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Abstract—Intel’s novel Software Guard eXtensions (SGX) en-
able secure and trusted execution of services, thereby paving
the way to outsource sensitive data processing to external
data centers. While SGX promises trusted execution close to
native speed, frequent I/O operations and memory usage beyond
a hardware-dependent threshold of currently 92 MiB result
in substantial performance degradation. For memory-intensive
workloads such as key-value stores and databases these penalties
can be prohibitively high.

We present STANlite – an in-memory database engine for SGX-
enabled secure data processing in rack-scale environments. STAN-
lite performs efficient user-level paging, whenever a database
workload requires more space than the performance-friendly
in-memory state size. Furthermore, STANlite smartly combines
the properties of Remote Direct Memory Access (RDMA) and
SGX to reduce the overhead of network-based I/O operations.
While SGX usually provides confidentiality and integrity at
the same time, STANlite enables a purely integrity preserving
data management mode for additional performance. Finally,
STANlite features a small trusted computing base and is memory-
efficient, as it extends SQLite, a database for embedded use.
We evaluated STANlite in terms of query response time. It
outperforms a vanilla SGX-based SQLite version by 1.79× for
microbenchmarks and 2.44× for TPC-C.

Index Terms—Memory encryption, database, SGX

I. INTRODUCTION

Outsourcing all kinds of data processing applications to
external infrastructures – in particular cloud computing en-
vironments – has become best practice. However, associated
externalized data is often privacy or security sensitive, and thus,
requires additional protection during storing and processing. As
a result, customers either need to trust the provider including all
its infrastructure and personnel, apply costly custom protection
mechanisms ([1], [2]), or simply avoid outsourcing in the
first place. Recent hardware platforms promise to substantially
change this situation by enabling trusted execution in otherwise
untrustworthy environments.

In particular, Intel recently introduced the Software Guard
eXtensions (SGX) [3], which enable trusted execution based on
encrypted and integrity-protected user-space memory regions
named enclaves. Using SGX, the CPU performs encryp-
tion/decryption of enclave pages inside the memory controller,
as a consequence enclave data never leaves the CPU as plain
text. Because of the on-the-fly memory encryption/decryption

the performance of enclave assigned computation is slower
compared to commodity execution, but provides reasonable
performance considering the provided security guaranties.
However, there are two further sources for possible performance
degradation: i) memory usage beyond a certain machine-
dependent threshold and ii) mode transitions between trusted
and commodity execution.

The hardware-dependent threshold is defined by the Enclave
Page Cache (EPC) size, which is shared by all SGX enclaves,
and for current platforms is limited to 92 MiB. If more memory
is demanded this cannot be addressed by the EPC and an
operating system supported paging mechanism is performed [4].
However, this process is expensive due to costly transitions be-
tween trusted execution in user space and privileged execution
performed inside the kernel. On top, the exchange of pages
between EPC and plain main memory requires the encryption
and decryption of all evicted pages. While for workloads with
a small memory footprint the performance degradation of SGX
is typically low – for data-intensive applications such as in-
memory databases the performance decrease due to frequent
paging can be prohibitively high.

Frequent transitions between trusted and commodity exe-
cution are another reasons for severe performance loss. As
enclaves are user-space entities, a frequent source are system
calls and signals, i.e., due to I/O operations, which lead to mode
transitions. So far this issue has been addressed via reducing the
number of system calls by implementing them directly inside
the enclave itself ([5]–[7]) and the support of asynchronous
system calls, which effectively prevents an enclave to exit ([6],
[8]). While the former is only possible for a limited number
of system calls and is not an option for handling I/O, the
latter requires an additional kernel module and synchronization
between enclave and kernel threads [6].

Beyond this, it remains an open question how to further
reduce the overhead of SGX-secured network-intensive applica-
tions such as in-memory databases. In rack-scale environments
RDMA is on the rise and has successfully been utilized to
speed up key-value stores and in-memory databases ([9]–
[11]). However, so far it has not been explored, how this
technology can be efficiently combined with trusted execution
and especially SGX.
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In this work, we present STANlite – an in-memory database
engine for SGX-enabled secure data processing in rack-
scale environments. In summary, we make the following
contributions:

• STANlite extends SQLite1, which was originally designed
for embedded use and as such features a small code base
and has a small idle memory footprint. While a compact
code base is essential to expose only a small attack surface,
the small memory footprint is crucial to efficiently use
the size-limited EPC for data processing.

• STANlite avoids costly operating system supported mem-
ory paging by featuring a scalable Virtual Memory Engine
(VME) inside the enclave. This avoids costly mode
transitions and gives STANlite full control over its memory.
As such STANlite offers a purely integrity preserving
data management mode for additional performance in
cases where confidentiality is not a concern. In a simple
microbenchmark, the VME of STANlite outperforms a
vanilla port of SQLite to SGX, which performs hardware-
based paging, by up to 4.44 times. For the SQLite standard
speedtest1 benchmarks STANlite is up to 1.79 times faster.

• STANlite features an RDMA-based, transition-free and
zero-copy communication layer enabling fast remote
database access in rack-scale environments. We evaluated
STANlite with TPC-C and on average it outperforms a
vanilla port of SQLite to SGX by 2.44 times.

