The Quick Step to Foxtrot

Tino Loffler, Stephan Sigg, Sandra Haseloff, and Klaus David

Chair of Communication Technology,
Department of Electrical Engineering / Computer Science,
University of Kassel,

D-34121 Kassel, Germanys;
phone: +49 561-804-6446, fax: +49 804-6360
comtec@uni-kassel.de

Abstract. We propose Foxtrot, a highly flexible architecture for context
aware systems that adapts to the versatile requirements of ubiquitous
computing environments. To further enhance the gains of the architec-
ture we introduce a context prediction paradigm that incorporates the
possibility to increase the accuracy of proactive context aware applica-
tions. To utilise this potential we propose a novel context prediction al-
gorithm. Additionally we introduce a methodology for designing context
aware systems. Our development guidelines and the corresponding soft-
ware equip the system designer with powerful analysis tools that support
the creation of systems with greatly improved reliability.

1 Introduction

Context awareness is the ability of an application or service to sense the context
in which it is currently executed and to react accordingly. Context awareness
plays a dominant role in modern software systems and is about to increase its
influence through novel user adaptive applications. Consider for example the
following scenario.

When Milinda puts on her context—aware wrist watch in the morning, it
starts scanning the environment for external sensors or devices. In the kitchen
it senses the availability of the CD-player as well as the humidity, temperature
and light sensors attached to the kitchen window and obtains data from them.
When Melinda positively answers the prompt for turning on the CD-player, the
watch initialises to play stimulating music since it is to be a bright day. After
breakfast, on the stairs under way to her car Melinda meets her new neighbour
Tom and stops for a chat with him. Due to the context time line the watch
has observed so far it senses that Melinda is heading to work. Consequently it
reminds her at 8:34 that she will be late if she kept on talking.

In this short example several interesting features of upcoming context aware
applications neatly stick together. These are the sensing and utilising of remote
devices and sensors, the context interpretation and the context prediction.

We will in this paper propose an architecture for context awareness that is
highly flexible in supporting several concepts for context aware computing and
may also be distributed among several mobile and stationary computing devices.



We further give a short insight into our approach to the research topics
context prediction and context aware system development. Both are considered
to significantly improve the scope of context aware applications beyond their
current horizon. This work is organised as follows. In Sect. 2 we will give a
brief overview of the related work, in Sect. 3 we present our architecture for
context awareness while in Sect. 4 a novel methodology to design context aware
systems and to distinguish the vital sensors relevant to a specific context is
presented. Section 5 proposes our approach to context prediction and introduces
the prediction module in detail. Section 6 summarises our results.

2 Related Work

Since context awareness has been recognised as a promising research field, var-
ious architectures for context aware systems have been proposed. The Context
Toolkit [1] provides support for context aware systems. Applications can sub-
scribe to predefined context sources, which can be plain sources, aggregators and
interpreters. With our module based approach Foxtrot (Framework fOr ConteXT
awaRe cOmpuTing) we adapt the general idea of this concept and further add the
ability to distribute all modules to various mobile computing devices in a ubiqui-
tous computing environment. Foxtrot further supports the addition, removal or
update of modules at runtime. This is accomplished by adapting our architecture
to the Framework for Applications in Mobile Environment (FAME?)[2]. FAME?
enables applications and services to be distributed between various devices and
to be added, updated or removed at runtime. Another architecture for context
aware applications is proposed by Henricksen [3] who concentrates on context
modelling and proposes a layered architecture. Although similar to our approach,
Henricksen does not reach the same flexibility in ubiquitous systems. The Solar
platform [4] represents a context aware architecture which employs a graph-
based abstraction for context aggregation and dissemination. Qur approach is,
while not graph-based, similar to that of the Solar platform but additionally
considers a new context prediction layer on top of the context acquisition step
and adds the aforementioned runtime flexibility.

This is also the main difference to architectures proposed by other authors.
The authors of [5-8] have proposed an architecture for recognising context from
multiple sensors in the TEA and Smart-Its projects. While [9] also considers a
context prediction layer, the authors propose to include it at a later stage in the
context processing procedure. In Section 5 we will argue why it is beneficial to
apply the context prediction in an earlier stage.

