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Abstract—The volatility of main memory and CPU caches is
an important implicit protection mechanism for sensitive data:
in-memory data gets erased if memory modules are disconnected
from power supply. Persistent systems, on the other hand, cannot
rely on volatility and without further measures their secrets can
be easily retrieved by physical access.

In this paper, we present Volatility, a system which protects
secrets stored in persistent memory. This system provides mecha-
nisms which turn persistent sub-systems into volatile ones by the
use of AMD Secure Memory Encryption (SME), a new extension
of AMD CPUs which provides encryption of main memory at
the page granularity. Volatility protects secrets at two levels: it
offers fine-grained memory encryption inside the kernel, where
only information considered as sensitive is secured, and per-
process memory encryption, which encrypts selected user space
programs. Besides storing subsystems in an encrypted form, all
relevant input and output paths, e.g. managed by the kernel, are
protected as well. Our evaluation of Volatility demonstrates that
the proposed protection mechanism does not impact the system
performance, while protecting against strong adversaries.

Index Terms—Memory encryption, Persistent systems, NV-
RAM, AMD SME, Volatile-by-encryption

I. INTRODUCTION

Non-Volatile RAM (NV-RAM) is considered as a replace-
ment for conventional Dynamic RAM (DRAM) [1]. Indeed,
prospective persistent memory technologies such as Spin
Transfer Torque Magnetoresistive RAM (STT-MRAM) [2]
show a latency comparable to DRAM, while offering a larger
capacity [3]. Moreover, NV-RAM has an important property,
persistency, since this memory can retain stored data in the
absence of an external source of power. Together these features
allow to consider future computing systems as fully persistent
systems, i.e. equipped by NV-RAM only.

Fully persistent systems have advantages over hybrid sys-
tems since the latter need to combine two different memory
technologies, while the former, in turn, would result in simpler
hardware and system support. However, in the case of fully
persistent systems, the volatility of main memory is lost, and
in this paper, we argue that this feature of memory is crucial
and needs to be preserved in persistent systems. To support
this claim, let us consider the content of memory from the
security point of view.

Main memory contains various secrets, such are storage
encryptions keys, cached decrypted data, and more. DRAM
protects this information from the direct extraction: the volatile
nature of memory destroys the data as soon as an attacker
removes DRAM modules from a memory slot. The volatility
can be overcome, but direct extraction of data requires the

freezing of the equipment [4], which sometimes is hard to
perform. Persistent memory, in turn, does not require low
temperatures to retain this data and the content of memory
modules can be rather easily extracted.

In this paper, we present Volatility, a software system aimed
at the protection of secrets in persistent systems from physical
attacks. To ensure this, firstly, we introduce a mechanism
for reliable erasing of persistent data. This mechanism uses
the SME extension of recent AMD processors and enables
creation of Volatile-by-Encryption (VbE) memory regions. Such
regions are encrypted transparently by an inaccessible, volatile
encryption key, which is stored inside the memory controller
and regenerated on each boot of the system.

Secondly, we demonstrate, that system components dealing
with security-sensitive data can produce side objects, which
also need to be protected since they may contain parts of the
data. As a consequence, Volatility additionally protects all side
artefacts, as well as all relevant data paths in the system. For
that, we developed a mechanism for tracking interactions of
system components with security-sensitive data and turned the
identified system components into Volatile-by-Encryption.

Thirdly, we implemented and evaluated a complex use case
on top of Volatility. This use case requires various system
components for data processing, in particular, data input/output,
block layer, caches, and encryption subsystem. In sum, the
evaluation demonstrated almost negligible performance over-
head, while preserving the persistence of the system and the
protection of secrets.

The paper has the following structure. Section II provides
background on memory encryption, persistent systems, and
demonstrates how security sensitive data is stored in multiple
places of the kernel. Section III overviews the design of
Volatility. Section IV discusses the implementation of Volatility.
Section V and Section VI outline a methodology and system
support for identification of security data paths in the kernel.
Section VII presents our evaluation of Volatility. Finally, Sec-
tion VIII overviews related works while Section IX concludes
the paper.