The remainder of the paper is organized as follows: At the
beginning, we give a brief introduction to SGX and analyze
its restrictions. In Section III, we outline the overall design
of STANlite, including its VME and communication layer.
In Section IV, we detail relevant implementation aspects. In
Section V, we present the results of our performed micro-
and macrobenchmarks. Finally, we discuss related work in
Section VI and conclude the paper in VII.

II. SGX ESSENTIALS

Intel SGX enables the creation of secure compartments called
enclaves to achieve trusted execution [12]. An enclave is an
isolated part of a process with its own code and data. All
enclaves are located inside a physical memory region called
the Enclave Page Cache (EPC). As the name implies, the EPC
is organized in pages. It is transparently encrypted and integrity
protected using Intel’s Memory Encryption Engine (MME),
which is part of the memory controller inside the CPU. EPC
pages can only be accessed by the enclave owning the page,
access from untrusted memory or other enclaves results in
abort page semantics (i.e., reads return all binary ones and
writes are silently discarded). Even privileged software (e.g.,
the operating system or a hypervisor) cannot access the EPC.
Physical access to the memory will only read encrypted data,
while writes are detected, because they trigger the integrated
integrity protection.

The lifecycle of enclaves is managed by a set of new
instructions [13] to create, enter, exit, and destruct enclaves.

1https://www.sqlite.org

As these are low level instructions, a Software Development
Kit (SDK) is offered by Intel, which abstracts the finer details
and makes SGX easily usable. The SDK offers abstractions to
call functions inside an enclave, dubbed ECalls, and to call
untrusted functions outside an enclave, dubbed OCalls. As
enclaves cannot use system calls, they can only communicate
with untrusted code via shared memory. This means that
other forms of I/O, e.g., network communication or accessing
persistent storage, still involve untrusted code, which calls into
or is called from the enclave.

The EPC containing all enclaves has a limited size of
128 MiB, due to hardware constraints. Of these, only 92 MiB
are actually available, the remainder is used for integrity
protection of the main part. To overcome this limitation, SGX
is able to swap out EPC pages into main memory, similar
to an operation system swapping out main-memory pages
to persistent storage. However, this special page swapping
is heavyweight, as it includes re-encryption, hashing, and
storage of the hash during swap out. Similarly, during swap
in, decryption, hashing, and checking the hash against the
stored one is necessary. These steps are crucial to ensure
confidentiality and integrity of swapped out pages, however,
they cause a high performance overhead.
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Fig. 1. In-enclave memset performance

Fig. 1 shows a microbenchmark of an in-enclave memory
write. A simple memset is used to fill a buffer of varying size
from 1 to 256 MiB of which we measured the bytes filled per
second. As one can see, as soon as the EPC limit of 92 MiB
was reached, performance degraded by a factor of 2.83 due to
page swapping. Similar results can be found in SCONE [6].
Page swapping is done by the SGX kernel driver, whenever a
page fault for EPC pages occurs.

We aim to circumvent mode changes from trusted execution
to the privileged kernel mode by utilizing our own memory
manager inside an enclave that transfers memory between EPC
and main memory as outlined in the following section.

III. DESIGN

Fig. 2 shows the general architecture of STANlite. The main
part is the SQL engine, which is contained inside an Intel SGX
enclave. Communication with this enclavised SQL engine is
possible via a traditional TCP/IP socket, as well as using
RDMA. The main contribution of STANlite is the custom
Virtual Memory Engine (VME). The VME is plugged into
the SQL engine and allows us to intercept memory allocation
requests so that they can be managed by STANlite. The VME
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has multiple operation modes, which are described further in
this section, but all modes share a so-called cold store outside
of the enclave.

A. Threat Model

The threat model of STANlite is similar to the one of other
SGX-enabled systems. We assume that an attacker has direct
and privileged access to hardware and software components of
a cloud infrastructure ([14]–[16]). We further assume that the
Intel SGX-enabled CPU operates correctly and all instructions
operate as they are described in their respective specification.
STANlite does not prevent software flaws or exploitation of
known and unknown vulnerabilities of software components.
Side-channel attacks such as paging-based [17], cache-based
attacks [18], [19] or synchronization-based [20] are also beyond
the scope of this work.

B. Database Engine Memory Access Analysis

We chose the SQLite embedded database engine as our
basis for STANlite. SQLite is typically used in embedded
systems or in cases where a full database server is simply
not needed. It has no external dependencies excluding the C
standard library and does not require special system support.
SQLite features a layered design, is customisable and self-
contained and is able to work as a purely in-memory database.
In STANlite, we used SQLite ”as is”, without modifications or
enhancements. Conceptually, other DB engines could have been
used in STANlite because the element of interest for STANlite
is the memory access patterns created by SQL engines, not
the specific one of SQLite.

In fact, in-memory databases use typically three main kinds
of memory. Firstly, there is the static memory for the engine’s
code as well as data sections. This memory is allocated once
and only freed when the database shuts down. Secondly, the
database allocates memory to process incoming queries, which
is short-lived as queries contain temporary data of requests.
Lastly, long-lived memory is allocated for the data store itself.
This memory can only be freed, when the content is not
needed anymore, e.g. if the database, a table or a row is
dropped/deleted.

The ratio of these regions varies with time. While the
code/data region is big at the start, it becomes more and more
negligible while data is stored inside the database. The data

store itself with its long-lived memory allocations occupies the
largest fraction of the memory. The share for temporary data
memory changes dynamically with the load but is also small
compared to the data store.

