
This is the author’s version of the work. For personal use only, not for redistribution.
The definitive version will be published in the proceedings of the 2018 19th Annual Middleware Conference (MIDDLEWARE).

EActors: Fast and flexible trusted computing using SGX
Vasily A. Sartakov
TU Braunschweig

sartakov@ibr.cs.tu-bs.de

Stefan Brenner
TU Braunschweig

brenner@ibr.cs.tu-bs.de

Sonia Ben Mokhtar
INSA Lyon

sonia.benmokhtar@insa-lyon.fr

Sara Bouchenak
INSA Lyon

sara.bouchenak@insa-lyon.fr

Gaël Thomas
Telecom SudParis

gael.thomas@telecom-sudparis.eu

Rüdiger Kapitza
TU Braunschweig

rrkapitz@ibr.cs.tu-bs.de

ABSTRACT
Novel trusted execution support, as offered by Intel’s Software
Guard eXtensions (SGX), embeds seamlessly into user space ap-
plications by establishing regions of encrypted memory, called
enclaves. Enclaves comprise code and data that is executed under
special protection of the CPU and can only be accessed via an
enclave defined interface. To facilitate the usability of this new
system abstraction, Intel offers a software development kit (SGX
SDK). While the SDK eases the use of SGX, it misses appropriate
programming support for inter-enclave interaction, and demands
to hardcode the exact use of trusted execution into applications,
which restricts flexibility.

This paper proposes EActors, an actor framework that is tailored
to SGX and offers a more seamless, flexible and efficient use of
trusted execution – especially for applications demanding multiple
enclaves. EActors disentangles the interaction with enclaves and,
among them, from costly execution mode transitions. It features
lightweight fine-grained parallelism based on the concept of actors,
thereby avoiding costly SGX SDK provided synchronisation con-
structs. Finally, EActors offers a high degree of freedom to execute
actors, either untrusted or trusted, depending on security require-
ments and performance demands. We implemented two use cases
on top of EActors: (i) a secure instant messaging service, and (ii) a
secure multi-party computation service. Both illustrate the ability
of EActors to seamlessly and effectively build secure applications.
Furthermore, our performance evaluation results show that secur-
ing the messaging service with EActors improves performance
compared to the vanilla versions of JabberD2 and ejabberd by up
to 40×.

CCS CONCEPTS
• Security and privacy→ Trusted computing;

KEYWORDS
Actors, Intel SGX, Trusted Execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware ’18, December 10–14, 2018, Rennes, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5702-9/18/12. . . $15.00
https://doi.org/10.1145/3274808.3274823

ACM Reference Format:
Vasily A. Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara Bouchenak,
Gaël Thomas, and Rüdiger Kapitza. 2018. EActors: Fast and flexible trusted
computing using SGX. In 19th International Middleware Conference (Middle-
ware ’18), December 10–14, 2018, Rennes, France. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3274808.3274823

1 INTRODUCTION
Enforcing data privacy in cloud infrastructures is a primary concern.
Fortunately, with the advent of trusted execution support as offered
by Intel’s Software Guard eXtensions (SGX) [37], application code
and data can be protected from unauthorised access, including
privileged code such as the operating system or the hypervisor.
This is achieved by providing enclaves, which resemble regions
of encrypted memory that can be seamlessly embedded into user
space applications and are only decrypted while processed inside
the CPU. For ease of use, Intel offers a software development kit
(SGX SDK) [27], which provides an enclave definition language
and an associated code generation process to bootstrap enclave
provisioning and facilitate enclave access.

While the SGX SDK offers a convenient and intuitive program-
ming model, it has several shortcomings. Calls to and out of an
enclave require the execution of SGX specific call instructions and
an associated execution mode transition (i.e. from normal to trusted
mode or vice versa). Such a call is costly as it requires between 8000-
9000 CPU cycles [39]. Since a thread has first to leave an enclave to
perform a system call, the cost of these execution mode transitions
drastically slows down an application that often interacts with the
operating system. This is typically the case for multi-threaded ap-
plications, because the SGX SDK offers synchronisation constructs,
like mutexes, that lead to frequent system calls. The execution mode
transition cost becomes also very expensive for applications that
use multiple enclaves to further strengthen resiliency of a system
by a more fine-grained compartmentalisation. Finally, the SGX SDK
forces developers to explicitly specify the use of enclaves during the
early phases of the development and restricts thereby the freedom
to decide on trusted execution based on the deployment scenario.
Here, more flexibility could ease development and deployment.

Over the recent years some of the aforementioned issues have
been identified. SCONE [6] and Haven [8] focused on executing
whole legacy applications on top of SGX. Besides other things, these
approaches reduced synchronisation cost by using user-level thread-
ing. However, the downside is an increased trusted computing base
(TCB), which widens the attack surface. SCONE, HotCalls [52], and
Switchless Calls [28] provide an asynchronous call interface, which
eliminates the cost of execution mode changes as it is inherent to

https://doi.org/10.1145/3274808.3274823
https://doi.org/10.1145/3274808.3274823

Middleware ’18, December 10–14, 2018, Rennes, France Sartakov et al.

the SGX SDK. Panoply [49] discusses multi-enclave applications
but does not offer mechanisms to speed-up inter-enclave commu-
nication. In essence there is currently no system that addresses all
the shortcomings of the SGX SDK and especially the support for
fast inter-enclave communication is essentially missing.

Such support would allow to push the boundaries of build-
ing SGX-based privacy-preserving systems much beyond its cur-
rent status, where all the data is processed inside a single enclave
(e.g., [38, 47]) and enable fine-grained compartmentalisation. In-
deed, supporting multi-enclave applications would allow building
applications that compute aggregate results from data provided by
multiple distrusting parties. In this case each party would store its
data inside a separate enclave and the aggregated result would be
computed using secure multi-party primitives (e.g., [18]). Further-
more, efficiently supporting multi-enclave communications would
also allow building applications that split sensitive data into insen-
sitive parts to be processed independently (e.g., [22, 40]). Compared
to the single enclave application model there is an opportunity to
establish a stronger adversarial model, where the assumption that
the code running inside an enclave is fully trusted, can be relaxed.