3 Architecture for Context Awareness

We present Foxtrot, an architecture for context awareness that is inspired by
our main research interests and that will serve as the basis for current and
future research projects related to context awareness. Since we want to utilise
the architecture also for upcoming research projects we focus on a modular design



and extensibility. Parts of the architecture are subject to constant changes. This
means that the possibility to easily exchange modules, if possible even at runtime,
is critical.

Furthermore the architecture is supposed to be executed in a distributed
environment, so the deployment of parts of the architecture, discovery and net-
work communication are also required. To meet these requirements, we adopted
a service oriented architecture approach and implemented all functionalities as
interacting, loosely coupled services. These services were built using the FAME?2
[2] framework. FAME? enables adding, removing and updating of services at run-
time, which eases the maintenance of the system. Additionally it allows us to
integrate several service discovery technologies and communication protocols to
access arbitrary services from any other device reachable.

3.1 Logical Segmentation

We divide our architecture into the four functional entities context acquisition,
context prediction / preparation, context processing and context usage as illus-
trated in Fig. 1. Every functionality incorporates modules that are explained in
the following.

Application / Service

Context Usage

Context Reasoning

HEa Context Processing

Preprocessing Component

o Processing
Step 3

Context Prediction /
Preparation

Context Broker

Sensor
Driver

Context Acquisition

Fig. 1. Architecture for context prediction.

Context Acquisition The context acquisition part is responsible for acquiring
context. It comprises context broker modules which read from attached sensors
and convert the data into our context representation.



We refer to the output of any sensor as raw sensor data since it most probably
needs further interpretation. Different manufacturers produce sensors with vary-
ing output even if the sensors are of the same class. This is because of possibly
different encodings of the sensed information or due to a different representa-
tion or accuracy. After being processed by a context broker raw sensor data has
become low-level context information. The low-level context information of two
arbitrary sensors of the same class measured at the same time in the same place
is identical with the exception of a possibly differing measurement accuracy,
provided that both sensors are in good order.

Output values of a sensor are firstly transformed by the context broker from
raw sensor data to low-level context information. The sequence of low-level con-
text information attained from a sensor is stored to the output buffer of the
context broker.

Context prediction / preparation Usually the low-level contexts processed
by the context acquisition part of Foxtrot have to be further prepared for the
following context processing step. Typical preprocessing modules in this step
are the context prediction, the smoothening of values, the calculation of a mean
value or other statistical methods. We refer to these operations as preprocessing
steps. A preprocessing component may string various preprocessing steps and
apply them to the low-level contexts in any order. The output of a preprocessing
component is again low-level context information.

Context Processing The interpretation and aggregation of low-level context
to high-level context information is done in the context processing part by a
context reasoner. A designer of context aware applications may only with great
effort make a funded decision based on low-level context information. He expects
the low-level contexts to be aggregated to high-level context information that
yields more meaningful information. A typical high-level context is for example
in a meeting or indoors.

The context processing part of Foxtrot basically consists of one or more con-
text reasoning components. Reasoning components may be stringed or may op-
erate in parallel to other context reasoning components. It is therefore possible
to directly compare the accuracy of different context reasoning components in
real life applications or in simulations. We have currently implemented a reason-
ing module based on the RuleML language [10]. Future projects may reveal the
need for a reasoning module that is not based on fixed rules.

Context Usage The high-level context obtained after the context processing
step is transformed into an event and delivered to an event handler. Context
aware applications can subscribe to the event handler and will be informed if a
specific context occurs.



3.2 Support of Ubiquitous Computing

Since we believe that ubiquitous computing is one of the key application fields
of any architecture for context awareness, we require Foxtrot to be highly dis-
tributable between various computational devices. Every module of Foxtrot can
be distributed to various computing devices. It is therefore possible that the
modules of a functional entity are spread among various computing devices.
Furthermore every module may be available several times in the computing en-
vironment.