This classification of memory usage is not only important
because of their differences in sizes but also for their differences
in access patterns: Code and static data memory has a fixed size
and is accessed all the time during execution. Contrary, request
memory is allocated dynamically, can vary in size but is short-
lived with its allocations not associated with other database
components, e.g. the data store. Finally, the data store differs
from the previous two. Conceptually, it mimics the content
of the database files stored on disk, therefore it exhibits file
read/write access patterns. Stored objects in this memory can
reference each other via indexes so multiple allocations might
be inter-linked.

In principle all discussed memory types can be virtualised.
However, only the data store is actually relevant, as it occupies
by far the largest amount of memory and is long-lived.
Therefore, we focused on virtualising access to the data store
memory within STANlite.

C. Virtual Memory Engine (VME)

The VME is providing memory virtualisation in STANlite.
Since enclave memory is limited, its main component, the
cold store, is located outside of the enclave. The cold store
is used in all VME configurations. For some configurations
a second store, called the warm store, is located inside the
enclave to cache pages. In any case, the database engine need
to be adapted to use the VME. Before access to memory is
made, the database engine has to first ask the VME to load it.
The VME then returns a pointer to the memory that must not
be saved as it will change over time. Based on these initial
design considerations, we envision four modes of operation
for the VME, which are named based on the feature flags C,
F, I and i. These flags can be combined, so for example, the
mode C-I denotes Caching with Integrity and Confidentiality
Protection. In particular we distinguish the following flags:

1) Integrity Only (--i): In this mode, the VME only uses
the cold store to store memory outside of the enclave. No
encryption/decryption of memory is made, only a hash sum
of the memory is held inside the enclave to preserve integrity
of the data and to detect rollback attacks. This is the most



performant mode but has the drawback of not guaranteeing
confidentiality.

2) Integrity + Confidentiality (--I): Additionally to in-
tegrity protection, this mode encrypts all data before writing
it to the cold store. Subsequently, the data is decrypted while
loading it into the enclave. This guarantees confidentiality and
integrity of the data in the cold store. This mode shares the
same feature flag slot as the integrity-only mode as these mode
are mutually exclusive.

3) Caching (C--): The previous modes only utilised the
cold store outside of the enclave. However, some pages might
be accessed more frequently than others so having those cached
inside the enclave will increase performance because of less en-
/decryption work. This mode adds a warm store to the enclave
to cache a definable amount of pages inside the enclave. Pages
are swapped in/out of the cache using a custom version of the
Least Recently Used (LRU) displacement strategy.

4) Fetching (-F-): The fetching mode builds on top of the
caching mode and allows the database engine to pin pages
to the warm store to prevent them from being swapped out.
This mode is named after the Fetch and UnFetch functions
of SQLite to access memory mapped files. In this case, with
Fetch, SQLite asks for a pointer to data and assumes this
data is always in memory until it is unpinned via UnFetch.
This moves the decision of what memory is needed or can be
swapped out of the database engine. Access to memory this
way is faster, as the database engine can directly work on the
data whereas plain Read/Write semantics have the overhead
of a memory copy.

D. Utilising RDMA for remote communication

As enclave software is not permitted to use system calls,
communication between clients and STANlite need to be
implemented by untrusted software. Therefore, requests to the
database will be performed using ECalls to deliver the request
into the enclave and to start request processing. However,
reading from a network socket to untrusted memory and in
turn copying the request into the enclave involves many parts
of the system, which makes this slow.

We thus looked for alternative methods for network com-
munication and turned to Remote Direct Memory Access
(RDMA). This technology bypasses the kernel network stack
by offloading the networking to the RDMA device. Data is
delivered directly to a programs virtual memory space. In turn,
STANlite can save processing time copying buffers and increase
the throughput when using RDMA for communication with a
client. Sadly, RDMA cannot directly write to enclave memory,
however, we can still save a significant amount of time by just
eliminating the additional interaction with the kernel.

Furthermore, we can utilise asynchronous calls between the
enclave end the untrusted server side. Instead of doing ECalls,
a thread stays inside the enclave and polls a flag in shared
memory. The untrusted system can set this flag as soon as
data is ready to be processed. This removes the slow enclave
transition for requests, as the enclave is already executing
and can just copy the request from the outside. Gathering the

response is done the same way, with the untrusted side polling.
This is related to existing approaches to speed up enclave
request processing ([6], [8]).

IV. IMPLEMENTATION

Next, we provide details regarding the implementation of
STANlite. First, we start with a description of our VME,
then we detail how the VME is integrated with the utilized
SQL engine, and finally we outline the devised RDMA-based
communication layer including how RDMA and SGX can be
efficiently combined.

A. Virtual memory engine

We developed the Virtual Memory Engine (VME) of
STANlite in accordance with Read/Write access patterns used
by databases. Fig. 3 shows a general scheme of the VME. As
one can see, the VME consists of two parts located in different
areas of a process virtual memory. The first part is located
inside the enclave and contains the VME API library and,
depending on the mode, a warm store. This part is active, i.e.,
it performs the actual virtualization of memory. The second
part is a cold store that is located outside of the enclave. The
cold store is passive and consists of a set of pages swapped
out from the enclave.