II. BACKGROUND

A. Data path of sensitive information

The core concept of Volatility is that it protects not only
security-sensitive user space programs, but all relevant data
paths inside the kernel. These paths may include copies of data
used by the programs. To support this claim, let us consider
as an example the login utility.
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The login program deals with security sensitive information,
such as the password credentials, and therefore needs to be
protected. The utility reads a password from input devices
such as a keyboard and stores it inside a dynamically allocated
memory region. This memory region can be encrypted on
per-page basis. However, only encrypting this region is not
sufficient: To demonstrate this, we created a memory image of
a commodity Linux instance immediately after the successful
login and found two places where the plaintext password was
still located in memory. One of these places belonged to the
login utility itself, while another one resided in the Linux kernel
memory. Thus, it is not enough to only secure application
memory to successfully prevent the data retrieval, but some
components of the kernel should be encrypted as well. In the
scope of this paper, we refer to these additional components as
Security Sensitive Data Set (SSDS). This is described in detail
in Section III-C.

B. Secure Memory Encryption
Volatility is based on hardware-accelerated memory encryp-

tion, such as provided by Secure Memory Encryption (SME).
The latter is currently surfacing on the market as part of AMD’s
Ryzen processors [5]. This technology enables encryption and
decryption of main memory content on a per-page basis. The
cryptographic operations are performed and implemented as
part of the memory controller. As an encryption algorithm AES
is used and encryption keys are generate inside the CPU each
time the system restarts. These keys cannot be read or written
by software.

a) Accessing encrypted and plain memory.: Figure 1a and
Figure 1b show the general schemes of how encrypted memory
is accessed. The memory controller has two options to access
physical memory: as part of the first one the memory controller
directly communicates with the memory modules to perform
read and write operations. The second one involves using the
AES engine for de- and encryption of memory pages. The
memory controller chooses the access method in accordance
with a special bit (called C-bit – enCrypted) in the Page Table
Entry (PTE) of an accessed virtual address.

b) SME operation modes.: SME supports two modes of
operation: Transparent SME (TSME) and page-wise selective

memory encryption. While in the first case the whole main
memory is transparently encrypted, the second case has been
designed to selectively encrypt main memory. Especially the
first mode of operation can be used instantaneously to protect
secrets, but at the same time, the whole system will not be
persistent anymore.

C. Persistent Systems
The memory hierarchy of "classical" systems includes three

key layers: CPU caches, primary storage and secondary storage.
CPU caches are the fastest, but small, while primary storage
is slower, but more capacious, and secondary storage is the
slowest, but the most capacious. The first and second layers are
volatile, i.e. do not retain stored information without an external
source of power, whereas the third layer is non-volatile. Also,
primary storage is byte-addressable, while secondary storage
is block-addressable. New memory technologies, such as
Phase-Change RAM (PC-RAM) [1] and Spin Transfer Torque
Magnetoresistive RAM (STT-MRAM) [2], are at the same time
capacious, non-volatile and byte-addressable. Therefore, instead
of three layers, persistent systems likely have only two layers in
the future: volatile CPU caches and non-volatile main memory.
Currently, there are several different conceptions of persistent
systems so-called models of persistence. A model of persistence
describes systems components which should be persistent, the
interaction of volatile devices with persistent components, life-
cycles of programs and more. One can identify four models
of persistence. Firstly, there is a language- or library-based
model of persistence, introduced by Mnemosyne [6] and NV-
Heaps [7]. In this model, a persistent system is considered as
a hybrid one, where both types of memory are presented. The
majority of such systems parts are volatile, while components
of user programs can be allocated in persistent memory.

Another model of persistence was introduced by NV-
Process [8]. In this model, the entire process can be al-
located inside persistent memory. The System-wide model
generalised [9] this approach to the whole system. In this
approach, there is only persistent memory, and all components
of it are persistent per se. Finally, there is the hypervisor-based
model of persistence [10], [11], which provides transparent
persistence at the level of virtual machines.



III. THE DESIGN OF VOLATILITY

The main goal of Volatility is to offer protection of sensitive
information, while also maintaining the persistence. For that,
Volatility provides a set of operating system primitives including
fine-grained in-kernel and coarse-grained per-process memory
encryption of persistent systems.