In a fluctuating ubiquitous computing environment a module may unexpect-
edly disappear because the computing device has moved out of reach. We expect
the disappearance and reappearance of devices to be a common phenomenon in
a flexible ubiquitous computing system.

To serve these demands we implemented our architecture as a FAME? com-
pliant middleware [2]. This enables us to integrate several discovery technologies
and communication protocols to access arbitrary modules from any other de-
vice reachable. Each module in Foxtrot is implemented to represent a service in
FAME2. Services in any FAME? compliant middleware may appear and dissap-
pear or may be transferred from one device to another without the necessity to
configure the device or the application itself.

Since all modules of one functional entity may be composed in virtually any
order, the application designer might construct any desired application flow by
choosing from a given set of modules. It is even possible that several different
application flows are executed at the same time by the same modules.

4 Context-aware System Development

In Section 1 we already stated that context-aware systems are able to recognise
or forecast context information. Based on this information they are supposed to
adapt to the context automatically and to provide useful services and information
to the user.

Context information can have different levels of abstraction. These levels
range from measurable contexts like temperature to abstract, not measurable
situations like meeting. Contexts, that are not measurable must be inferred from
known context information. To stick with our example: the context meeting
could probably be inferred from the time, the location, nearby people and sound
patterns. These dependencies between measurable and not measurable contexts
are often not obvious. For example, we have investigated the possibility to infer
the location (outdoor/indoor) from temperature and humidity.

This leads to the conclusion that the selection of sensors and the knowledge
about dependencies between contexts predefines the reachable reliability of our
context detection.

Henricksen[3] proposes a situation abstraction supported by a context mod-
elling language. The context to be detected is modelled from parts whose state
is measurable. This approach works well if dependencies between sensor data
and context are clear and sensor selection is predefined.



Clarkson et. al.[11] use an interesting method to determine Hidden Markov
Models (HMMs) for their context detection. In their approach the user labels
context states. The data is examined afterwards and the best performing HMMs
are chosen for the detection system.

Our proposal of a methodology for designing context aware systems shares
some basic ideas with the latter approach.

4.1 Methodology

Our aim is to design a methodology and a framework for the development of
context-aware systems that helps programmers find dependencies between con-
texts and choose the right sensors for their system. We try to exploit experimen-
tal development procedures and data mining techniques to discover dependencies
between contexts.

Previous to the development of the context-aware system we propose a three
step experimental procedure to determine which sensors are appropriate and
how the context can be inferred from their data.

Data acquisition In the first step we define the contexts that are to be de-
tected and determine sensors that can be utilised depending on e.g. price,
size and availability. These sensors are deployed depending on context and
sensor type. The measured data is stored in a database. The occurrence of
a predefined context is manually marked by the user.

Data interpretation In the second step we examine the dependencies between
the sensor data and the manually marked contexts with data-mining tech-
niques.

Inference logic design Based on the results of the data interpretation step
the third step in the experimental procedure is to design the inference logic
depending on the applied inference mechanism, i.e. defining rules or building
a baysian network.

4.2 Framework

Beside the procedure and the guidance for the development of context-aware
systems we plan to support developers with a software framework based on the
introduced context-aware architecture. It will consist of tools supporting an easy
integration of new sensors into the architecture, logging to miscellaneous data
bases and analysing the data with various data-mining algorithms.

4.3 Benefits

We argue, that context inference and hence context-aware systems can be made
more reliable if they are created following our approach.

The selection of sensors can be tailored to the context and the inference
mechanism are backed by statistical data, whereby context detection errors are
minimised. Deploying only sensors needed for context detection improves the
system performance, because only needed sensor data is analysed.



5 Context Prediction Based on Low—Level Contexts

As already mentioned in section 3.1 we propose to include a context prediction
module as one preprocessing component in the context preparation layer. Since
context prediction in the literature is typically executed on high-level context
information, we will in this section discuss the benefits and drawbacks of several
context prediction schemes.