Both warm and cold store are split into fixed size pages.
The warm store is smaller than the cold store and consists of
non-encrypted pages. The size of the warm store is defined
at compilation time and can be arbitrary, but needs to be
smaller than the size of the EPC minus the size of code/data
sections of the database. In this case, all allocations are made
by the devised VME allocator and costly EPC paging via the
mechanisms of the SGX driver can be prevented. Buffer sizes
and variables, like page size, warm store size and cold store
size are pre-defined, but can be changed at runtime.

All allocations should be performed by the VME API library.
This library enables allocations of pages inside the both stores
and performs paging. In the case of the --i/--I modes, no
warm store exists and the VME operates directly on the cold
store. For the C-- mode, the core function of the library is
page_up(c_id). This function receives an identifier of a
page c_id as an argument and returns a pointer inside the
warm store where this page is currently located. In other words,
when the database engine requests a page, it deals with indexes
of pages from the cold store. The warm store is used as cache
for cold store pages.

There are three components of the warm store: an array of
cached pages, a hash table covering the range of the cold store
pages and a LRU queue, elements of which describe pages
inside the warm store. The queue is a double linked list, the
tail of which is the least used object, while the head is the
most used. When the program requests a page, the VME looks
for a free slot inside the array of cached pages, decrypts the
requested page from the cold store into the warm store and
updates the queue – a fresh page should be added to the head
of the queue. Then the VME returns a pointer to the warm
store slot. If a requested page is located already inside the
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warm store, then the VME just updates the queue and returns
the pointer to the page.

If the program requests a page, and there is no free space
inside the warm store, then a virtual page fault takes place (see
Fig. 3). The VME takes a page from the tail of the queue (C4),
and puts it into the corresponding address inside the cold store.
Since the cold store is located outside the enclave, i.e., in an
untrusted area, the VME encrypts this page. Then the VME
takes a requested page (C1) and decrypts it into a previously
freed slot inside the warm store. Furthermore, the integrity of
the loaded page is validated. After that, the VME returns a
pointer to the the warm store slot.

The VME does not control swapped out pages. These pages
can be corrupted, and what is also important, fresh pages can
be replaced by old ones. This attack is named replay attack,
and the VME should prevent it. Before a swapping out a page,
the VME computes the SHA-224 hash sum of the page’s plain
data. When the VME needs to swap in a page, it compares
the hash of the loaded data with the previously stored hash
value. If the values are different, then the VME stops working
and detects an integrity violation.

However, memory encryption/decryption for confidentiality
protection requires computation resources. While we are
using hardware-accelerated primitives provided by the Intel
SGX SDK, these primitives are heavyweight. In some cases,
developers of a database system can decide to use an integrity
protection only, and evict pages non-encrypted. We support
this operation as mode --i, but it can be applied only on a
database level. In sum, each database can use only one VME,
and to enable a combination of different VMEs a developer
needs to split a database into multiple databases each featuring
the own VMEs.

B. SQLite as a basis for STANlite

STANlite uses the SQLite embedded database as a SQL
engine and extended it with two additional layers. The new
top layer – the communication layer, interacts with a network
subsystem and passes messages to/from the SQLite Core. The
Core processes the requests and consists of a SQL compiler
and a virtual machine [21]. The Core utilizes the OS interface
layer to store database data. For that, the core uses a B-tree to
maintain on-disk data, and a Pager, to cache stored pages. The

in-memory form of SQLite uses a page cache, but in contrast
to the file-based form, SQLite never drops cached pages.

Before an integration of our VME with SQLite, we analyzed
an API of the two lowest layers – the Pager and the OS interface.
Conceptually, the OS interface implements access to storage,
while the Pager is a store for cached pages. We have chosen
the lowest layer, the OS interface, to integrate our VME since
it provides a more flexible set of APIs, and provides more
freedom for page management.

As described early, the database interacts with a storage
layer on a segment granularity. This access assumes read and
write patterns of communications. The database prepares a
buffer to write and requests the operating system layer to store
the content of the buffer at a certain place on a disk. When the
database needs to read something from the disk, it prepares
a read buffer and asks the operating system layer to fill the
buffer with the data from the disk. This data can be cached
inside the database, but conceptually, the database only works
with data belonging to the current request.

This independent block access pattern enables development
of a virtual memory engine supporting an infinite size cold
store, because the VME does not use all segments at the same
time. The VME can hold frequently used pages inside the
warm store, and when the warm store is full evict pages as
necessary. This is the general approach to integrate our VME
with the SQLite database. However, there are several options,
and in the following we consider different cache designs and
interaction strategies of the VME and the upper layers.

