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ABSTRACT

The ability to predict future contexts significantly expands the
possibilities of context-aware computing applications. How-
ever, an incorrect prediction may also mislead the application
and may result in inappropriate application behaviour. We
study influences on the prediction accuracy and propose a novel
approach to context prediction in ubiquitous computing envi-
ronments. In our paper we introduce a context time series pre-
diction algorithm based on local alignment techniques. Our
approach has the potential to improve the prediction accuracy
since it explores the observed context history in more detail
than current algorithms. In conclusion, we present simulation
results that support our studies.

I. INTRODUCTION

Context awareness plays an increasingly dominant role in
modern software systems. It is the attempt to provide applica-
tions with relevant information on the surrounding context [1].
Several definitions of context have been given in the literature.
In our work we adapt the definition given by Dey.

Definition 1
Context is any information that can be used to charac-
terise the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a
user and an application, including the user and the application
themselves [1].

The information to characterise the situation of an entity
is supplied by various sensors. These sensors may provide
contextual information about the place, time or the physical
situation of the user. In ubiquitous environments the utilisation
of third-party sensors that are provided by nearby devices or
objects additionally extends the number of available sensors
and hence makes context aware applications more powerful.
Mobile phones nowadays incorporate a multitude of sensors.
First of all the location of the user may be computed by
the cell-id or by GPS information. Additional sensors such
as a microphone or a camera are typically available. Some
phones also possess sensors to measure light intensity. The
signal strength or SIR may provide location information like
indoors/outdoors. Additional nearby sensors can be accessed
by Bluetooth, infra red or WLAN which possibly also provide
useful details on resources within reach. Furthermore software
sensors like a calendar or a clock might provide meaningful
information.

A context-aware application may, for example, infer that a

customer is in a business meeting and accordingly redirect in-
coming calls to his mailbox instead of initiating a resource dev-
astating paging request.

One promising contemporary approach to context aware-
ness is proactivity or prediction. Context prediction opens a
wide variety of possibilities for novel applications. An appli-
cation situated on a mobile device may track personal habits
and predict future contexts of the user even if they are sponta-
neous. A network operator might, for example, improve net-
work throughput if the number of customers in every cell is
known for the near future. For active users this may be achieved
by predicting the future positions of mobile customers based on
their observed position, speed and direction.

But also other behaviour patterns can be explored. If it is
a common habit of a user to watch the games of his favourite
soccer team on his mobile device, or if he is about to start his
daily video conference with his wife, the system may proac-
tively reserve resources by shifting other calls to neighbouring
cells.

Some work has been done on predicting future contexts
based on the observed context history. In these approaches,
the context history is analysed for typical patterns. Studies on
human behaviour suggest that such patterns exist (see for in-
stance [2, 3, 4, 5]). Based on this knowledge and on the current
context time line, future contexts are forecast. The authors of
[6] and [7] for instance study prediction based on GSM cell lo-
cation histories. To describe the transition probabilities from
one location to the other they use a Markov predictor and a
weighted graph respectively. In [8] Unix-shell commands are
predicted by a simple pattern matching method that forecasts
the next command based on the frequency of occurrence of the
last two succeeding commands. A work considering context
prediction with arbitrary sensors is given in [9]. The authors
present the idea of a context diary that stores observed con-
texts and a method to predict future contexts based on the con-
text diary. A revealing overview on context prediction is given
by Mayrhofer in [10]. Mayrhofer proposes an architecture for
context prediction and indicates some benefits and challenges
thereof. Mayrhofer chooses an approach called growing neural
gas to predict arbitrary future contexts.

Regardless of which algorithm is utilised, the prediction ac-
curacy is crucial to any application that employs context pre-
diction. We will in Sect. C. study impacts on the prediction
accuracy and give guidelines to aid the application designer.
On the basis of our results we propose an architecture for con-
text prediction in Sect. III. that has the potential to improve the
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prediction accuracy.
Contexts may be comparable by various mathematical oper-

ators. All approaches stated above only utilise few available
operators (in most cases the operator ’=’). This may be suffi-
cient for some contexts like, for example, location but is defi-
nitely ignorant of further context information. Since we typi-
cally know few about a context it is not clear why one would
not utilise additionally available mathematical operators like,
for example, ’<’, ’·’ or ’−’, since this may enable the use of
a stronger context prediction algorithm. Our proposed archi-
tecture supports prediction methods that utilise arbitrary math-
ematical operators. Our approach to context prediction is not
restricted to specific context types as for example location, but
may process arbitrary context data.