In this section, we detail the core concepts of Volatility.
Firstly, we describe hardware assumptions and a model
of persistence. Secondly, we explain the assumed attacker
model. Thirdly, we describe encryption-based volatile processes.
Finally, we detail Security Sensitive Data Sets, our approach
to protect sensitive information processed outside a secured
application, e.g. in the kernel space.

A. Persistence model and Volatile processes

We assume, that the hardware platform includes only
NV-RAM (Figure 2). Therefore, the software system follows
the system-wide model of persistence and all processes and
the kernel are persistent per se. The hardware platform should
include a power-outage detector [12], which is used for early
detection of incoming power outages. This detector initialises
a flush-on-fail routine [9], during which the system software
flushes volatile caches.

The Volatile-by-Encryption (VbE) processes are encrypted
persistent processes. Such processes differ from ordinary
persistent processes, as they cannot be recovered after a power
outage. Moreover, all dynamic allocations that are made in the
context of a VbE process are also volatile, i.e. automatically
encrypted. This concerns not only dynamically allocated objects
in user space but also includes objects created by the kernel
in the context of the target process. These VbE objects are
typically caches, structures, memory buffers and more, allocated
by the kernel when execution system calls on behalf of the
protected process. VbE objects, as well as VbE processes, are
not recoverable, and each encrypted subsystem has its own
recovery hook, which cleanups VbE memory upon restart.

B. Attacker model

Volatility aims to prevent direct extraction of sensitive
information from NV-RAM. It relies on the availability of
page-wise hardware memory encryption, as offered by SME [5].
Based on these initial considerations, we define the following
attacker model:

Firstly, the target system offers page-wise hardware memory
encryption, which is free of flaws. The system software
manages encryption of security sensitive information. The
encryption key for physical memory encryption is securely
created inside the CPU at startup time and cannot be retrieved
from CPU.

Secondly, we assume that the target system uses a Volatility-
enabled operating system. The system software consists of
security sensitive and security insensitive data. Security sensi-
tive programs are protected by page-wise hardware memory
encryption. Security insensitive programs are not protected by
memory encryption and can be recovered by an intruder.

Thirdly, the intruder does not have access to login credentials
and cannot obtain root privileges by exploiting operating system
vulnerabilities, using a malicious device or performing a side-
channel attack. All these cases should be treated as different
kind of attacks and they require additional protection measures
to be handled. Indeed, if the attacker can obtain root privileges,
they can extract data without physical access.

C. Security Sensitive Data Set

The encryption of process memory is typically not enough to
provide full-fledged protection of sensitive data. For example,
input and output paths via kernel objects should be encrypted
as well. In this paper we call these additional paths as SSDSs.

The SSDS is a set of system software (libraries, programs,
kernel modules or components), whose encryption is required
to protect sensitive data of an application. In the previously
considered example, to protect the login utility one needs to
encrypt all buffers inside the kernel which store input data.

Different applications (as well as kernel components) have
different SSDSs. For example, for storage encryption, one needs
to protect file caches and the encryption context inside the
kernel. While for a Graphical User Interface (GUI) application
one needs to protect input/output buffers inside the kernel and
intermediate buffers inside the window manager. In user space,
applications’ security sensitive data can be protected easily
with coarse-grained encryption, but SSDSs inside the kernel
require additional modifications.

We analysed several possible usage patterns of per-process
encryptions and identified two groups of Linux kernel subsys-
tems belonging to different SSDSs. We call the first group of
components Default SSDS, while we refer to the second group
of components as Demand SSDS.

Components from the Default group are always encrypted.
These components are lightweight and shared by multiple
programs or kernel subsystems. Serial input is an example of
such a lightweight subsystem shared by multiple programs.

Components belonging to the Demand group are also
encrypted, but the encryption is performed only for one
particular application. For example, many programs create file
caches, but only the caches belonging to encrypted storages
should be encrypted. In this group, we also add subsystems that
are encrypted by default, but not shared by multiple subsystems.
For example dm-crypt, which offers transparent disc encryption
that is only used by the device mapper. Demand and Default
SSDSs are described in Sections V-A to V-C.