In this paper we propose the EActors framework that offers dedi-
cated support for implementing efficient multi-enclave applications
and makes trusted execution a matter of compile-time configura-
tion. Thereby, it avoids a large TCB and addresses the outlined
shortcomings of the SGX SDK. EActors achieves this by proposing
the actor model as an alternative programming abstraction for im-
plementing applications on top of SGX. The EActors framework
features eactors. In line with the classical actor model, an eactor
is self-contained and communicates with other eactors purely via
messages. Thereby, eactors can be executed in parallel and typically
don’t perform blocking operations. Together these properties match
the demands of the SGX execution model quite well, as asynchro-
nous interaction has been identified as performance friendly, while
blocking operations (e.g. due to synchronisation) need to be avoided.
Furthermore, the actor model naturally encourages the splitting of
functionality in small independent and self-contained tasks, which
simplifies the assignment of tasks to one or more trusted execution
contexts and builds the basis for a flexible deployment.

In sum the EActors framework makes the following contribu-
tions:

• Fast interaction andmulti-enclave support. EActors im-
plements the actor model in the context of SGX. Thereby,
special focus has been put on using non-blocking commu-
nication for message exchange between eactors inside the
same and different enclaves, as well as mixed trusted/un-
trusted settings. This avoids costly execution mode changes
and enables to vary the number of utilised threads to flexibly
scale parallelism as needed.

• Resource efficiency. The EActors framework features a
small trusted computing base and avoids dynamic memory
allocation to keep the memory footprint of EActors within
the performance-friendly bounds of SGX.

• Flexible use of trusted execution. All important system
settings, including trusted or normal execution as well as
co-location or separation of eactors, are configurable.

• Versatile applicability. There is a set of system eactors
that handle networking and storage. We also implemented
a secure instant messaging service and a secure multiparty
computation service that feature the use of multiple enclaves.
The evaluation results show that the EActors-based messag-
ing service outperforms the vanilla versions of JabberD2
and ejabberd between 1.11× and up to 40× for a secure chat
scenario.

The remainder of this paper is organised as follows. In Section 2,
we motivate the need for multi-enclave applications, introduce the
current system support of SGX and outline our multi-enclave aware
attacker model. Section 3 outlines the core concepts of EActors and
details the programming model. Networking and storage support
are explained in Section 4. In Section 5, we describe a secure instant
messaging service and a multi-party computation service as use
cases for the EActors framework. Section 6 discusses the performed
evaluation. Section 7 details related approaches, while Section 8
finally concludes the paper.

2 TOWARDS MULTI-ENCLAVE SCENARIOS
To motivate our actor framework, we first discuss the need of multi-
enclave applications and present a secure instant messaging service
scenario that features the use of multiple enclaves (Section 2.1).
Then, we present a background on existing SGX-based system
and application development support (SGX SDK) and discuss its
drawbacks (Section 2.2). Finally, we describe the assumed attacker
model, which addresses multi-enclave settings (Section 2.3).

2.1 The case for multi-enclave applications
The privacy-preserving processing of sensitive data in distributed
systems can be done using multiple means. The most well-known
approach is the use of cryptographic techniques such as homomor-
phic encryption(e.g., [20]), which allows performing operations
over encrypted data.

As these techniques incur a heavy overhead, other solutions
based on data partitioning have emerged. The principle behind data
partitioning is the splitting of a sensitive piece of information into
insensitive parts and making these parts processed by independent
servers. For instance, to process a user request in a location-based
service, one can split this request into three pieces: the user identi-
fier (e.g., IP address), the user location (e.g., GPS coordinates) and
the search query (e.g., medical doctor in an area of 500m around the
user location). Next, these can be processed by three non-colluding
servers (e.g., KOI [22]). Similar services based on data-partitioning
have been proposed for private Web search [40], private recom-
mender systems [21] or online voting [16].

However, one of the limitations of these solutions is that they
rely on a weak adversarial model where the collaborating servers
are assumed not to collude. A mean to alleviate this assumption is
to rely on trusted computing hardware were the sensitive data get
processed in secure enclaves. Various solutions have been proposed
in this direction (e.g., [38, 41, 47]) but these solutions rely on a
single enclave. Relying on a single enclave necessarily builds on the
assumption that the code running inside the enclave is fully trusted.
However, this might not be the case as the code base running inside
the enclave might be relatively large and thus difficult to verify.

EActors: Fast and flexible trusted computing using SGX Middleware ’18, December 10–14, 2018, Rennes, France

Furthermore, the need for multi-enclave applications is even more
appealing for applications involving a set of data providers that do
not trust each other and that request to have their data isolated
from the one of other providers. These applications that generally
rely on secure multi-party computation schemes (e.g., [18]) are
natural candidates for multi-enclave environments, where they
would benefit from a stronger adversarial model enabled by trusted
hardware. However, developing multi-enclave applications was
limited up to now due to the inadequate programming support
provided by the SGX SDK as further explained in Section 2.2.

A secure instant messaging service. To further motivate the need
of such system support, we discuss a secure instant messaging
service. Instant messaging builds one the of main communication
mechanisms of the Internet. It is used for exchanging all kind of
private and business critical information that needs to be protected.

While end-to-end encryption between two users is getting more
and more common, secure group chat functionality requires addi-
tional measures as data may be processed in a plain form on the
server side [44]. Trusted execution as offered by SGX has been
proposed for protecting user profiles and match making for the
Signal instant messenger [2]. However, a fully-fledged solution for
a secure instant messaging service is missing so far.

In principle, all privacy sensitive data of an instant messaging
service can be processed inside a single enclave. However, as soon
as a single flaw can be exploited in the trusted computing base
of the enclave the whole service together with all user data is at
risk. Thus a setting where in the extreme each user is confined
to a single enclave, plus dedicating each group chat to a separate
enclave, improves security. Here, if a user could trigger an exploit
in her own enclave, this does not necessarily imply she would right
away gain access to sensitive information of other users. However,
designing this application with multiple enclaves by using the SGX
SDK is not practical as further discussed in the following section.

