−i
= n−i

2n ·
(
1− 1

n

)n−i
. (1)

Because of
(
1− 1

n

)n
< e <

(
1− 1

n

)n−1
we obtain the

probability si that a higher fitness value is reached as

si ≥
n− i
2en

. (2)

The expected number of mutations to increase the fitness value
is bounded from above by s−1

i . But how many distinct fitness
values are possible? In [13] we have shown that the configu-
rations can be roughly divided into k fitness based partitions.
These are mostly given by the number of configurations in
which a fixed number of RF signal components is in phase.
Consequently, we obtain an upper bound on the expected
optimisation time as

E[TP ] ≤
∑k
i=0

2en
n−i = 2en ·

k+1∑
i=1

i−1

< 2en · ln(k + 1) = O (n · log(k)) (3)

This means that after O(n · log(k)) iterations we expect that
the fitness value has reached a region near the optimum so that
the distance to the optimum is smaller than the neighbourhood
size. Consequently, the optimisation from there on is more
complicated since the count of points that decrease the fitness
value increases with decreasing distance to the optimum. In
the worst case, the probability to increase the fitness values is
1
N with N denoting the neighbourhood size. Similarly to our
consideration above, we estimate the expected optimisation
time for this phase as O(N · n · log(k)). A weak estimation
of N = O(k) will lead to an upper bound on the overall
optimisation time of

O(k · n · log(k)). (4)

IV. ALGORITHMIC IMPROVEMENTS AND SIMULATION
STUDIES

In the following sections we detail simulation studies con-
ducted on the topic of distributed adaptive transmit beamform-
ing in wireless sensor networks. In particular, we study algo-
rithms that improve the synchronisation performance. These
implement a local random search approach, the utilisation of
nodes with pre-synchronised phase offsets and an approach

to re-consider nodes that have positive impact on the fitness
value.

In the simulations, only thermal noise (AWGN) at
−103dBm was considered and no interference from other
sources than the nodes in the network. However, with addi-
tional interference we expect similar results but a decreased
transmission range. Reflections and multi-path-propagation
have not been considered since, in a typical scenario we
assume that nodes are placed on a ground level with a receiver
above them with direct line of sight.

In the simulations, 100 nodes have been placed uniformly
at random on an area of 30m × 30m with one receiver in
the distance of 30m above the centre of this area. Each node
has a transmission power of PTX = 1mW and transmits at
2.4 GHz. The transmission power at the receiver is calculated
according to the Friis free-space equation

PRX = PTX

(
λ

2πd

)2

GRXGTX (5)

with GTX = GRX = 0 [14].
We measure the progress of an algorithm by the RMSE of

the received RF sum signal to the RF sum signal that could
be expected when signal phases are perfectly aligned:

RMSE =

√√√√ τ∑
t=0

(
∑n
i=1 si + snoise(i)− s∗)

2

n
. (6)

All figures depicted in the following show the median RMSE
values from 10 individual simulations with identical param-
eter settings that are reached after various iterations of the
algorithms together with the standard deviation.

A. Impact of the choice of nodes for synchronisation

In distributed adaptive beamforming, several nodes in a
network collaboratively reach a distant receiver. The synchro-
nisation time for these nodes is dependent on the number of
nodes that participate in the synchronisation (cf. [8], [10]).
Consequently, when not all nodes are required to reach a
given distance, it is beneficial to utilise only a subset of
nodes. In particular, we would like to pick those nodes for the
synchronisation process that are well pre-synchronised so that
the initial fitness value is already high. We conducted several
simulation runs in which a set of pre-synchronised nodes is
identified in random experiments prior to the synchronisation.
In these random experiments a set of 100 randomly chosen
nodes transmit simultaneously. The fitness value reached in
this simultaneous transmission is stored for each experiment.
After all random experiments are completed the synchronisa-
tion is conducted with the nodeset that scored the best fitness
value during the random experiments. Figure 3 details the
simulation results. For a network size of 1000 and 120 nodes,
100 nodes are picked in 500 and 100 random experiments,
respectively. These simulations are compared to simulation
results in which a network if 100 nodes is synchronised
with uniformly distributed phase alterations and a mutation
probability of 0.01 but without pre-synchronisation of nodes.



Fig. 3. Performance of distributed adaptive beamforming in WSNs when
participating nodes are chosen based on random experiments

Fig. 4. The synchronisation performance for various network sizes in a
uniformly distributed process. Nodes adapt their carrier phase in each iteration
with probability 0.05.

We see that the pre-synchronised node-sets reach better fitness
values earlier in the simulation. in particular, an improvement
is already visible for 100 nodes chosen in 100 random ex-
periments out of 120 nodes. This shows that we can benefit
from the node choice already with few random experiments
and with network sizes that deviate from the required network
size only slightly. However, observe also that the lead in fitness
value is shrinking with increasing iteration count.

B. Impact of the network size and hierarchical clustering

When the count of nodes that participate in the synchroni-
sation process is altered, this also impacts the performance of
the synchronisation process. We conducted several simulations
with network sizes ranging from 20 to 100 nodes. Figure 4
depicts the performance of the synchronisation processes.