IV. IMPLEMENTATION

This section first outlines how support for SME-usage has
been added to the Linux kernel. Next, it is detailed how a VbE
process dynamically marks other objects for encryption. We
conclude the section with a description of a testing framework
to validate that sensitive data of a protected application is in
fact secured.



A. SME support in the Kernel

Before detailing the actual implementation of Volatility’s
kernel-level support for SME, we shortly analyse the Linux
kernel memory hierarchy: The lowest level of the Linux
kernel memory hierarchy is represented by architecture specific
memory-related structures. On this level for example one can
change bit fields inside the architecture specific Page Table
Entry (PTE) or flush the Translation Lookaside Buffer (TLB)
cache. These bit fields define whether a memory page is
executable or non-executable, writable or read-only and, in our
case, encrypted or plaintext.

The middle level of the memory hierarchy is associated with
the function alloc_page(). This function allocates one frame
of physical memory and maps it to a vacant virtual address,
after which it returns a struct page – an object describing the
performed mapping.

The alloc_page() function requests one argument – a bit
field which defines the way how the memory will be allocated,
for example, whether the memory allocator should use cold
or warm pages. Conceptually, this function does not allow
specifying the kind of allocated frame, like non-executable or
read-only. This is performed by calling architecture-specific
functions from the lowest level of the memory hierarchy.

The highest level of the memory hierarchy can be associated
with the function kmalloc(). This function is abled to allocate
objects of any size, i.e. smaller or larger than a memory frame
size. This is enabled by an intermediate allocator, running on
top of the page allocator.

We considered two different approaches for establishing
encrypted memory support: The first approach is based on
manually changing attributes of objects previously allocated
via alloc_page() This approach targets the middle level of the
memory allocation hierarchy as an implementation point. As
mentioned above, each allocated page can be encrypted by
modifying the corresponding PTE. The second approach is
based on the idea, that encrypted memory should be allocated
from a pool of encrypted pages. This approach assumes the
highest level of the memory hierarchy as an implementation
point.

Both approaches have their individual advantages and
disadvantages. The first approach is flexible and does not
require significant modification to the memory subsystem.
Memory encryption can be applied to any allocated page
or memory region on demand. Additionally, the encryption
flag of the pages can be changed dynamically without any
restrictions. However, this approach only enables the encryption
of objects of page-aligned size, but do not interfere with other
non-encrypted allocations.

The second approach requires the introduction of a new
memory pool, which will be dedicated to encrypted memory
pages. From this pool, an allocator can take objects of any
size (non-page-aligned), but memory assigned to this pool will
be no longer accessible for ordinary allocations. Also, it will
be impossible to change attributes of objects from this poll
without a threat of neighbouring objects being damaged.

Finally, we decided on the first approach and implemented
memory encryption support on top of the existing page
allocation support. We added a new flag, __GFP_VOLATILE,
indicating that an allocated page needs to be encrypted after
the allocation. The highest level of memory hierarchy can
also be extended to support the allocation of encrypted pages,
since it passes allocation flags to the middle level. To prevent
corruption of neighbouring objects we round up to the full
page size when an allocation is performed in conjunction with
the __GFP_VOLATILE flag.

B. Volatile process

To indicate the volatility of a process to the Volatility
extended system we use a volatility marker. The marker has
several properties. Firstly, marked and non-marked processes
must be distinguishable in kernel space, but marking itself
should be performed in user space. Secondly, the marker should
be inheritable, i.e. all entities created by executing exec(ve)
and fork system calls should also be marked and encrypted.
Thirdly, the marker should be protected by security policies of
the operating system – i.e., only privileged users can mark or
unmark processes/programs.

For that, we used the "POSIX capabilities in Linux" [13],
which extend the existing access control infrastructure. In
short, we introduced a new capability and modified the process
of program loading. By default, all processes do not have
the volatility capability flag set, but if the loader identifies
the flag inside the extended attributes of a file, it raises the
corresponding flag inside the task_struct and from then this
process, and all subprocesses created by this "marked" process,
will be encrypted.