2.2 Background on SGX
As aforementioned, SGX can create one or more isolated contexts,
called enclaves, inside an application. Enclaves feature the follow-
ing properties: (i) an enclave is isolated from other enclaves, other
untrusted applications and higher-privileged entities such as the
operating system through memory access control mechanisms en-
forced by the CPU; (ii) memory encryption is used at all times to
defend against physical attacks; and (iii) enclaves support remote
attestation by which the identity of an enclave and its integrity can
be proven to a remote party.

Until now, two different approaches for programming applica-
tions with enclaves have been used: the standard approach makes
use of the Intel SGX SDK, which provides its own interface defini-
tion language for code generation of stubs that enable interaction
between the untrusted application and its associated enclaves. Al-
ternatively, there are projects offering runtime support in the form
of a library operating system [8, 15], in order to execute entire
legacy applications inside enclaves without any changes.

SGX SDK Programming model. The SGX SDK by Intel offers all
the necessary tool support to create enclaves and embed them into
an application. In order to interact with an enclave, a developer has

2 4 6 8 10 12 14 16

100

101

102

Concurrent threads

T
im

e
(s
ec
on
d
s)

pthread_mutex sgx_mutex

Figure 1: Concurrent dequeuing of elements from a stack

to declare the enclave interface, i.e. the enclave functions available
to be called by the untrusted application, using the Enclave Descrip-
tion Language (EDL) [27]. This implies a programming model with
several characteristics that we describe in the following.

Costly enclave interaction. The SDK allows the generation of code
handling the data movement across the enclave boundary in a way
similar to RPC systems. This includes its ability of performing the
necessary memory copy operations during the transition to and
from the enclave. In addition to the natural overhead of copying
data to and from the enclave, the transition into the enclave induces
an inevitable overhead of approximately 8000 CPU cycles [52].

Hardcoded partitioning. Using the EDL and the code generation
workflow of the SGX SDK also forces the developer to explicitly
define which functionality needs to be placed inside the enclaves
during compile time, thereby leaving little to no flexibility for late
design and deployment decisions.

Costly synchronisation. The SGX SDK offers basic synchronisa-
tion primitives such as mutexes, allowing to synchronise access to
shared data structures, as enclaves can be concurrently entered by
multiple threads. However, as threads cannot be suspended by the
operating system inside an enclave when waiting for a condition to
be fulfilled, either spin-locking needs to be performed or the thread
has to step out of the enclave, which requires a costly execution
mode switch. The current solution of the Intel SGX SDK is to spin
lock for a defined (short) time period before eventually leaving the
enclave, in order to prevent enclave exits for very short waiting
periods that would otherwise lead to the above described transition
delay. In order to quantify the effects of this, we measured the con-
current dequeuing of 1000000 elements from a mutex synchronised
stack for a variable number of consumer threads. Compared to
a pthread-based untrusted implementation, the SGX SDK-based
variant is several orders of magnitudes slower. Figure 1 highlights
the dramatic impact of this approach with costly transitions.

Missing fast inter-enclave communication. Another critical aspect
of the SGX SDK is the lack of an efficient enclave-to-enclave com-
munication mechanism. In essence, this has to be implemented
using standard calls via the EDL interface, implying the high cost
of entering and exiting an enclave. Essentially, a thread has to exit
the source enclave and enter the target enclave.

Scarce memory resources. Enclave creation and its memory layout
are handled by the SDK and the SGX kernel module. During enclave
creation, the enclave code and data are copied page-by-page into
the SGX-protected memory range, called Enclave Page Cache (EPC).
In current CPUs the EPC is limited to 128 MB whereof only 93 MB

Middleware ’18, December 10–14, 2018, Rennes, France Sartakov et al.

are available for usage due to SGX-internal data structures [6]. If
the memory combined usage of all enclaves on a machine exceed
the available EPC, the SGX kernel module executes a special paging
process that allows moving EPC pages to normal system mem-
ory and which implies their (re-)encryption, leading to a severe
performance degradation [11, 39, 46].

Runtime support for legacy applications. Haven [8], SCONE [6]
and Graphene-SGX [15] enable the execution of unchanged legacy
applications inside an enclave. Approaches of that kind require
extensive runtime support inside the enclave in the form of a library
operating system [8, 15], or at least an extended libc [6]. Thereby,
securing the interface between the untrusted environment and the
enclave poses an additional challenge.

While the execution of a legacy application on top of SGX is
tempting, the resulting additional trusted code base is not negligible.
Hence, such an approach has security implications, but the required
runtime support also consumes large amounts of the precious EPC
space. For complex applications with relevant in-memory state this
will likely lead to performance-degrading EPC paging. As a conse-
quence, we argue that if an existing application needs to be secured,
these approaches may have their merits. However, for newly devel-
oped applications, a tailored solution that aims at a small trusted
computing base and that targets minimisation of resource usage —
especially regarding memory usage — is preferable.

2.3 Attacker model
In line with previous works, we assume a powerful adversary who
has superuser privileges and physical access to the hardware. The
adversary can control the entire software stack, including privileged
code, the Operating System (OS) kernel, and other system software.
This enables the adversary to replay, record, modify, and drop
any I/O between the environment and an enclave. We assume the
implementation of the hardware and its trusted execution support
(i.e. SGX) are correct and that the associated system software (i.e.
utilised parts of the SGX SDK) does not contain flaws of any kind.
We also assume that the utilised cryptographic protocols are correct
and that the adversary is computationally bound and therefore is
unable to execute brute force attacks successfully.

We do not address denial of service or side-channel attacks that
exploit timing [12, 32] and page faults [54]. Furthermore, mitigation
strategies are under development [48] and one can assume that the
hardware manufacturer will provide appropriate fixes over time.

Unlike previouswork, we do not fully exclude programming bugs
or inadvertent design flaws in enclaves (i.e. in the application code),
and it has already been shown that enclaves can be attacked [31, 51].
Indeed, EActors is intended to facilitate the design of multi-enclave
applications, where the sensitive data is spread across multiple
enclaves. In this context, if an enclave is compromised only parts of
the data is exposed to the attacker—the extent of which is subject
to the application design.