Read and write: The operating system layer provides a
simple communication interface between the database and the
storage. A write call is used to store data on disk, and a read
call is used to load data from the storage. The VME thereby
can apply different schemes.

a) None caching mode - --I: Fig. 4 shows an interaction
of the --I operation mode of the VME and the database engine.
As one can see, there is no cache at all and read/write opera-
tions are transformed directly into decryption and encryption
operations. With the direct cold store operations and without
temporary cache, the database consumes only a little amount
of heap memory. Accordingly this mode of operation can be
used in strongly memory restrict environments, or utilized
for certain kind of workloads when caching of data does not
increase performance (i.e., random access of a large database
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that by far exceeds the EPC size).
b) Caching mode - C-I: Fig. 5 shows an interaction

of the C-I operation mode of the VME and SQLite. As one
can see, this mode utilizes both warm and cold stores. In this
mode, the VME follows the model described in Section IV-A:
the cold store consists of an encrypted form of swapped out
pages, while the warm store consists of a plain text form of
cached data. The LRU cache manages the migration of pages
and provides integrity checks for swapped-in pages.

c) Caching and fetching mode - CFI: Modern versions
of SQLite support not only Read and Write access patterns
but also Fetch and UnFetch. These calls were implemented to
enable memory-mapped access to a database file. For example,
the Fetch call requests a pointer to memory where a particular
Database (DB) segment is stored. To prevent corruption of
data, SQLite assumes that all fetched pages are ”pinned”, i.e.,
cannot be swapped out, until the UnFetch call is invoked. If
the requested page cannot be fetched, SQLite uses Read/Write
operations on the same DB segment. Thus, this mode limits
freedom of the VME to swap in and swap out pages.

Fetch and UnFetch calls were integrated into the VME. Fig. 6
shows a scheme of the CFI operation mode. As one can see,
as in the C-I mode, the VME uses cold and warm stores,
as well as integrity protection and a LRU queue. But now in
addtion, each object in the queue has a pinned flag. The VME
sets this flag each time SQLite issues a Fetch call, and clears it
after a UnFetch call. With the set pinned flag, the page cannot
be swapped out, but after a UnFetch calling, the VME places it
to the tail of the LRU queue. Thus, the page will be swapped
out as soon as the next page will require free space inside the
warm store.

In this mode, it is possible, that all pages inside the warm
store are pinned. In our access pattern, when the warm store is
filled, we still can perform Read/Write operations directly on
the cold store. Fig. 6 shows this example. All pages [C4, C5,
C0] are ”pinned” in the warm store. The {Write, C4} operation
can be performed because the page [C4] is in the cache already.
Also, the {Fetch, C5} operation will be successful since the
page [C5] is in the cache. But the VME cannot swap in the
page [C1] for the {Read, C1} request, because all pages are
pinned. In this case the VME decrypts data from the [C1]
segment of the cold store into a request Read buffer, performs
an integrity check, and successfully completes the request.

In short, when the cache is overloaded, the CFI mode
operates in the same way as --I mode, until SQLite will
release some warm pages via the UnFetch call.

C. Client-Server Communication

To enable remote access to STANlite we implemented a
small network library based on TCP/IP and RDMA. This library
supports exchange of SQL requests and responses with a remote
server. Conceptually, the library consists of two components.
On the client side, there is a function that marshals requests and
sends them to an untrusted server service. This service transfers
data into an enclave, reads the response and sends it back. This
scheme is similar for both network technologies – RDMA and
TCP/IP. However, there are specific implementation differences,
which are shown in Fig. 7 and described in the following.

TCP/IP Sockets: The following steps show how a client
request is transferred to a STANlite instance: First, a client
request is stored inside the request buffer (CRQB) on the client
side, which is then copied into a TCP/IP socket. This places
the data into the kernel TCP/IP stack. It is then send to the
remote site via the network device. On the remote host, the
network device delivers the data into the kernel TCP/IP stack
of the server. The server software reads data from the TCP/IP
stack and copies it into a receive buffer RCB. After that, the
server delivers this request to the SQL engine, located inside
an enclave. For that, the network service issues an ECall into
the enclave and after that, the enclaved part of the network
API decrypts the incoming package into the enclave request
buffer SRQB.

RDMA: On the contrary, RDMA communication does not
require additional copies and can sidestep the kernel TCP/IP
stack. Instead, data from the registered buffer CRQB on the
client side can be delivered into the registered buffer RCB
on the server side. We send this data with a notification
(RDMA_WRITE_WITH_IMM) and store inside the notification
the actual size of a transferred data. After the delivery of the
data, the untrusted server side notifies the enclave thread, which
in turn decrypts the request into the enclave buffer SRQB and
starts processing. In sum, the RDMA version uses neither
additional memory copies, nor ECalls but consumes additional
CPU cycles due to polling.

Integrity: Communication between clients and STANlite
should be protected against intrusions and eavesdropping. To
prevent this, we implemented traffic encryption on top of the
communication layer. To enable a unified layer for TCP/IP, as
well as RDMA-based communications, we implemented the
encryption of traffic as an independent library, and added it
to the server and client API libraries. The library operates on
top of TCP/IP and RDMA packets and performs encryption
and decryption of packet payload. The payload is either a
SQL request or a database response. The server side performs
encryption/decryption of requests inside the enclave, while the
client side performs encryption/decryption directly inside the
plain process.

Each request consists of four components: the payload of the
request, the size of the payload, the sequence number of the



request and a checksum of the request. The sequence number
is necessary to prevent a replay attack. Both the server and
clients have counters for the request sequence numbers. Clients
and the server increment their corresponding sequence number
each time a request is sent (for the client) or received (for
the server). If the server or the client receives a request with
a previously used sequence number it drops it and detects a
possible replay attack. The per-request checksum is an integrity
protection technique, which prevents modification of requests.
We utilized SHA-224 as our hashing algorithm. And finally, all
requests are encrypted by the AES-CBC encryption algorithm.
Keys can be generated easily by a DiffieHellman key exchange
procedure [22]. As an alternative TLS termination inside the
enclave, as offered by TaLoS2 could be used.