As mentioned before, coarse-grained encryption enables
encryption of all objects created by a marked process. In the
Linux kernel, if the process makes a system call, the kernel
performs this call in the context of the user process. Within
this system call, the kernel can create new kernel objects,
and they will be created by the kernel, but in the context
of the process. The volatility capability can be checked 1

easily in different subsystems of the Linux kernel. Accordingly,
for contexts with the volatility capability set to true, the
kernel should make objects encrypted, and non-encrypted for
contexts without the volatility marker. For example, system
calls like mmap, mprotect, brk, etc. now check the capability
and always allocate encrypted memory regions for volatile
processes. On the low level it is achieved by the introduction
of new memory protection flags, PROT_VOLATILE and
VM_VOLATILE, linked with the C-bit in the PTE structure.

V. IDENTIFYING SSDS

An operating system can create additional objects, which
can contain copies of security sensitive data belonging to a
Volatility-protected process. As we discussed previously, the
operating system can create caches or use chains of buffers
for I/O operations. To provide protection to these additional

1if(cap_raised(cur->cred->cap_effective, CAP_VOLATILE)) {<...>};
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objects, we introduced Security Sensitive Data Set (SSDS) – a
set of kernel-space and user space components that need to be
encrypted to secure all sensitive information of an application.

This section describes modifications of three essential Linux
kernel subsystems: input, dm-crypt and page cache.

A. Input

The input subsystem represents a Default component of
SSDS. This component of the kernel is lightweight and shared
by multiple programs. Furthermore, there is another reason
why this subsystem should be encrypted by default: some
components of input perform memory allocations in the context
of an interrupt. In the interrupt context, we cannot identify
whether the allocation is made for a volatile or non-volatile
process. Thus, to prevent leakage of input data, we made the
input subsystem a Default component of SSDS. In other words,
all objects created inside this subsystem are encrypted.

As in Section III, we consider the login utility but this
time from the implementation point of view. In fact, login
depends on the getty utility, which opens a connection to a
virtual console, reads login name and then calls login, which
checks the provided credentials. Figure 3 shows components
of the input subsystem involved into interaction with the utility.
As one can see, there are four components involved in input
processing.

Firstly, the 8250 UART driver2 represent the lowest level of
the input call hierarchy. This driver receives interrupts from the
device and delivers key scan code to the discipline line. The
second component, discipline line, is a special buffer where
actual editing of the input is performed each time a user presses
a key like backspace [14]. The third component is a tty driver,
which provides a terminal interface to user space program.
Finally, the user space utility getty reads the login name from
the TTY device and then executes the login utility.

We made the following changes to the input system to
enable encryption. Firstly, we marked the getty utility as VbE.
Secondly, we encrypted the read and echo buffers of discipline
line (n_tty.c) and tty_buffer inside the TTY driver. Finally, we

2We used virtual environment and executed target system inside QEMU.
That is why we used UART device as an input. More about the testing
environment is described in Section VII

enabled encryption for the transmit buffer xmit (serial_core.c)
allocation, which is performed originally in the context of an
interrupt.

B. Encrypted storage

The dm-crypt module represents a Default component of
SSDS. This component of the kernel is not lightweight, but
implements security sensitive functionality which needs to be
encrypted.

dm-crypt enables block device encryption and is implemented
as a component of the Device Mapper. The Device Mapper is
a kernel subsystem which enables the creation of virtual block
devices such as dm-crypt

The dm-crypt does not perform cryptographic operations
by itself, but uses another subsystem of the kernel, Crypto
API. Also, the interaction with encrypted devices requires
a preparation phase, when a user enters a passphrase and
creates an encrypted virtual device, which can be mounted to
a virtual file system. This utility executes in user space and is
called cryptsetup. To summarise, to prevent leakage of security
sensitive information, one needs to encrypt:

• input subsystem, because cryptsetup reads pass-phrases
from the input

• components of Crypto API, because they are involved in
the key management

• encryption contexts of dm-crypt, because they contain
non-encrypted data and keys.

Figure 3 shows components involved in the configuration of
dm-crypt. Since the input subsystem is protected as a Default
SSDS, in this subsection we focus on the Device Mapper and
the encryption engine.