All approaches mentioned base prediction on aggregated
high-level contexts. In our opinion this is the suggesting ap-
proach to the task of context prediction but it also introduces
new challenges (cf. Sect. ??). Our proposal is to base predic-
tion directly on the low-level context information and apply the
context aggregation afterwards.

A further issue seldom mentioned in the field of context pre-
diction is the naturally fuzzy information basis: Context series
that represent human behaviour patterns. Unlike machines, hu-
mans tend to alter their habits and typically are not exact re-
garding the duration of a context. Typical prediction methods
are easily misled by these small changes in behaviour patterns.
This problem of minute variations in human behaviour is there-
fore typically not addressed in studies on context prediction.
We present a method that is capable of abstracting from slight
variations to some extent.

II. PREPARATIVE DISCUSSION

In this section we introduce elementary concepts that are fre-
quently used throughout our work.

A. Frequent Patterns in Human Behaviour

In the research branches context-awareness and context-
prediction, researchers assume that the behaviour of a user con-
tains distinguishable patterns by which a context or even a time
series of contexts can be deduced.

This assumption has to be made with care since the sensor
output is only one part of the definition of a certain context. The
mood of the customer may, for example, have considerable in-
fluence on the context even though it can hardly be measured by
a sensor [11]. Also, as the authors in [12] state, the sensor out-
put leading to a specific context may change over time for one
user and may even completely differ among different users. On
the other hand, numerous authors indicate the existence of typ-
ical patterns in many fields of human behaviour. As [2] states,
behaviour consists of patterns in time. For instance, the authors
of [3] observe typical behaviours in teamsport games. It is even
possible to recognise the software programmer of a piece of
programming code based on his programming style [4].

For our purposes we assume that typical patterns exist in hu-
man behaviour that can also be observed in context pattern cre-
ated by sensor measurements.

B. Context Types

We distinguish between high-level context information, low-
level context information and raw sensor data. The output of
any sensor is considered as raw data since it most probably
needs further interpretation. Different manufacturers produce
sensors with varying output even if the sensors are of the same
class. This is because of possibly different encodings of the
sensed information or due to a different representation or ac-
curacy. Two temperature sensors may for instance differ in the
unit (Celsius or Fahrenheit), in the measurement accuracy or in
the measurement range. A preprocessing of raw sensor data is
necessary so that further operation is not influenced by special
properties of the sensor values themselves.

In this context acquisition step raw sensor data is normalised
to a representation utilised by all further context processing
steps. We say the data has become low-level context informa-
tion. The low-level context information of two arbitrary sen-
sors of the same class measured at the same time in the same
place is, apart from a possibly differing measurement accuracy,
identical, provided that both sensors are in good order. The out-
put of all temperature sensors may, for example, be normalised
to degree Celsius.

In order to obtain high-level context information the low-
level contexts are further aggregated with low-level contexts of
other sensors. From low-level contexts describing the temper-
ature, light intensity and the humidity it might be possible to
infer the high-level context outdoors/indoors. There is no limit
to the level of aggregation. Several high-level contexts may
be aggregated to again receive high-level context information.
A common application or service expects high-level context as
input data since the application designer takes no interest in
the composition of high-level contexts from low-level context
information but in the high-level context the user is currently
in.

C. Context Prediction Schemes

In the literature context prediction is usually based on high-
level context information (see for instance [6, 7, 8, 10, 13, 14]).
However, the prediction based on high-level context informa-
tion has vital restrictions due to a reduced knowledge about the
context itself.

1) Reduction of Information

Some of the information contained in a low-level context is
lost when transformed to a high-level context since the trans-
formation function is typically not reversible. Once we abstract
from low-level context information to high-level context infor-
mation we cannot unambiguously obtain the low-level contexts
we abstracted from. This is true even if we know the transfor-
mation function. A trend in a low level context time series
may be masked in the more general high-level context time se-
ries. Assuming, for example, that the high-level context H1

(eg. outdoors/indoors) is inferred if the low-level context L1

(eg. degree Celsius) falls below 20 and L2 (eg. lux) is above
1000. However, given H1 = ’outdoors’, we only possess the
somewhat fuzzy information L1 < 20 and L2 > 1000.
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Figure 1: Dotted arrows: Prediction based on low-level con-
texts. Dashed arrows: Prediction based on high-level contexts.

