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Abstract

We study the impact of the context interpreta-
tion error on the context prediction accuracy.
Benefits and drawbacks of current context pre-
diction schemes are analysed and opposed to a
contemporary alternative. We propose a novel
context prediction scheme that has the potential
to significantly improve the context prediction
accuracy. The impact of the context interpreta-
tion error on the context prediction accuracy is
further analysed in simulations inspired by our
analytical considerations.

1 Introduction

Context awareness aims at building applica-
tions and services that adapt to the situation
of the user. One promising approach to further
strengthen this concept is context prediction.

An application situated on a mobile device
may for example track user habits and predict
future contexts of the user even if they are spon-
taneous.

However, the prediction accuracy is crucial to
the acceptance of any application that uses con-
text prediction methods. Common approaches
to context prediction require that the predicted
patterns have once appeared in the past [1, 2, 3,
4], which is reasonable since the task of context
prediction would otherwise be reduced to mere
gambling. A decent overview of context predic-
tion is given by Mayrhofer in [4]. Together with
the authors in [1, 2] and [3] he proposes to first
interpret the context information into a human
readable representation and afterwards to apply
the context prediction process. In contrast, in
our work we propose to apply prediction before
the context interpretation step and study bene-
fits thereof.

1.1 Context Types

We distinguish between high-level context infor-
mation, low-level context information and raw
sensor data. The output of any sensor is consid-
ered as raw data since it most probably needs
further interpretation. This is due to possibly
different encodings of the sensed information or
because of a different representation or accuracy.

Afterwards raw sensor data has become low-
level context information. The low-level context
information of two arbitrary sensors of the same
class measured at the same time in the same
place is identical with the exception of a possibly
differing measurement accuracy, provided that
both sensors are in good order.

In order to obtain high-level context informa-
tion, the low-level context is further interpreted
and possibly aggregated with low-level contexts
of other sensors. A common application or ser-
vice expects high-level context information as
input data.

1.2 Context Prediction Schemes

Context prediction is usually based on high-level
contexts (see for instance [1, 4, 5, 6]). However,
the prediction based on high-level context infor-
mation has vital restrictions due to a reduced
knowledge about the context itself.

1.2.1 Reduction of Information

Some of the information contained in a low-level
context is lost when transformed to a high-level
context since the transformation function is typ-
ically not reversible. A time series of observed
sensor output values consists of several sam-
ples from various sensors. The associated low-
level contexts may indicate some general trend.
However, the high-level contexts may mask this
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trend to some extent due to the higher level of
abstraction.

1.2.2 Reduction of Operators

The only mathematical operator applicable to
high-level contexts is typically the operator ’=’.
All prediction methods that require other oper-
ators are not or only with additional computa-
tional overhead applicable to high-level context
information. Popular context prediction meth-
ods therefore implicitly support non-numerical
contexts but do not exploit the potential of low-
level context information. The number of pre-
diction methods suitable for low-level contexts
is therefore larger than the number of prediction
methods appropriate for prediction on high-level
context information.

1.2.3 Reduction of Accuracy

The prediction accuracy is affected by the order
in which the context prediction and context in-
terpretation steps are applied (cf. Fig. 1). Let
Pacq and Pint be the probabilities that no error
occurs in the context acquisition and the context
interpretation step. We write Ppre(i) if we want
to address the probability that the context ele-
ment at time t0+i is predicted correctly. Assume
that the prediction method bases its decision on
a context history of k elements. Each of the
low-level time series elements is composed of m

low-level contexts. For high-level context pre-
diction each time series element is represented
by one high-level context. If the prediction is
based on the low-level contexts, the probability
that the predicted context element at time t0+i

is correct is

Plow-level(i) = Pm·k

acq
Pm

pre
(i)Pint . (1)

If the prediction is based on high-level contexts,
the corresponding probability is

Phigh-level(i) = Pm·k

acq
P k

int
Ppre(i) . (2)

Comparing these results we obtain

Plow-level(i)

Phigh-level(i)
= Pm−1

pre
(i) · P 1−k

int
. (3)

Designers of context prediction architectures
therefore have to consider the ratio of predic-
tion to interpretation accuracy, the number of
low-level contexts involved and the size of the
context history considered when deciding on the
preferred context prediction scheme.

Figure 1: Dotted arrows: Prediction based on
low-level contexts. Dashed arrows: Prediction
based on high-level contexts.

1.2.4 Reduction of Long Term Accuracy

Provided that a sensor is in good order, the low-
level context information reflects the actual sit-
uation with respect to the measurement inaccu-
racy. By interpreting low-level context informa-
tion to high-level context information we cannot
exclude the possibility to misjudge the current
context.

A prediction based on high-level context in-
formation might therefore be based on erroneous
information. This does not only affect the in-
stantaneous prediction accuracy but may also
affect the long term prediction accuracy if the
context prediction method implements a con-
stant learning procedure in order to adapt to
changing user habits. The learning procedure
is based on the observed context information
which is more likely to be erroneous in case of
high-level context information.

1.2.5 Search Space Issues

Let N ∈ N. The search space SN of a context
prediction algorithm is composed of context pat-
terns of length N . For technical reasons each
sensor may produce only a finite number of pos-
sible output values. Clearly, if every element in
a context pattern can have one out of |S| ∈ N

values, a maximum number of |S|N context time
series may be unambiguously represented in the
search space SN . For N, |S| < ∞ the capacity
of the search space SN is finite.
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Int. error correct predictions accuracy
0.1 (h-l) 1405 0.964

(l-l) 1310 0.898
0.2 (h-l) 850 0.583

(l-l) 1160 0.796
0.3 (h-l) 649 0.445

(l-l) 1024 0.702
0.4 (h-l) 482 0.331

(l-l) 882 0.605
0.5 (h-l) 25 0.017

(l-l) 693 0.475

Table 1: Context prediction accuracy.