Firstly, the cryptsetup utility reads a passphrase from a
console. Then, cryptsetup configures the device mapper by
creating a new entry inside a mapping table and specifies the
kind of the mapping engine as dm-crypt. Thirdly, dm-crypt
communicates with the Crypto API, recovers the encrypted
master key from the storage and decrypts it with the passphrase.
After that, dm-crypt can perform I/O encryption or decryption
on a per-sector basis. For such operations, dm-crypt prepares
a structure for crypto requests which includes memory regions
for encrypted and decrypted forms of a sector, a master key,
pointers on encryption context crypto_skcipher and additional
data. Then, the module calls the Crypto API.

To protect dm-crypt, we perform the following actions.
Firstly, we mark cryptsetup as VbE. Secondly, we manually
encrypt memory for encryption requests: crypt_config and
skcipher_request structures and transform mask structure
crypto_tfm3.

C. Page cache

The Linux kernel uses different caches to increase perfor-
mance. For example, the kernel uses a SLAB allocator to
allocate new objects of the same-size from an object pool,
a page cache for caching block device accesses and others.

3Allocated inside __crypt_alloc_tfm()
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Some caches should be part of SSDS since they could contain
security sensitive data. At the same time, encryption of all
caches leads to performance degradation and data corruption.
Thus, we need to selectively encrypt caches where necessary.

In our use case, we propose to use encrypted storage and
thus, we are interested in the protection of the associated page
cache. Page cache is a cache of storage pages in RAM: each
time when the kernel needs to perform read/write operations
it checks whether the data is located in the page cache. If so,
the data is fetched from there, otherwise, the kernel populates
the cache and then operates with cached data [15].

In contrast to input and dm-crypt, the page cache represents a
Demand component of SSDS: the Page cache is not lightweight,
and cached objects do not always contain security sensitive
data.

As described previously, we use a volatility marker to distinct
VbE processes from the normal processes. This marker can
be tracked easily inside any component of the Linux kernel,
in particular, inside the page cache. In accordance with this
marker, any subsystem can change its own behaviour, for
example, modify memory allocation flags or use additional
subroutines.

In this way, we implemented cache encryption of VbE
processes. Each time the page cache allocates memory for a new
cache, it checks whether the CAP_VOLATILE flag is raised or
not. If raised, then the subsystem performs memory allocation
with the __GFP_VOLATILE flag. In sum, we implemented
encryption for two kinds of caches: readahead4 and writeback5.

D. Other subsystems

We considered and modified three subsystems: input, dm-
crypt and page cache. However, more complex applications
which involve GUI or networking will require analysis and
modifications other subsystems. This can be performed simi-
larly.

VI. BASIC SME SUPPORT IN QEMU

For development purposes, we added basic SME support
to the QEMU virtualisation engine. This was necessary to
verify the accuracy of SSDS tracking and due to the absence
of persistent SME-enabled platform on the market.

In particular, we added new routines for page-level encryp-
tion and decryption. These routines handle the C-bit of the

4mm/readahead.c: __do_page_cache_readahead()
5mm/filemap.c: grap_cache_page_write_begin()

Page Table Entry, when virtual addresses are accessed. To do
so, we modified the TLB emulation and extended the support
for load/store operations. Moreover, we implemented a tracking
mechanism which identified all kernel functions that access
encrypted memory.

A. Encrypted memory support

To enable SME emulation in QEMU we changed two
components of the virtualisation engine: Firstly, we extended
the TLB refill function. Secondly, we modified the templates
for store and load operations.

QEMU precisely emulates the behaviour of the hardware
TLB and performs TLB refill each time QEMU’s Tiny Code
Generator accesses an unknown virtual address. We modified
the MMU fault-handling routines6 in such a way that they track
accessed pages marked with the C-bit. Each TLB element inside
QEMU includes a tlb_address field which contains the address
of a memory page. The lowest bits of this field can be used to
flag encryption (i.e., TLB_VOLATILE).