2) Reduction of Certainty

We assume that the prediction method bases its decision on a
context history of k time series elements. In case of low-level
context prediction each of the time series elements is composed
of m low-level contexts. For high-level context prediction each
time series element is represented by one high-level context.
According to the order in which the context prediction and
context interpretation steps are applied, the prediction accuracy
may be decreased when prediction is based on high-level con-
text information (cf. Fig. 1)). In the figure, the output values
of all m sensors attached to the architecture at time t1 . . . tk are
denoted by S11 . . . Smk. These are then transformed to low-
level context information in the context acquisition step. The
resulting low-level contexts are denoted by L11 . . . Lmk. The
dotted (dashed) arrows describe the order of actions in case of
prediction based on low-level (high-level) contexts. H1 . . .Hk

therefore denote the inferred high-level context time series after
the context interpretation and H ′

1 . . .H ′
l (L′

11 . . . L′
ml) denote

the high-level (low-level) context time series after the context
prediction has been applied. Let Pint and Pacq in the figure
be the probabilities that no error occurs in the context interpre-
tation and the context acquisition step respectively. We write
Ppre(i) if we want to address the probability that the context
element at time ti is predicted correctly. If the prediction is
based on low-level contexts, the probability that the predicted
context element at time ti is correct is

Plow-level(i) = Pm·t
acq Pm

pre (i)Pint . (1)

If the prediction is based on high-level contexts, the probability
that the predicted context element is correct is

Phigh-level(i) = Pm·t
acq P t

intPpre(i) . (2)

Figure 2: Our proposal of a general architecture for context
prediction.

Comparing these results we obtain

Plow-level(i)
Phigh-level(i)

= Pm−1
pre (i) · P 1−t

int . (3)

Designers of context prediction architectures therefore have to
consider the ratio of prediction to interpretation accuracy, the
number of low-level contexts involved and the size of the con-
text history considered. Keep in mind that we have ignored the
possibility to correct accidentally an error in one step by an-
other error in a following step, since the accuracy gain thereof
does not outweigh the decreased comprehensibility.

III. ARCHITECTURE FOR LOW-LEVEL CONTEXT
PREDICTION

Prediction in our proposal is based on low-level context infor-
mation (cf. Fig. 2). The reasoning modules and the context
acquisition are not part of the architecture.

A. Time Series Data Base

We define the notion of a context time series.

Definition 2
An unary context time series is a series of consecutive
events in time that are associated to one specific sensor. A
general context time series is a union of several unary time
series whose events share the same timestamps.

Note that we have restricted ourselves to discrete events. We
approximate continuous signals by taking many consecutive
samples in a short period of time.

For each sensor attached to the data base we track a unique
ID and a time series of low-level contexts. We further track
with every sensor ID the maximum and minimum value dis-
covered.

B. Learning Module

The learning module is composed of a learning method and a
rule base. The rule base contains the rules (time series in our
case) that guide the prediction module.

The learning module constantly monitors the time series
stored in the time series data base and eventually uses some
or all of these to construct and update rules in the rule base.
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Figure 3: Context prediction by alignment methods.

Our learning method adds a new observed time series to the
rule base every time this time series is not considered similar
to any time series in the rule base. The similarity is expressed
by an alignment rating of the optimal alignment between these
two time series (see Sect. 2)) [15].

C. Prediction Module

The actual prediction is done by the prediction module. This
module accesses the rule base and the momentary sensor data
provided by the context acquisition module. We propose a local
alignment prediction procedure. The prediction based on local
alignment techniques is schematically described in Fig. 3. In
the figure we observe that the method requires at least one typ-
ical time series that is stored in the rule base as well as the se-
quence of recently observed contexts. The alignment method
searches for the subsequence in the typical time series that is
most similar to a suffix of the recently observed series of con-
texts. Since the time series in the rule base is considered typical
we assume that the suffix of the recently observed context se-
ries is followed by the same context pattern the subsequence in
the typical context series is followed by.

In order to rate the similarity of two time series we mea-
sure the similarity between these according to a distance met-
ric. The distance metric compares single entries in the time
series. The similarity of two time series is estimated as the sum
of the similarities of single entries.

1) Comparison of Single Time Series Entries

A single entry in a time series S = s1 . . . sm contains sensor in-
formation from various sensors. For i ∈ [1 . . . n], j ∈ [1 . . .m]
we normalise every sensor value vi ∈ sj to v′i ∈ [0, 1]. An
entry in a time series is then represented by a point in a n-
dimensional coordinate system where n is the number of sen-
sors involved. Each sensor output is uniquely mapped to one
axis of the coordinate system (cf. Fig. 4). Note that we re-
quire that two time series can only be compared if the sensors
involved match in number and type, since we compare the cor-
responding points in the n-dimensional hyperspace. The cor-
relation between any two points in this hyperspace is given by
their Euclidian distance.