5.1 Context Prediction Schemes

In the literature context prediction is usually based on high-level context infor-
mation (see for instance [12-16,9]). This approach is appealing as long as the
number of high-level contexts is low. Compared to the high number of combina-
tions of low-level contexts from all available sensors the set of high-level contexts
in typical examples is considerably small.

However, the prediction based on high-level context information has vital
restrictions due to a reduced knowledge about the context itself.

Reduction of Information. Some of the information contained in a low-level
context is lost when transformed to a high-level context since the transformation
function is typically not reversible. If the sampled low-level context information
suffices to conclude a high-level context we can obtain this context at any time in
the future provided that the low-level context information is still available. Once
we abstract from low-level context information to high-level context information
we cannot unambiguously obtain the low-level contexts we abstracted from. A
time series of observed contexts consists of several samples from various sensors.
The associated low-level contexts may indicate some general trend. However, the
high-level contexts may mask this trend to some extend due to the higher level
of abstraction.

Reduction of Operators. The only mathematical operator applicable to high-
level contexts is typically the operator '=’. All prediction methods that require
other operators are not or only with additional computational overhead ap-
plicable to high-level context information. Popular context prediction methods
therefore implicitly support non—numerical contexts but do not profit from con-
texts that provide additional information. The number of prediction methods
suitable to low-level contexts is therefore larger than the number of prediction
methods appropriate for prediction on high-level context information.

Reduction of Certainty. The prediction accuracy may be decreased when
prediction is based on high-level context information. This is due to the different
sequence in which the context prediction and context interpretation steps are
applied. Let P, qusiion D€ the probability that no error occurred in the context
acquisition step. Furthermore P, cipretation a0 Preqiction are the probabilities that



no error occurs in the context interpretation and the context prediction step
respectively. We write P,,.qiceion (¢) if we want to address the probability that the
context element at time ¢y ; is predicted correctly. Assume that the prediction
method bases its decision on a context history of ¢ time series elements and
predicts I future contexts. In the case of low-level context prediction each of the
time series elements is composed of m low-level contexts. For high-level context
prediction each time series element is represented by one high-level context. If the
prediction is based on the low-level contexts, the probability that the predicted
context element at time ty; is correct is

N\ . pm-t m -
Plow—level(l) - Pacquisitioanrediction (Z>Pinterpretation . (1>

If the prediction is based on high-level contexts the probability, that the pre-
dicted context element is correct is

N\ _ pm-t t .
‘Phigh-level(z) - Pacquisition‘PinterpretationPprediCtiOU(7/) . (2)
Comparing these results we obtain

Powieeai) _ pm-1 gy pr : (3)

P (Z) prediction interpretation
high-level

Provided P ierpretation = Ppreaiction, Prediction on low-level contexts leads to the
higher accuracy compared to prediction based on high-level context information
if the number of considered context elements from the context history is less than
the number of low-level contexts in one time series element. Otherwise the ratio
Of Perpretation 0 Poreaiction further influences the prediction accuracy of low-level

and high-level context prediction.

Reduction of the Long Term Accuracy. Provided that a sensor is in good
order, the low-level context information reflects the actual situation with respect
to the measurement inaccuracy. We therefore argue that low-level contexts are
of higher credibility than high-level contexts. By interpreting low-level context
information to high-level context information we take a guess based on the infor-
mation that is available in the current situation. Since the context of the user is
also dependent on information that is not measurable by sensors [17], we cannot
exclude the possibility to misjudge the current context.

A prediction based on high-level context information might therefore be
based on erroneous information. This does not only affect the instantaneous
prediction accuracy but may also affect the long term prediction accuracy.

5.2 Time Series Prediction

For the above stated reasons, we base context prediction on low—level context in-
formation. In order to utilise the additional information on the context elements
we use a time series prediction method that implements an alignment search



method. The observed context time series is aligned with every time series in
a data base of typical context time series. By finding the optimal local align-
ment we also get the most probable predicted time series. For a decent study on
alignment methods we refer to [18].