2.4 The actor model as starting point
For EActors we assume an actor model that is stripped-down to
the core principles. An actor is a computational entity that can
in reaction to a received message send messages to other actors.
Thereby, multiple actors can work concurrently and don’t possess

1 s t ruc t s t a t e { s t ruc t channe l chan [2] ; in t f i r s t ; }
2
3 void ap ing (s t ruc t a c t o r ∗ s e l f) {
4 i f (s e l f −> s t a t e −> f i r s t) {
5 s e l f −> s t a t e −> f i r s t = 0 ;
6 } e l se {
7 / ∗ r e c e i v e a pong ∗ /
8 char ∗ msg = re cv (& s e l f −>channe l [0]) ;
9 i f (msg == NULL)
10 return ;
11 }
12 / ∗ s end a p ing ∗ /
13 send (& s e l f −>channe l [1] , " p ing ") ;
14 }
15
16 void a p i n g _ c t r (s t ruc t a c t o r ∗ s e l f) {
17 s e l f −> s t a t e −> f i r s t = 1 ;
18 connec t (s e l f −>channe l [0]) ;
19 }

Listing 1: Pseudo-Code of an eactor .

shared execution state. In the next section we will outline how such
a generic abstraction enables us to address the aforementioned
shortcomings of the SDK, while at the same time requiring less
memory compared to the outlined support for executing entire
legacy applications on top of SGX.

3 EACTORS OVERVIEW
The EActors framework offers an actor-inspired programming
model and has the following design goals in response to the identi-
fied shortcomings of the SGX SDK (see Section 2.2):
Firstly, the EActors framework enables fast message exchange be-
tween eactors – the notion of actors inside the EActors framework.
This especially applies for eactors communication across enclave
boundaries, which facilitates the use of multiple enclaves.
Secondly, our EActors programmingmodel avoids costly fine-grained
synchronisation, because actors do not rely on shared state but in-
stead exchange messages.
Thirdly, the EActors framework offers a flexible use of trusted exe-
cution. We separate the code of an eactor , which is implemented
in a standard programming language, from the associated deploy-
ment policy. This policy defines the assignment of a given eactor to
computational resources (i.e. processors and threads) and especially
enclaves. This is facilitated by providing uniform communication
primitives, which transparently select adequate communication
mechanisms, regardless where an eactor is placed (i.e., inside or
outside of an enclave) or with whom it communicates. As a re-
sult, we can deploy an eactor either in an enclave or outside of an
enclave without further modifications to its application logic.

In the remainder of this section, we first present the EActors
programming model. Next, we outline the EActors runtime and
its support for dynamic configurations. Finally, we explain how
eactors efficiently communicate and detail the devised uniform
communication primitives.

3.1 EActors programming model
The EActors framework features a lean actor programming model.
In order to implement an eactor , the developer has to provide the
body function of the actor, which contains the application logic,
and a constructor function. The purpose of the latter is to initialise
communication channels to other eactors and initialise the private
state of the eactor at startup time. Thus, in essence, connections are

EActors: Fast and flexible trusted computing using SGX Middleware ’18, December 10–14, 2018, Rennes, France

A1 A2

PING

PONG

CPU#1

CPU#0

CPU#2

CPU#3

Enclave #2Enclave #1

W
or
ke
r#

1
W
or
ke
r#

2
W
or
ke
r#

3

Figure 2: Deployment of eactors, workers, and enclaves

mbox %$

POOL
Enclave #1

Enclave #2

PING

PONG

Figure 3: Message exchange between two eactors

statically assigned and we avoided additional naming and resolving
mechanisms with the aim of a small trusted computing base.

Listing 1 presents a simplified example of an eactor written in C.
The eactor sends a ping message when it receives a pong message
from a PONG eactor . The latter works analogous to the presented
example. The structure state declares the private state of the actor,
the aping function is the body function, and the aping_ctr is the
constructor. Once called by the runtime the constructor function
initialises the field first to 1 (line 17), and connects the PING

eactor to a PONG eactor via the communication channel 0 provided
by the runtime. Next, the EActors runtime regularly executes the
body of the eactor . When the runtime executes aping for the first
time (line 4), aping simply generates an initial ping message (line
13) in order to start the ping/pong message exchange. Each time
the body function aping of the eactor is executed either a message
is received via the channel and ping is emitted or the eactor simply
returns as no data needs to be processed.

The example outlines the lean API of our framework, which
turned out to be well suited to implement the targeted use cases
and is in line with the aim of designing a framework featuring a
small trusted computing base.

3.2 EActors runtime
At its core the EActors runtime enables to map computational re-
sources in terms of CPUs and threads to eactors. More importantly,
it allows to define if an eactor should be executed in a trusted execu-
tion context (i.e. an enclave) or as part of the untrusted application.
Thereby, the use of multiple enclaves is supported.

Figure 2 illustrates an example deployment. It defines eactors
(A1, A2, PING and PONG) and two enclaves. A1 and PING are located
in the first enclave, while A2 and PONG are located in the second
enclave. To execute these eactors, three workers are utilised. A
worker is a the framework abstraction to manage a POSIX thread.
The first worker is bound to the CPUs 0 and 1, and executes the
eactors A1 and A2 in round-robin. The second worker is bound
to the CPU 2 and executes only the eactor PING, while the third
worker is bound to the CPU 4 and executes only the eactor PONG. If
all eactors assigned to a worker are confined to the same enclave,
the worker does not leave the enclave (e.g. Worker#2 for PING
eactor). Otherwise, as in the case of eactor A1 and A2 the worker
has to migrate from enclave to enclave in order to execute the body
functions, which will result in costly execution mode transitions.

Such an approach usually should be avoided but can be used if
eactors are dispersed over multiple enclaves and are infrequently
activated.

To implement the outlined scenario and more complex ones,
the developer defines the necessary mapping of computational
resources and trusted execution contexts of eactors in a special
configuration file. This file builds the basis for a custom build pro-
cess and leads to the generation of the source code tree. These
generated files are used together with the SGX SDK for the inde-
pendent compilation of binaries for the untrusted application and
the enclaves that implement the envisioned deployment.