In these simulations, we set the probability for single nodes
to adapt the phase offset of their respective carrier signals
as 0.05 and utilised a uniformly distributed phase alteration
process. We see that the maximum fitness value achieved is
lower for smaller network sizes. This is due to the RMSE

measure that compares the achieved sum signal to an expected
optimum superimposed signal. As the count of participating
nodes diminishes, also the amplitude of the optimum signal
decreases. As expected, the optimum value is reached earlier
for smaller network sizes.

From section III we learned that the upper bound on the
synchronisation time is more than linear in n. As, however,
the received signal strength of the superimposed sum signal
(RSSsum) changes linear with the network size n, the overall
energy consumption and synchronisation time might benefit
from a reduced number of nodes transmitting at increased
power level.

We propose the following hierarchical clustering scheme
that synchronises all transmit nodes iteratively in clusters of
reduced size.

1) Determine clusters (e.g. by a random process initialised
by the receiver node)

2) Guided by the receiver node, synchronise clusters suc-
cessively as described above with possibly increased
transmit power for nodes. When cluster ι is sufficiently
synchronised, all nodes in this cluster sustain their
carrier signal and stop transmitting until all other clusters
are synchronised.

3) At this stage, carrier signals in each one of the clusters
are in phase but carrier phases of distinct clusters might
differ. To achieve overall synchronisation, we build an
overlay-cluster of representative nodes from all clusters.
These nodes are then synchronised.

4) Nodes in all clusters alter the phase of their carrier signal
by the phase offset experienced by the corresponding
representative node. Let ζi = <

(
RSSiej2πfct(γi)

)
and

ζ ′i = <
(

RSSiej2πfct(γ
′
i)
)

be the carrier signals of
representative node i from cluster ι before and af-
ter synchronisation between representative nodes was
achieved. A node h from the same cluster ι will then
alter its carrier signal ζh = <

(
RSShej2πfct(γh)

)
to

ζ ′h = <
(

RSShej2πfct(γh+γi−γ′
i)
)

. Under ideal condi-
tions, all nodes should then be in phase although an
overall synchronisation was not applied.

5) To account for synchronisation errors a final synchro-
nisation phase in which all nodes participate concludes
the overall synchronisation process.

Observe that all coordination is initiated by the receiver
node so that no inter-node communication is required for
coordination. Clusters are formed by a random process and
synchronisation between and within clusters is achieved by the
distributed adaptive beamforming approach described above.

Depending on the size of the network, more than one hier-
archy stage might be optimal for the optimisation time and the
energy consumption. In order to estimate the optimal hierarchy
depth and the optimum cluster size, the size of the network
must be computed. We assume that the nodes themselves do
not know of the network size. This means that the remote
receiver derives the network size, calculates optimal cluster
sizes and hierarchy depths and transmits this information to



Fig. 5. Performance of distributed adaptive beamforming in WSNs when
successful nodes are re-considered for mutation

the nodes in the network. In [15] it was demonstrated that the
superimposed sum signal from arbitrarily synchronised nodes
over some time interval is sufficient to compute an estimation
on the number of transmitting nodes.

C. Impact of reelecting successful nodes

For distributed adaptive beamforming, an optimum is
reached when all received transmit signal components are in
phase. In the random synchronisation process, this situation is
approached iteratively, which means that several steps to an
optimum are required. In particular, as long as the optimum
phase offset for one transmit signal component is not reached,
the fitness value can be improved by sufficiently altering
the phase offset for this transmit signal component again.
To exploit this property we modify the implementation of
the original approach in such a way that transmit signal
components that were altered in an iteration in which the
fitness value was increased are altered again in the next
iteration. The intuition behind this approach is that for a
transmit signal component which was successfully altered we
expect that the optimum phase offset is not yet reached so
that further benefit is possible. We implemented two distinct
approaches. The first approach is to alter the phase offset
of the same transmit signal component again uniformly at
random. For the second implementation also the direction in
which the phase was altered is sustained. Figure 5 depicts
simulation results for these two approaches when compared to
the standard uniformly distributed phase alteration approach.
We observe that both approaches have similar performance and
improve the fitness early in the synchronisation process. With
increasing iteration count, however, the standard approach
catches up.

D. A local random search algorithm

For our implementation of the local random search al-
gorithm we modify the phase alteration mechanism applied
by individual nodes. While for the original random search
approach the phase offset is chosen uniformly at random

Fig. 6. Performance of the local random search implementation for
distributed adaptive beamforming in wireless sensor networks

from all possible phase offsets in [−π, π], we restrict the set
of possible future phase offsets to a subset of this range:
γ ∈ [σ1, σ2] with −π ≤ σ1 < σ2 ≤ π. Figure 6 shows
the simulation results of the algorithm. We observe that the
hill-climbing approach reaches lower fitness values faster than
the original approach. In particular, the near optimal fitness
value reached by the original algorithm after 6000 iterations is
achieved by the hill climber already after about 3000 iterations.

V. CONCLUSION

We studied aspects of distributed adaptive beamforming
in wireless sensor networks. In particular, we analysed it-
erative random feedback based closed-loop synchronisation.
We derived an upper bound on the synchronisation time
of a local random search implementation. Furthermore, we
proposed three modifications of the global search approaches
that improve the synchronisation performance of distributed
adaptive beamforming in wireless sensor networks. For these
approaches we achieved quantitative results in mathematical
simulations for a network of 100 nodes.
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