D. Persistency

The structure of the cold store mimics the layout of
a database file. The cold store can be allocated via the
posix memalign() call or can be a file mapped into a virtual
memory via the mmap system call. In the second case the
DB operates as a persistent database, and for this operation
mode we added functions for warm store purging and syncing.
However, supporting persistent storage additionally requires
protection against rollback attacks as for example proposed
by LCM [23] and ROTE [24], which is out of scope of this
work. As consequence, all measurements and experiments in
this work were made on top of an in-memory form of the DB.

E. Dynamic reconfiguration

Most of basic SQL request like SELECT, INSERT or
DELETE, do not require a lot of heap memory for data
processing. However, with complex requests like CREATE
INDEX, SQLite core consumes a significant amount of memory,
comparable with the current database size. If the database size
fits into the remaining EPC memory, then these requests can
still be performed inside the EPC without involvement of
hardware-based paging. But to do this, memory consumed by
the warm store should be reassigned to gain additional heap
memory. For these cases we added a PRAGMA command that
purges the warm store, limits the size of the warm store to a
requested value and switches the current VME mode to --I.

V. EVALUATION

We evaluate STANlite in terms of query response time
using three different benchmarks, a custom microbenchmark,
Speedtest1, and TPC-C. Our microbenchmark is a simple
SELECT statement, characterized by intensive read memory
accesses. The second benchmark is a full-fledged macrobench-
mark based on Speedtest13, which is a benchmark suite to
measure SQLite performance. As a third benchmark, we use the
complex TPC-C test suite [25], which implements an abstract
billing system of an industry service with multiple users.

We are interested in measuring STANlite’s performance with
different VMEs configurations and communication layers, as

2https://github.com/lsds/TaLoS
3http://www.sqlite.org/src/finfo?name=test/speedtest1.c

well as the impact of different database sizes. We compare
STANlite against two versions of SQLite, an in-memory
version, ported to SGX and a native, non-modified version. In
summary, we compare the following six implementations (cf.
Section IV-B):

• STANlite in CFI mode (CFI)
• STANlite in C-I mode (C-I)
• STANlite in --I mode (--I)
• SGX SQLite (vanilla, or VNL)
• Non-modified SQLite (native, or NTV)

Using our most complex benchmark, TPC-C, we measure the
response time of each implementation using either TCP/IP or
RDMA as communication layer. In addition, we investigate
the potential performance benefits of STANlite’s C-i mode,
which does not encrypt evicted pages, against its encrypted
counterpart C-I.

A. Setup

As the performance of STANlite is influenced by numerous
factors other than VME type, DB size, and communication
layer, we keep all parameters that we are not investigating
consistent between experiments.

Evaluation System: We use identical hardware platforms
for all server and client systems: Intel Xeon CPU E3-1230v5
(3.40 GHz, 4 cores, 8 hyper-threads), equipped with 32 GiB
of RAM and Mellanox MT27520 RoCE RDMA controller
(10 Gibit/s). We use identical network cards for RDMA
and socket-based communications. Regarding software, we
run Ubuntu 16.04.3 with the kernel version 4.4.0 as an
operating system and use RDMA libraries from Mellanox
OpenFabrics Enterprise Distribution version 4.1-1.0.2.0, Intel
SGX SDK version 1.8, and SQLite version 3.18.2. For
encryption/decryption, we use the primitive functions from
Intel’s IPP library provided in the corresponding SGX SDK.
We built all software components using the ”-O2” flag.

As for all enclaved applications, STANlite’s Trusted Com-
puting Base (TCB) includes only software located inside an
enclave. In case of STANlite, its TCB includes SQLite as an
SQL engine, our implementation of VME and RDMA, and
the Intel SGX SDK libraries for E- and OCalls, encryption
and decryption, and basic memory allocation. Additionally, for
some of our experiments, we had to include a load generator
into the enclave. The memory usage of code and data sections of
STANlite inside the enclave consists of approximately 1 MiB.

Memory Layout: Two important parameters are the page
size of SQLite and the segment size of the VME. Using
different values for both parameters can have a high impact on
performance for different queries. In our evaluation, we use
a page and segment size of 4,096 bytes for all experiments,
which is the default value of SQLite.

Another parameter is the cache size of the VME. All
STANlite modes that employ a caching VME (i.e. CFI, C-I,
and C-i) use a warm store of 80 MiB for microbenchmark
and TPC-C and a warm store of 70 MiB for Speedtest1. As
--I does not use caching the size is 0 for all benchmarks. Both



SQLite versions, VNL and NTV use their own implementation
of in-memory stores.

For all STANlite modes (i.e. CFI, C-I, C-i, and --I) the
heap size reserved for dynamic memory allocations is limited
to 16 MiB for TPC-C and microbenchmark and to 300 MiB
for Speedtest1. The heap size of VNL and NTV is limited to
2 GiB for all benchmarks.