When the application is started, the generated EActors runtime
creates the enclaves, allocates the private state, calls the construc-
tors of the actors and creates as well as starts the workers. Each
worker then executes the body functions of its assigned eactors in
a round-robin order.

3.3 Uniform communication primitives
As outlined in Section 3.1, eactors are in the common case con-
nected using bi-directional communication channels. These chan-
nels provide uniform communication primitives to enable the out-
lined flexible deployment support of eactors (see Section 3.2).

To provide channels, the lower layer of the EActors framework
offers so called nodes, pools and mboxes. A node is a memory
object, which consists of two elements: a header and a payload. The
payload is a memory region used to transfer EActors messages.
The header consists of a set of data pointers to manage nodes. A
pool is an abstraction, which refers to a set of empty nodes. The
framework preallocates private and public pools at system start. A
mbox is an abstraction, which refers to a set of linked nodes used
for message exchange. Mboxes and pools are organised in the form
of bi-direction double linked lists implemented on top of Hardware
Lock Elision [42], but have slightly different APIs and semantics:
mboxes offer FIFO semantic, while pools implement LIFO semantic.

To achieve uniform communication, the channels hide the lo-
cation of the communicating eactors. If both eactors are located
in the same enclave there is no need for message encryption. To
send a message, an eactor firstly needs to dequeue one node from a
pool, fill the payload of the node, and enqueue it to a mbox (Fig. 3).
To receive, an eactor should poll the mbox, and upon reception of a
message read the content and return the node back to the pool. If
eactors are located in different enclaves, messages are encrypted

Middleware ’18, December 10–14, 2018, Rennes, France Sartakov et al.

Su
pe
rb

lo
ck

Se
al
ed

ke
ys

G
ra
ce

co
un

te
rs

B
1 ... B
32

PO
O
L

K
VP

#1
0

K
VP

#2
0

+size

0x
7ff

b0
00
00
00
0

Figure 4: Memory layout of POS

B1 B32... *top

K7V1 K1V3... K1V2 K1V1

2 1

copy top

Figure 5: get(K1) example

TCP/IP stack

ACCEPTER

READER WRITER

OPENER CLOSER

Enclave #1
A1

Enclave #2
A2

Figure 6: Networking by system actors

in order to protect the eactors against a malicious runtime. To
establish encrypted communication between enclaves, the local
attestation support of the SGX SDK is used [27].

eactors initialise a communication channel in two phases. Dur-
ing the first phase, an eactor , called the initiator, connects to a
channel (see line 18 of Listing 1). The runtime simply records the
initiator. During the second phase, a second eactor , called the client,
connects to the channel. If the initiator and the client are located in
two enclaves, the communication channel transparently encrypts
the messages, except if the channel is configured as non-encrypted.
Otherwise, the communication channel simply pushes and pops
non-encrypted messages on the underlying mbox.

4 SYSTEM COMPONENTS
To facilitate fast and scalable eactors applications and because an
enclave cannot directly interact with the operating system, the
EActors framework provides support for two system components:
storage and networking.

4.1 Persistent object store
The main motivation of the provided persistent storage support
is to offer a lean concurrently accessible abstraction that is easily
accessible to all eactors to handle configuration and application
data. It is provided as a Persistent Object Store (POS) and is based on
a memory-mapped file that utilises the page cache of the kernel [35,
43]. This allows us to avoid system calls besides infrequent calls to
make the in-memory state actually persistent (i.e. using sync). In
essence, objects can be accessed and stored using their assigned key.
The keys are mapped to a configurable number of stacks that share
their implementation with the aforementioned pool abstraction.

The current design favourswrites and reads of frequently changed
data. If a common file system storage is required, EActors can be
extended similarly to the networking support described in Sec-
tion 4.2 by implementing dedicated untrusted eactors that execute
the necessary system calls.

Storage life cycle. The framework initialises the storage at boot
time. It starts by mapping a storage file (or a device) at a virtual
address. Because the POS uses virtual addresses inside its internal
objects, the storage file has to be mapped at a fixed address.

During the first boot, the framework initialises a ’super block’
with basic data (version of the storage, sizes of the pages etc.) (see
Fig. 4). The framework also splits the storage into fixed sized regions
and assigns them to a storage pool, which is again realised by a stack.

At runtime, an eactor pops an entry from the storage pool, fills it
with a key-value pair, and inserts the entry with a set(k,v) operation.
Later, the eactor can retrieve the entry with a get(k) operation.

Set and get. The POS uses a configurable number of stacks to
manage its objects. In order to preserve linearisability, an outdated
key-value pair remains in the stack while a new version is inserted.
The set(k,v) operation thus simply pushes the new key-value pair
on top of the stack associated with the hash code of the key.

The get(k) operation scans the stack associated with the hash
code of the key. Since the first key-value pair is the latest inserted
one, the get(k) operation simply returns the first value associated
with the first occurrence of the key in the stack. As a result, our im-
plementation provides fast writes, and relative fast reads. Moreover,
more frequently changed objects can be retrieved faster than less
frequently changed ones. Because the set(k,v) operation does not
remove old keys, our implementation is linearisable. In the worst
case, as presented in Fig. 5, if a get(k) operation (see arrow number
1, Fig. 5) starts before a set(k, v) operation (see arrow number 2,
Fig. 5), get(k) returns the value that was associated with the key at
the beginning of the get(k) operation.

While inserts are lightweight and fast, outdate entries will accu-
mulate over time in the POS. These are removed by a housekeeping
eactor – the Cleaner. To enable a safe deletion of outdated objects
from the stack, all read operations of the outdated entries need to
have finished. This can be detected by monitoring that all eactors
connected to the POS have been executed at least once since the
update that invalidated the object in question. The marking of out-
dated values is performed immediately after updates in the course
of a set(k,v) operation to ease cleaning.