6 Conclusion

With Foxtrot we have proposed an architecture for context awareness that in-
corporates a high flexibility due to its modular structure. Because of its service
oriented approach it is especially suited for highly flexible ubiquitous computing
environments. Novel context aware concepts are easily adapted by Foxtrot even at
runtime since the architecture is based on FAME?. In our current research projets
we study the impact of low-level prediction methods as well as context modelling
techniques. We have argued that low-level context prediction has significant ben-
efits to high-level prediction methods. Especially the prediction accuracy may be
improved, while also novel prediction methods may be applied. We proposed a
novel context prediction method that utilises the additional knowledge available
for low-level contexts. To further guide the application designer, our proposed
methodology for designing context aware applications provides powerful tools
aiding the development process.

References

1. Dey, A.K.: Providing architectural support for building context-aware applications.
PhD thesis (2000) Director-Gregory D. Abowd.

2. Wiist, B., Drogehorn, O., David, K.: Framework for platforms in ubiquitous com-
puting systems. In: Proceedings of 16th Annual IEEE International Symposium
on Personal Indoor and Mobile Radio Communications (PIMRC). (2005)

3. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: PERCOM ’04: Proceedings of the Second IEEE Inter-
national Conference on Pervasive Computing and Communications (PerCom’04),
Washington, DC, USA, IEEE Computer Society (2004) 77

4. Chen, G., Kotz, D.: Context aggregation and dissemination in ubiquitous com-
puting systems. In: WMCSA ’02: Proceedings of the Fourth IEEE Workshop on
Mobile Computing Systems and Applications, Washington, DC, USA, IEEE Com-
puter Society (2002) 105

5. van Laerhoven, K., Lowette, S.: Real-time analysis of data from many sensors
with neural networks. In: Proceedings of the fourth international Symposium on
Wearable Computers (ISWC). (2001)

6. Schmidt, A.: Ubiquitous Computing — Computing in Context. PhD thesis, Lan-
caster University (2002)

7. Schmidt, A., Beigl, M.: There is more to context than location: Environment sens-
ing technologies for adaptive mobile user interfaces. In: Workshop on Interactive
Applications of Mobile Computing (IMC’98). (1998)

8. Schmidt, A., van Laerhoven, K.: How to build smart appliances. In: IEEE Personal
Communications. (2001) 66-71



10.

11.

12.

13.

14.

15.

16.

17.

18.

Mayrhofer, R.M., Radi, H., Ferscha, A.: Recognizing and predicting context by
learning from user behavior. In: The International Conference On Advances in
Mobile Multimedia (MoMM2003). Volume 171. (2003) 25-35
http://www.ruleml.org: (2005)

Clarkson, B., Pentland, A., Mase, K.: Recognizing user context via wearable sen-
sors. In: ISWC ’00: Proceedings of the 4th IEEE International Symposium on
Wearable Computers, Washington, DC, USA, IEEE Computer Society (2000) 69
Laasonen, K., Raento, M., Toivonen, H.: Adaptive on—device location recognition.
Number 3001 in LNCS (2004) 287-304

Ashbrook, D., Starner, T.: Learning significant locations and predicting user move-
ment with gps. (2002)

Davison, B.D., Hirsh, H.: Predicting sequences of user actions. In: AAAI/ICML
Workshop on Predicting the Future: AI Approaches to Time—Series Analysis.
(1998)

Mayrhofer, R.M.: An Architecture for Context Prediction. PhD thesis, Johannes
Kepeler University of Linz, Altenbergstrasse 69, 4040 Linz, Austria (2004)
Nurmi, P., Martin, M., Flanagan, J.A.: Enabling proactiveness through context
prediction. In: CAPS 2005, Workshop on Context Awareness for Proactive Sys-
tems. (2005)

Barkhuus, L.: How to define the communication situation: Context measures in
present mobile telephony. In: Context, Stanford, CA, Springer (2003)
Boeckenhauer, H.J., Bongartz, D.: Algorithmische Grundlagen der Bioinformatik.
Teubner (2003)