B. Benchmarks

In the following, we describe each benchmark in more detail.
Microbenchmark: In our microbenchmark, we perform ran-

dom select queries on different database sizes. One experiment
in the microbenchmark consists of 10 random select queries on
a given database for each implementation. The used database
consists of a single table with a primary key and a symbol
field4. We fill the table using multiple insert queries5 that each
add a record with 1 KiB of random data to the table. The table
we use in the first experiment consists of 10,000 records (i.e.
10 MiB). For each following experiment we increment this
value by 10,000 up to a size of 500,000 records (i.e. 500 MiB),
which results in a total number of 50 experiments. In each
experiment we execute 10 random select queries6 and measure
the total response time of these queries.

Speedtest1: Speedtest1 is a benchmark provided by SQLite,
which features a wide range of sequentially executed requests.
During execution, this test suite creates and fills several tables
with random test data, and performs multiple operations,
ranging from a simple SELECT to complex subqueries and
four-way JOINs. We use Speedtest1 with the default payload
of SQL records and a size value of 2,000. We perform a local
execution of the Speedtest1. In this mode, the load generator
is located in the same environment as the DB.

TPC-C: TPC-C is a well-known online transaction process-
ing benchmark. It simulates DB transactions of a wholesale
supplier that operates a number of warehouses. The benchmark
is designed to scale with the number of warehouses. Thus, we
generated a set of queries for different numbers of warehouses,
each of which increases the DB size by 110 MiB on average.
In sum, we generated 19 experiments, incrementally increasing
the number of warehouses from 1 to 19.

As different DBs have a different query syntax and archi-
tectural features, there exist many different implementations
of the TPC-C benchmark. Instead of implementing our own
TPC-C, we emulate its workload by executing a set of queries
generated by the open-source PY-TPCC engine7.

C. Results

In the following, we present our findings for all benchmarks.
Microbenchmark: In Fig. 8, we show the throughput for dif-

ferent databases sizes. For all implementations that use caching
(i.e., VNL, C-I, and CFI), we can see two distinct behaviors

4CREATE TABLE stest(ID INTEGER PRIMARY KEY
AUTOINCREMENT NOT NULL, BODY CHAR;

5INSERT INTO stest (BODY) VALUES(’<..>’))
6SELECT * FROM stest ORDER BY RANDOM() LIMIT 1
7https://github.com/apavlo/py-tpcc

0 100 200 300 400 500
0

1

2

·106

Database Size (MiB)

R
eq
u
es
ts

p
er

S
ec
on

d

NTV VNL --I C-I CFI

0

50

100
%

Fig. 8. Comparison of performance in Microbenchmark

depending on the DB size. When the DB size is smaller than
the EPC or warm store size limit, all caching implementations
demonstrate nearly the same performance. For larger DB sizes
VNL is outperformed by all other implementations, followed
by C-I and then CFI.

Another noteworthy result of this benchmark is the behavior
of the non-caching --I mode. Its performance stays constant
across all DB sizes. When the DB size is smaller than the
EPC size, --I shows the worst performance of all evaluated
implementations. However, for larger DB sizes, --I shows
the same performance as CFI and outperforms VNL and C-I.
Contrary to other implementations, --I does not use a cache
and performs encryption/decryption on each read/write request.
However, for a DB larger than the EPC size limit, caching
becomes useless for random SELECT requests, as cached data
is unlikely to be used again. In this case, C-I performs a
combination of two operations: an encryption of warm data
into the cold store with following decryption of cold data into
the warm store, and copying of the decrypted data into the SQL
engine. In contrast, --I only performs encryption/decryption
without copying data. Thus, the performance of --I does
not degrade. CFI has the same behavior as --I for larger
DBs, since the VME cannot swap out fetched pages and, thus,
effectively works as being in --I mode.

Comparing the encrypted implementations with NTV shows
that encryption has a substantial impact on performance. Before
reaching the EPC size all implementations show a performance
of just about 50% of NTV. Using larger DBs, the performance
of VNL degrades to approximately 11.2%.

Speedtest1: In Fig. 9, we use bars to represent the execution
time of every query of Speedtest1 for each implementation, in
the order of execution. Additionally, we use lines to show the
growing size of the DB during the benchmark’s execution for
VNL and STANlite with VME.

Regarding the memory usage of the DB, we can see that
STANlite consumes less memory than VNL. The difference
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has a constant factor of approximately 6.8%.
Surprisingly, there are multiple experiments, in which VNL

outperforms CFI and --I (e.g., 150 (creation of indexes for
tables) and 300 (refilling with different conditions)). Analyzing
these queries, we identified that SQLite requires a lot of heap
memory to process this kind of queries. As mentioned above,
for this benchmark, we limited the heap size to 300 MiB,
however, these requests consume hundreds of megabytes. Since
we do not virtualize heap memory, we see a corresponding
performance gap resulting from hardware-based paging.

There is a set of experiments, where all engines show
close performance (e.g., 100-145, 160, 161). However, for
several experiments VNL shows dramatical performance degra-
dation. Especially experiment 310 (four-ways JOINs) and
320 (subquery in a result set). These experiments can be
characterized by an intensive memory use caused by active
read/write accesses. In contrast, experiments, in which VNL
shows its best results can be characterized by operations on
indexes. In most experiments, C-I performs better than CFI
and --I, while CFI and --I often show similar performance.