QEMU uses many techniques to improve performance. One
of them is direct access to memory content without involvement
of load/store functions. This technique is used for instructions,
which do not involve PC registers and is called fastpath. For
other operations, load/store templates are used and this is
called slowpath. We disabled fastpath, thus all memory related
operations use our customised load/store templates.

QEMU implements load and store functions with templates7.
These templates, firstly, translate virtual addresses to physical
addresses using a virtual TLB. Secondly, these templates per-
form actual loading/storing of data from/to resolved addresses.
For each operation we check the lowest bits of the stored
tlb_address, and perform encryption (store) or decryption (load)
of the content, when the TLB_VOLATILE flag is set.

To alleviate testing and debugging, we are using byte-
wise XOR (exclusive disjunction) as a cryptography algorithm
instead of implementation of AES encryption. Byte-wise XOR
does not affect the performance of QEMU, compared to AES,
but still applies an encoding.

B. Sensitive data tracking

We modified the QEMU virtualisation platform to track
accesses of encrypted memory. For a given application, as
a first step, we tried to find a memory buffer, or a kernel
subsystem which deals with the known sensitive data, for
example, a plaintext password. For that, we made a snapshot
of a virtual machine and parsed it. For each appearance of
the sensitive data, we manually mark the memory region as
encrypted, and then, enable the encrypted memory tracker
inside QEMU, which was additionally developed. This tracker
works as a hook for the load and store routines, and each
time any code accesses encrypted memory, it retrieves the
corresponding execution context (Figure 4). From this context,
the tracker retrieves the EIP and EBP registers, recursively
walks over the whole call trace and identifies all functions of

6x86_cpu_handle_mmu_fault and tlb_set_page_with_attrs
7helper_le_ld_name and helper_le_st_name for little-endian architectures
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the trace by the retrieving the corresponding names from the
kernel image. As a result, for each access to encrypted memory
we received a call trace, analysed it, and modified the kernel
accordingly by marking new regions from where/to which the
data migrates. We repeated the procedure multiple times until
we identified all SSDSs for chosen use cases.

VII. EVALUATION

We considered the following use case scenario as a basis
for our evaluation: A user receives an encrypted archive via
email and saves it into non-encrypted storage. The archive is
composed of encrypted files, which contain security sensitive
information. The user decrypts the archive, edits files, re-
encrypts them and sends a new archive to the sender. During
these procedures, the Volatility infrastructure is used against
data retrieval by an adversary.

A. Use of Security Sensitive Data Sets

Let us consider this example from the SSDS’ point of view.
Firstly, to prevent any leakage, the user needs to store decrypted
files inside of encrypted storage. However, the original archive
might be stored inside non-encrypted storage, since it is already
encrypted in the first place. The second archive created from
the modified files can also be stored on non-encrypted storage.

Firstly, the SSDS of the use case includes the necessary file
I/O operations, such as the mounting of encrypted storage by
(cryptsetup) and corresponding objects created inside the kernel.
Secondly, the utility for encryption and decryption (GnuPG)
should be protected by the encrypted memory use. Similarly
to cryptsetup, this utility additionally requires encrypted input,
which is used to read a passphrase from the console. Thirdly, an
editor which is used to perform modification to the unpacked
files should also be encrypted. Finally, SSDS of the use case
includes additional objects created by the kernel during I/O
operations, page caches (Figure 5, only GnuPG is depicted).

B. Development and testing infrastructure
Our development and testing infrastructure includes a whole

systems stack: from the extended version of the QEMU
emulator and an SME-enabled platform up to user space
programs. We used the Yocto Project Build System version
16.0.1 for infrastructure building, deployment and testing. This
infrastructure includes:

• QEMU virtualisation platform (2.7.0)
• Hardware platforms based on AMD EPYC 7281 with

Micron 1100 SSD and 128 GiB DDR4 RAM
• Linux kernel (4.8.12), busybox (1.24.1), GCC (6.2.0)
• Applications and utilities: GnuPG (2.1.14), cryptsetup

(1.7.2), hdparm (9.48)
We used QEMU to emulate persistent and encrypted platform

and for detection of SSDSs (see Section V). We used the
hardware platform for final benchmarks and the measurement
of the impact of memory encryption.