Storage encryption. The POS supports encryption for the key-
value pairs. If the key is encrypted, the hash code is computed
from the deterministically encrypted version of the key, which
means that the storage does not have to decrypt the key to retrieve
the value associated with a key: the storage simply compare the
encrypted keys. Additionally, to preserve the integrity of the pairs,
the POS does not store the keys and the values separately. Instead,
it stores the encrypted pairs as combined values.

At runtime, an eactor can store its encryption key in its pri-
vate state. To secure encryption keys across reboots they can be
stored as sealed data inside the POS using the support of the SGX
SDK. Handling reboot and fork attacks is out of scope but could be
addressed by adopting an approach such as LCM [9] or ROTE [36].

EActors: Fast and flexible trusted computing using SGX Middleware ’18, December 10–14, 2018, Rennes, France

4.2 Networking
The main target of the devised networking support is to horizon-
tally scale with the number of established network connections and
the requested processing of the application logic. Thereby, both
layers should be independently scalable. To achieve this goal, we
internally use the mbox abstraction to connect the eactor respon-
sible for basic network functions with the upper application logic.
This is beneficial as the mbox abstraction enables concurrent access
by multiple readers and multiple writers.

The actual networking support enables TCP via five untrusted
actors (see Fig. 6). The OPENER eactor creates a non-blocking socket
as an instance of a server socket or of a client socket. The ACCEPTER
eactor is used for server sockets to accept connections from clients.
The READER and WRITER eactors are respectively used to receive
and send messages by using the recv and send system calls. Finally,
the CLOSER eactor closes the sockets.

When a client eactor creates a new socket with an OPENER, it
indicates a mbox, which is used by the OPENER to return the socket
identifier. For a client socket, the client eactor sends to the READER
the socket identifier and a mbox, which is then used by the READER
to forward the incoming messages. For a server socket-based inter-
action a similar workflow is performed.

While typically the outlined networking support will be suitable
and the necessary actors will be instantiated during the applica-
tion startup, sometimes custom network support is required. For
these cases the application can implement custom and therefore
optimised network actors as done in the context of our messaging
service use case (see Section 5).

5 EACTORS USE CASES
We implemented two use cases on top of EActors: (i) a secure instant
messaging service, and (ii) a secure multi-party computation service.
Both feature the use of multiple enclaves and exercise the core
components of our framework.

5.1 XMPP instant messaging service
Instant messaging is used to exchange privacy-sensitive informa-
tion. Trusted execution builds a means to make it more secure
(see Section 2.1). Accordingly, we designed and implemented an
EActors-based variant of an instant messaging service that exer-
cises all the outlined features. This includes flexible configuration,
uniform communication primitives, including its underlying mech-
anism and the devised system support for networking and storage.
Beside security based on the use of multiple enclaves, performance
and scalability were prime design goals.

The developed XMPP instant messaging service implements
core parts of the XMPP protocol [45] and supports two types of
communication: One-to-One (O2O) and One-to-Many (O2M). O2O
allows end-to-end encrypted messaging between two participants,
which resembles the de facto approach for modern messengers.
In principle, these type of connections can all be managed inside
a single enclave as only the information about online users and
statistics have to be secure. For One-to-Many (O2M) the situation
is different as it offers support for group chats. Here the server
decrypts the messages of each user and re-encrypts for all members
of the group. While in principle also a single enclave could be used

Kernel TCP/IP stack

C500 C750 C1000C250C1

XMPP #1

PLC: C1, C3
CONNECTOR

XMPP #N

PLC: CN

C4C1 C9

Online list

. . .

.

ACCEPTOR

CLOSER

READER

WRITER

READER

WRITER

push

pop

Figure 7: XMPP service architecture

our implementation supports a dedicated enclave for each group
chat to improve isolation.

5.1.1 Architecture. In the following we present a simplified version
of the overall architecture implemented on top the framework.
As shown in Fig. 7 the service is decomposed in two parts. The
enclaved CONNECTOR manages incoming connection with the help
of an ACCEPTOR network eactor . Thereby the CONNECTOR stores all
established connections in the Online list. This list is shared
with the second part of the service: the enclaved XMPP eactors and
its associated READER andWRITER networking actors. This second
part implements the XMPP protocol logic. It can be instantiated
multiple times, as shown in the figure, to achieve scalability but
also to confine group chats in dedicated XMPP eactors, which are
assigned to dedicated enclaves.

5.1.2 Communication workflow. While the services feature a num-
ber of functionalities, we decided to focus on the message exchange
between an XMPP instance and the connected users. The XMPP
eactor fetches users, i.e. their socket descriptors, that it plans to
serve from the Online list. Next, it locally stores the list in the
PCL (private client list) structure and requests to read data from
all connections using a batch request that is sent to the assigned
READER actor. Once the READER eactor starts processing it queries
all provided client sockets. The results are fed back to the XMPP
eactor , which processes them one by one. To achieve scalability
at the messaging level, each entry in the batch is equipped with
an mbox that is devoted to a specific user. The READER fills these
mbox if the associated connection provides data. Sending data to
the client is implemented in a similar fashion.

As a design decision we omitted the use of channels in this
particular case, this does not break the proposed configurability
as the networking eactors always need to be executed outside an
enclave to perform system calls. This way communication stays
unencrypted at the framework level but is encrypted at the service
level independent of the fact if the XMPP is executed inside or
outside of an enclave.

5.1.3 Deployment of eactors. The deployment shown in Fig. 7 is
a result of a careful evaluation of multiple alternatives and associ-
ated measurements. This was enabled by the flexible configuration
support of the EActors framework.

Middleware ’18, December 10–14, 2018, Rennes, France Sartakov et al.

Secret = [s11, s12, . . . , s1N]
Rnd = [r1, r2, . . . , rN]

m1 = [s11 + r1, s12 + r2, . . . , s1N + rN]

Sum = [mK1−r1,mK2−r2, . . . ,mKN −rN]

Secret = [s21, s22, . . . , s2N]
m2 = [s21+m11, s22+m12, . . . , s2N+m1N]

P3

P(K-1)

..
.