TABLE I
TOTAL TIME REQUIRED BY SPEEDTEST1 (IN SECONDS)

DB Size NTV VNL --I C-I CFI

51 MiB 6.9 8.6 24.1 13.3 13.4
601 MiB 136.5 545.0 373.3 305.2 370.6

Tab. I shows the total time of Speedtest1 for small (i.e.,
51 MiB) and large (i.e., 601 MiB) DBs. For small DB sizes
VNL outperforms all STANlite modes. As expected, --I is

substantially slower than C-I and CFI for a small DB, while
C-I and CFI show similar performance. As we did focus on
optimizing STANlite for small memory usage, we expected
a performance degradation due to the additional layer of
indirection. Regarding larger DBs, we can conclude that for
Speedtest1 C-I shows the best performance, excluding NTV.
The total time for C-I is about 2.2 times slower than NTV
and 1.79 times faster than VNL.

As mentioned in Section III-C, VME is able to evict non-
encrypted pages. Thus, we compare the performance of VME
with and without confidentiality protection. In Speedtest1, C-i
shows a better performance than C-I, as C-I on average is
1.2 times slower than C-i.

TPC-C: In Fig. 10, we show the results of the TPC-C
benchmark. For all implementations, we use RDMA as well
as TCP/IP as communication layer. We compare Transactions
per Second (TpS), as it is the primary metric of TPC-C.

The general results of TPC-C are similar to the previous
benchmarks. As expected, VNL degrades substantially when
increasing the DB size beyond the EPC limit, while otherwise
it outperforms all STANlite modes. While the constant per-
formance of --I is lower than CFI and C-I for small-sized
DBs, it outperforms both for DBs with sizes larger than the
EPC size limit.

Furthermore, our results indicate that the selection of a
particular communication layer has a great impact on the perfor-
mance of STANlite. For all STANlite modes, there is a constant
performance improvement of approximately 45% when using
RDMA-based networking. NTV’s performance is improved by
approximately 36%. The performance improvement of VNL
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decreases with larger DB sizes from 49% (1 warehouse) to
27% (19 warehouses). Compared to the VNL with TCP/IP
communication layer, STANlite is faster by 2.44 times for a
database 2 GiB in size.

D. Threats to Validity

In the following, we want to address some issues that
might affect the validity and generalizability of our results.
We implemented the microbenchmark by ourselves. This
may bias our results in favor of STANlite. In addition, we
used randomness, which may also bias our results. We tried
to mitigate a potential bias by repeating our experiments
multiple times and also evaluating STANlite with the help
other benchmarks, such as Speedtest1 and TPC-C that are
provided by others.

VI. RELATED WORKS

Orenbach et al. introduced Eleos, which features enclave-
level software-based paging for C++ based programs [26]. Key
abstraction of their design are spointers, a specific instance of
smart pointers that can determine if referenced data is inside
or outside the EPC. As a consequence data can be paged into
the enclave without mode transitions. In principle STANlite
shares the general direction with Eleos but focuses on custom
paging support for an in-memory database and enables fast
remote interaction using RDMA in combination with the use
of SGX.

Panoply [7], Graphene-SGX [5] and SCONE [6] offer self-
contained system library or libOS infrastructures for enclaves
and provide a general purpose trusted execution environment
for legacy programs. Thus, in principle, an in-memory database
such as STANlite can be hosted by these systems, but none of
them offer scalable, enclave-based paging support, but instead
they all rely on the Intel SDK provided functionality or do not
specifically address memory usage beyond the EPC size.

Glamdring [27] is a source-level partitioning framework,
which enables the use of SGX enclaves to protect security-
sensitive data and functions of complex C programs. The SQL
engine of STANlite is insignificant compared to the EPC size,
thus there is no need for partitioning and would likely results
in performance degradation due to additional mode changes.

There are a couple of systems that offer encryption and
secure data processing at the database level. MrCrypt [2] uses
homomorphic encryption and processes queries in an encrypted
form. CryptDB [1] also provides query-based homomorphic
encryption and operates as a proxy which encrypts sensitive
information at the request level. Working on encrypted data
either reduces query expressiveness or substantially impacts
performance.

Recently there have been multiple works to secure a specific
service [16], [28] or a type of middleware [29], [30]. Neither
of them addresses a in-memory database, specifically memory
management for complex query processing nor the use of novel
communication techniques as offered by RDMA.

TrustedDB [31] and Cipherbase [32] use specialized hard-
ware to accelerate secure query processing. STANlite has
similar goals but only relies on commodity hardware and
secures processed data and code.

Finally, there are related projects that utilized RDMA to
speed up remote communication. Pilaf [9], MICA [10] and
HERD [11] are key-value stores that utilize RDMA. While
these projects provide high-performance storages, they do not
have any mechanisms for data protection, neither during data
transfer nor while performing data processing. Lightbox [33]
is an SGX-based system that explored how trusted execution
and TCP/IP can be efficiently combined. Contrarily, STANlite
combines the use of RDMA with trusted execution.

VII. CONCLUSION

In this work we present STANlite – an in-memory database
engine for SGX-enabled secure data processing in rack-scale
environments. While SGX promises trusted execution that is
close to native speed, frequent mode transitions (e.g., due to
I/O operations) and memory usage beyond the EPC size of
currently 92 MiB result in severe performance degradation.
With STANlite we address this performance issue by em-
ploying a custom VME, which features customizable memory
management polices, thereby avoiding mode transitions, and
using an RDMA-based communication layer to improve remote
access speeds.
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