Since high-level time series are derived from
low-level time series, the number of elements in
the high level search space is lower or equal to
the number of elements in the low-level search
space. If the number of elements in the high-
level search space is lower than the number of
elements in the low-level search space, there
must exist different low-level time series that
are mapped to the same high-level time series.
Therefore more information can be expressed by
a low-level time series of length N than by a
high-level time series of the same length. Con-
sequently, when prediction is based on low-level
context elements, a prediction may be possible
with less observed context time series elements.

2 Simulation

To experimentally verify the results from sec-
tion 1.2 we utilise the Foxtrot architecture [7].
We have implemented an alignment-prediction
algorithm [8] for low-level and high-level predic-
tion in Foxtrot.

We use four different sensor output patterns
with 41 elements each. In the pace of the experi-
ment we repeatedly choose one of these patterns
with a uniform distribution and feed it into Fox-

trot. In case of low-level context prediction the
context interpretation step is applied on the pre-
dicted low-level context time series. For high-
level context prediction the low-level time series
are first transformed to high-level context time
series while the prediction is applied thereafter.
The context interpretation error is varied in dif-
ferent simulation runs from 0.1 to 0.5.

The results of this simulation are illustrated
in Table 1. We observe that with a context in-
terpretation error of 0.1 the high-level prediction
accuracy is higher than the low-level prediction

0.1 0.2 0.3 0.4
Iter.
10 0.11(6) 0.22(10) 0.29(10) 0.43(10)
30 0.11(11) 0.24(29) 0.32(30) 0.5(30)
50 0.14(21) 0.23(49) 0.32(50) 0.6(50)
100 0.14(38) 0.24(94) 0.29(100) 0.62(100)

Table 2: Ratio of erroneously predicted contexts
(context history size) with a learning threshold
of 0.1 for various interpretation errors.

accuracy. However, with a context interpreta-
tion error of 0.2 or higher the low-level predic-
tion method achieves the better accuracy.

The same trend is also evident with additional
input sensors. Due to space constraints these
results are not included in this version of the
paper.

We also study the long term influence and
especially investigate the interdependence be-
tween the context interpretation error and the
percentage of wrong predictions with respect to
the simulation time. For this second line of sim-
ulations we also utilised the learning module of
the algorithm. An observed time series that is
sufficing different to all time series in the context
history is added to the context history. With
a learning threshold of l ∈ [0, 1] the algorithm
adds time series with l% different context ele-
ments to the context history.

In our test scenario we use one sensor output
pattern consisting of 41 different elements. The
algorithm is initially trained to this unique pat-
tern. In different simulation runs the learning
rate of the algorithm is varied. Starting with the
perfectly trained prediction algorithm we feed
the sensor output pattern 100 times into the al-
gorithm and monitor the contents of the context
history and the prediction accuracy for various
interpretation errors and learning thresholds.

We first consider the ratio of erroneously pre-
dicted context elements. The results with a
learning threshold of 0.1 are illustrated in Ta-
ble 2. The figures in brackets represent the
number of different time series in the context
history. Note that the ratio of erroneously pre-
dicted context elements is typically higher than
the context interpretation error. This is due to
the fact that incorrect time series are added to
the context history. If the algorithm decides to
base its prediction on one of these time series,
many of the predicted context elements are to be
erroneous. Since the initial correct time series is
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0.1 0.2 0.3 0.4
Iter.
10 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
30 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
50 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
100 0.0 (1) 0.0 (1) 0.0 (1) 0.61 (2)

Table 3: Ratio of erroneously predicted contexts
(context history size) with a learning threshold
of 0.5 for various interpretation errors.

not deleted from the context history, all but one
time series in the context history are incorrect.
We observe that the ratio of erroneously pre-
dicted context elements is not dependent on the
number of erroneous time series in the context
history. A single erroneous time series in the
context history has already significant influence
on the context prediction accuracy.

When we increase the learning threshold of
the algorithm, the context prediction errors are
bounded to some extent. If however, a predic-
tion error occurs, the amount of error is simi-
lar to the corresponding value in Table 2. The
reason for this is that the number of erroneous
context elements in a time series in the context
history is relevant to the context prediction er-
ror, not the learning threshold of the algorithm.

To stress this point we increase the learning
threshold to 0.5. The results of this simulation
run are illustrated in Table 3. Observe that the
algorithm is now hardly capable of learning new
context time series at all. Obviously we do not
experience a context prediction error of the al-
gorithm for a context interpretation error up to
0.3. Only with a context interpretation error
of 0.4 and after a considerable number of iter-
ations do we observe context prediction errors.
With only one incorrect context time series in
the context history the ratio of erroneously pre-
dicted context elements is at 0.61 right from the
start. Few incorrect time series in the context
history can therefore have a great impact on the
context prediction accuracy.

3 Conclusion

We have studied the advantages of applying
context prediction methods to low-level context
time series instead of high-level context time se-
ries. We were able to derivate various weak-
nesses of high-level context prediction schemes
and further identified guidelines for the appli-

cation designer that may lead to an improved
prediction accuracy. Our proposed architecture
for context prediction enables the utilisation of
novel context prediction schemes that exploit
the additional information provided by low-level
context time series. Concluding, we experimen-
tally verified our observations on the different
context prediction schemes. We were able to
show that high-level context prediction is only
to be favoured in case of a low context interpre-
tation error and that further the long term accu-
racy of the high-level context prediction meth-
ods is seriously affected by the context interpre-
tation error.
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