2) Alignment of Time Series

The following definitions are taken from [15] and are adapted
to our notation.

vmax vmin vi vi · (vmax − vmin)−1

SA 10 0 5 0.5
SB 5 −3 3 0.375
SC 7 2 1 0.2

Figure 4: Top: Example input values for three sensors and the
corresponding normalised values. Bottom: Coordinate system
describing the configuration of the three sensors.

Definition 3
An alphabet Σ is a set of symbols σ where each symbol
uniquely matches a configuration of sensor values.

Every time series of length n can be represented by a string
σ1 . . . σn with σi ∈ Σ where every time series element is
described by a symbol σi ∈ Σ.

Definition 4
Let s and t be two time series over the alphabet Σ. And
{−} /∈ Σ a gap symbol. We denote the empty time series with
λ. Let Σ′ = Σ ∪ {−} and h : Σ′∗ → Σ∗ a homomorphism
with ∀σ ∈ Σ : h(σ) = σ and h(−) = λ. An alignment of s
and t is a pair (s′, t′) of strings over the alphabet Σ′ so that
the following conditions hold:

1. |s′| = |t′| ≥ max{|s|, |t|}

2. h(s′) = s

3. h(t′) = t

4. there is no position where both s′ and t′ have a gap.

Obviously an alignment is not an exact matching of context
patterns but a fuzzy matching of patterns that comes most
closely to the exact matching. To be able to rate the quality of
alignments we introduce an alignment rating.

Definition 5
Let (s,t) be an alignment of two time series s and t. An
alignment rating δ : Σ∗ → R is a metric describing the
similarity between the time series s and t.

Since we search for subsequences in context time series that
are maximally similar according to the alignment rating we
further modify the description given above.

Definition 6
Let δ be an alignment rating with the optimisation aim
minimisation. A local alignment of two strings s = s1 . . . sm

and t = t1 . . . tn is an alignment of substrings s′ = si1 . . . si2
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Table 1: High-level to low-level context prediction accuracy.

Interpret. error Ratio of pred. accuracies
0.1 1.073
0.2 0.732
0.3 0.634
0.4 0.547
0.5 0.036

and t′ = tj1 . . . tj2 for s and t. An alignment A = (s′, t′) of the
substrings s′ and t′ is an optimal local alignment of s and t if
δ(A) = max{d(s′, t′)|s′ is substring of s, t′ is substring of t}.
In this formula d(a, b) is the distance metric of the local
alignment.

Provided we have a distance metric, we are able to compare
two time series by searching for their optimal local alignment.
We choose the sum of the Euclidian distance between all
pairs of time series elements in the alignment as our distance
metric. The alignment rating of the optimal local alignment is
calculated as the sum of the distances between the subsequent
pairs of time series elements in the optimal local alignment.

IV. SIMULATION SCENARIO

We experimentally verify the results from Sect. II. with Foxtrot
(Framework for cOnteXT awaRe cOmpuTing), which is cur-
rently developed by our research group [16]. We implemented
the prediction algorithm described in Sect. III. for low-level
and high-level prediction modules in Foxtrot . The context in-
terpretation and acquisition modules do not actually interprete
or acquire context data but apply a predefined error probability.

We utilise four synthetic sensor output patterns of 41 ele-
ments each. In the course of the experiment we repeatedly
choose one of these patterns at random. To exclude side ef-
fects, the learning process of the context prediction algorithm
is disabled. For the low-level and high-level prediction algo-
rithms the input patterns are identical. We further modify the
context interpretation error in several simulation runs from 0.1
to 0.5. Since we are not interested in the context acquisition
error it is set to 0.0 in all simulations. The results of this sim-
ulation are illustrated in Table 1. The table shows the ratio of
high-level prediction accuracy to low-level prediction accuracy
(Phigh−level

Plow−level
). We observe that with a context interpretation er-

ror of 0.1 the high-level prediction accuracy is higher than the
low-level prediction accuracy. However, with a context inter-
pretation error of 0.2 or higher the low-level prediction method
achieves the better accuracy.

V. CONCLUSION

We have introduced an architecture for context prediction
based on low-level context information. Since low-level con-
texts contain additional information not available with high-
level contexts and due to an increased accuracy, common pre-
diction methods are likely to be improved in terms of precision
when applied to low-level contexts. Furthermore, additional

mathematical operators are available for low-level context data
so that novel prediction algorithms may be applied.

We have suggested a context prediction approach based on
local alignment methods. This prediction technique utilises the
improved knowledge on inter context correlations gained by
low-level context prediction. The proposed method is so robust
it can handle alterations and even missing or exchanged time
series elements. The algorithm incorporates a constant learning
mechanism and is able to predict an arbitrary number of future
contexts.

First simulation results indicating the potential of the pro-
posed prediction method have been presented as well.
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