C. Measurements
The goal of the evaluation is to demonstrate that the outlined

complex use case can be protected by encrypted memory
without sacrificing performance. For that, we used several
benchmarks and applications.

a) Typing simulation: We developed a typing simulator.
This simulator was written in Python and emulated the
behaviour of an editor: insertion and removing of new words,
movements within the document, saving of the file and more.
We compared the time necessary to perform the same set of
editing actions for vanilla and Volatility, but since we used a
slow serial interface to communicate with the simulator it did
not demonstrate any difference in the performance.

b) Performance of encrypted SSDSs: We also measured
the performance of VbE system components involved in the
use case. Firstly, we used the hdparm utility to measure
read performance of encrypted and non-encrypted storage
devices. Secondly, we used a simple dd between mounted
encrypted and non-encrypted devices. Finally, we used GnuPG
to encrypt a security-sensitive file. For the last benchmark, we
used GnuPG for encryption of randomly-generated plan text
files of varying sizes, starting from 1 MiB up to 300 MiB, and
located inside different types of media, in accordance with the
outlined scenario. We repeated our experiments several times
with further averaging and compared performance of the same
hardware platform with two different configurations, with and
without of Volatility. Results of the benchmarks are presented
in Table I.

TABLE I: Volatility benchmarks (MiB/s)

Setup hdparm (non-enc) hdparm (enc) dd GnuPG
Baseline 427.5 240.1 381.7 260.8
Volatility 427.5 238.7 379.9 260.2

As one can see, in all tests performance of the baseline is
very close to the same of Volatility. In the case of non-encrypted
hdparm, results are equal, since the Volatility components are
not used for a non-encrypted media. For the remaining tests,
the difference is less than 0.6%.



VIII. RELATED WORKS

Various projects proposed low-level encryption techniques to
protect against attacks based on physical access. For example,
Aegis [16] and CryptoPage [17] encrypt and decrypt off-chip
data transferred to physical memory. These works were mainly
devoted to enable whole-system encryption and the effective im-
plementation of memory encryption. Volatility targets selective
encryption for systems featuring persistent main memory.

Cryptkeeper [18] proposed a more selective approach, where
the whole memory is partitioned into two parts: plaintext
and encrypted data. The most frequently used pages were
not encrypted, while most infrequently used pages were
encrypted. The goal of this technique is to reduce the amount of
security sensitive data available in non-encrypted form stored
in main memory. Volatility makes this general line of selective
encryption much more strict. We never expose security sensitive
data in a non-encrypted form and enable memory encryption
on a per-page basis.

CPU-bound encryption is a software-based approach. The
main feature of this kind of encryption is that the encryption
keys are located inside the CPU and never leave it. Volatility is
similar to these works targeting attack prevention, but does not
provide or improve existing methods of memory encryption.
While projects like PRIME [19], Armored [20], and copker [21]
focus on the implementation of transparent memory encryption,
Volatility targets selective use of encrypted memory to enable
encryption of persistent systems.

Other works like TRESOR [22] and Loop-Amnesia [23]
apply CPU-bound memory encryption to provide encrypted
storages. These projects neither provide encrypted memory as a
new system component, nor do they consider persistent systems
as a target. In addition, transparent memory encryption, enabled
by a Trusted Platform Module (TPM) (Hypnoguard [24]) or
hypervisor (TreVisor [25]), does the same. In contrast, Volatil-
ity focuses on a holistic approach by supporting encrypted
persistent memory in kernel and user spaces.

Ramcrypt, enables per-process memory encryption imple-
mented via a sliding window [26]. Conceptually, the general
idea of Volatility is close to Ramcrypt, but we encrypt not
only the target processes, but all system entities involved
into interaction with security sensitive data of target process.
Moreover, the sliding window does not deal with persistence.

IX. CONCLUSION

In this paper, we present Volatility, a software system aimed
at the protection of secrets in persistent systems from data
leakage via attacks based on physical access. At the low level,
Volatility provides mechanisms for allocation of VbE memory
regions: memory regions transparently encrypted by the AMD
SME. At the high level, it ensures the data protection over all
relevant data flow paths without missing the persistence of the
whole system.
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