Secret = [sK1, sK2, . . . , sKN]

mK = [sK1 + m(K − 1)1, sK2 +
m(K − 1)2, . . . , sKN + m(K − 1)N]

enc(m1)
enc(m2)

enc(m(K-1))
enc(mK)

P1

P2

PK

Figure 8: SGX-based secure multi-party computation

P1

P2

P3

m1 m2

m3

(a) EActors-based deployment

P1 P2 P3

Untrusted
m3 m1 m1 m2 m2 m3

(b) SGX SDK-based deployment

Figure 9: Deployments of the secure sum protocol

At the level of computational resources, the CONNECTOR and its
attached untrusted eactors are executed by two threads: one for the
trusted CONNECTOR and the other for the networking eactors. This
way the CONNECTOR assigned thread never needs to leave the en-
clave. A similar pattern has been proven useful for the XMMP eactor
and its attached networking eactors. It has to be noted that the num-
ber of threads is scaled with the number of XMMP and networking
eactors.

5.2 Secure multi-party computation service
There exist in the literature multiple protocols enforcing secure
multi-party computations. In this use case, we selected a secure
sum protocol [17, 34]. This protocol aims at securely computing
the sum of all the inputs of a set of participants without revealing
the individual values. Usually the protocol targets a distributed
setting where the individual participants exchange message over
the network. With the support of trusted execution all participants
can be represented by enclaves that are co-located on a single ma-
chine. This way costly network-based communication between the
participants can be avoided. Furthermore, our use case generalizes
the proposed protocol by performing the sum of private vectors
instead of individual values.

Figure 8 shows an overview of our secure-sum service. In this
figure, k parties (i.e., P1, P2,..PK), are connected to each other in a
ring structure. Each party has its own enclave and stores a secret
input vector (Secret). On demand, the Secure multi-party compu-
tation (SMC) scheme computes the sum of the secret vectors. To
do that, the first party P1 starts by generating a vector of random
values Rnd of the same size as the secret vector. Then, P1 generates
a message vector m1, which is the sum of Rnd and the secret vector
Secret. After encryption, this message is delivered to the second
party P2. The second party decrypts the message, sums it with its
own secret vector, encrypts the resulting message and sends it to
the next node in the ring. This process is repeated until the last
party PK delivers the mK message to the first party P1. Finally, P1
computes the result of the sum by subtracting the Rnd vector from
the latest received vector mK. This result is then shared among all
the participants.

To highlight the benefits of EActors we designed two different
variants of this protocol as shown in Fig. 9. The top part of the
figure shows the SMC use case implemented with EActors while
the bottom part shows the same use case implemented with the

SGX SDK. In the first case, each party is implemented as an in-
dependent actor with its own worker and an SGX enclave image.
Communication between the parties is implemented as encrypted
communication channels. As such, communications between dif-
ferent parties are protected, and neither malicious parties nor an
adversary listening to the network can obtain the temporary sum or
guess any secret. In the second case, each party is also implemented
as an SGX enclave but only a single thread executes the protocol by
entering and leaving one enclave after another. As will be shown
in the evaluation (see Section 6.3) the EActors design features more
parallelism and less time-consuming switches between trusted and
untrusted execution mode.

6 EVALUATION OF EACTORS
In the following, we briefly describe the experimental setup, before
evaluating EActors inter-enclave performance, and the impact of
various configurations and deployments on our two use cases.

6.1 Evaluation system
The following experiments are conducted on Intel Xeon CPU E3-
1230v5 (3.40 GHz, 4 cores, 8 hyper-threads), equipped with 32 GiB
RAM, and a Mellanox MT27520 RoCE RDMA controller (10 GbE,
RDMA capabilities were not used). The used software consists
of Intel SGX SDK 1.8 and the SDK builtin Intel IPP library, with
all modules built using the "-O2" optimisation, and running on
Ubuntu 16.04.3 with a Linux kernel version 4.4.0-109.

The framework, implemented in C, contains roughly 6200 lines
of code. The part of the framework embedded in an enclave contains
3278 lines of code and some of the third-party libraries shipped
with the SGX SDK. As a result, for an application such as the XMPP
server, an enclave uses roughly 500 KiB of memory.

6.2 Inter-enclave communication
We consider a simple pingpong application that consists of a PING
component and a PONG component. The PING sends a message to
the PONG, and the PONG replies to the PING with a message. Two
variants of pingpong were implemented and compared: an EActors-
based implementation and a native SGX SDK-based approach, as
described in Fig. 10. In the native SGX SDK-based scenario, the PING
and the PONG components are located inside different enclaves. In
the EActors-based scenario, PING and PONG are designed as two

EActors: Fast and flexible trusted computing using SGX Middleware ’18, December 10–14, 2018, Rennes, France

PING

PONG
mbuf

mbuf

(a) Native SGX SDK

PING PONG
MB#1

MB#2

(b) EActors

Figure 10: Micro-benchmark scenarios

eactors hosted in two different enclaves. Here, eactors’s threads
are bound to different CPU cores, and non-encrypted mboxes.

A total of 1,000,000 PING-PONG pairs of operations was executed.
PING-PONG operations include not only the time necessary to send
messages, but also the time needed to fill the messages with pay-
load data. The payload data are pseudo-random generated strings.
Each reported result is an average of runs. Fig. 11 presents the
performance results of these experiments, with, respectively, the
execution time in Fig. 11(a), and the data throughput in Fig. 11(b).

16 64K 128K 256K 512K
0

500

1,000

1,500

Messaдe size (Bytes)

E
x
ec
u
ti
on

ti
m
e(
s)

Native EA EA-ENC

(a) Execution time

16 64K 128K 256K 512K
0

5,000

10,000

Messaдe size (Bytes)

T
h
ro
u
дh
pu

t
(M

iB
/s
)

(b) Data throughput

Figure 11: Inter-enclave performance

The results clearly show that EActors (EA) outperforms the native
SGX SDK (Native) in terms of execution time and data throughput.
Fig. 11 shows that the native SGX SDK reaches its peak throughput
near 32 KiB. This is explained by the fact that for each OCall, the
SDK allocates a memory space in which the sent message is copied.

But after reaching the L1 data cache size, which is 32 KiB in Intel
Skylake Core [1], memory copy becomes slow. Furthermore, for
a finer analysis of the difference between EActors and the native
SDK, EActors is also evaluated with an encrypted communication
channel. Obviously, encryption induces a non-negligible overhead,
with a data throughput that is up to 10 times lower than without
encryption (EA). Even with encryption, and thanks to its optimised
inter-enclaves communication primitives, EActors still provides a
data throughput 3 times higher than the native SDK.

6.3 Secure multi-party computation service
To evaluate our second use case, we implemented the two deploy-
ment variants of the secure multi-party use case as depicted in Fig. 9:
an EActors-based implementation and a SGX SDK-based version.
For a predefined number of parties and vector dimensions, we gen-
erated 10.000 invocations of the secure sum scheme, and measured
the response time. We repeated each experiment at least three times
and computed the average. The measured throughput depends on
multiple factors, such as the speed of encryption/decryption of
messages, number of parties, vector size and the duration for gen-
erating random numbers. The last factor is crucial because the first
party needs to refill the Rnd vector on each request.

6.3.1 Case#1: plain protocol. In our first experiments we concen-
trated on the plain execution of the protocol. Fig. 12a and Fig. 12b
show the performance of the SMC service for short (below 100 ele-
ments) and long (between 1000 and 10.000 elements) input vectors.
We used two extreme configurations: three and eight participating
parties. Fig. 12c shows the performance impact depending on the
number of parties. For this benchmark, we used three different
vector sizes: 1, 1000, and 2000 elements.

Firstly, the throughput of the EActors-based implementations
is higher than the throughput of the SDK-based implementation,
especially for short vectors. Increasing the vector size leads to the
degradation of the throughput. The same applies for increasing
the number of parties. Secondly, as it is shown in Fig. 12b, for
long vectors the difference between the two implementations is
not so severe as for short vectors. For example, the difference in
throughput for three parties and 1000 elements (EC/3, EA/3) is 8%,
and it becomes negligible for vectors longer than 2000 elements.

We identified three sources of performance degradation. The first
one is transition costs entering and leaving trusted execution mode
during ECall/OCall use. The implementation of the SDK-based SMC
scheme uses ECalls efficiently, i.e. transition costs do not involve
copying of memory, and thus, the transition costs do not depend on
the vector size. However, the number of parties increases transition
costs proportionally. The second source of performance degradation
is encryption and decryption of messages. The vector size impacts
linearly the encryption/decryption demand. However, as it is shown
in the previous benchmark (Fig. 11b), the encrypted ping-pong
application reached a throughput of 1GiB/s, which is roughly 35
times bigger than the throughput of the EA/3 configuration for
1000 elements (7092 ∗ 1000 ∗ sizeo f (uint32_t) ≈ 27 MiB/s), thus
bandwidth is not the limiting factor. A detailed analysis revealed the
source of the performance degradation is a slow sgx_read_rand()
SGX SDK function. In accordance with the protocol, the first party
has to generate a vector of random values before each request. An

Middleware ’18, December 10–14, 2018, Rennes, France Sartakov et al.

20 40 60 80 100
0

50

100

150

200

Vector dimension

T
h
ro
u
дh
pu

t
(1
03

re
q
/s
)

EC/3 EA/3
EC/8 EA/8

(a) Throughput for short vectors

2 4 6 8 10
0

2

4

6

8

Vector dimension (103 elements)
T
h
ro
u
дh
pu

t
(1
03

re
q
/s
)

EC/3 EA/3
EC/8 EA/8

(b) Throughput for long vectors

4 6 8

101

102

Number o f parties

T
h
ro
u
дh
pu

t
(1
03

re
q
/s
)
(l
oд
.)

EC-1 EC-1000 EC-2000
EA-1 EA-1000 EA-2000

(c) Impact of number of parties

Figure 12: Plain SMC execution

20 40 60 80 100
0

50

100

150

200

Vector dimension

T
h
ro
u
дh
pu

t
(1
03

re
q
/s
)

EC/3 EA/3
EC/8 EA/8

(a) Throughput for short vectors

2 4 6 8 10
0

1

2

3

4

Vector dimension(103 elements)

T
h
ro
u
дh
pu

t
(1
03

re
q
/s
)

EC/3 EA/3
EC/8 EA/8

(b) Throughput for long vectors

4 6 8

100

101

102

Number o f parties

T
h
ro
u
дh
pu

t
(1
03

re
q
/s
)
(l
oд
.)

EC-1 EC-1000 EC-2000
EA-1 EA-1000 EA-2000

(c) Impact of number of parties

Figure 13: SMC scheme with dynamically computed input vectors

increase of the vector size leads to an increased usage of the trusted
random number generator.

6.3.2 Case#2: dynamically computed vectors. In the previous evalu-
ation we assumed that the parties do not perform any computation
beside the bare protocol. In contrast to the previous scheme, in this
case, the parties update their internal secrets after each computa-
tion of the secure sum. Fig. 13 shows the performance of the two
SMC systems with such an additional workload applied.

As one can see, this additional computation significantly impacts
the performance. For example, for a vector size of only one, the
performance benefit for EActors has grown to 4× for three par-
ties and to 4.4× for eight parties. For lager vectors, the difference
grows faster. For example, as Fig. 13c shows, for 2000 elements,
the difference in throughput grows from 2× (three parties) to 4.1×
(eight parties). In addition, and in contrast to the plain execution of
the protocol, experiments with larger vectors also show a signifi-
cant difference in throughput. Fig. 13b demonstrates, that for eight
parties and any vector size in the tested range, the EActors-based
implementation is at least 3.88× faster.

6.4 Evaluation of messaging service use case
The messaging service outlined in Section 5.1 has been evaluated
in a personal chat and a group chat scenarios. Thereby, we com-
pare our EActors-based implementation with vanilla versions of
JadderD2 (version 2.3.4) and ejabberd (version 16.01-2) servers. The
former is written in C and has a multi-process architecture, while
the latter is implemented in Erlang. For both services we used the
default configuration and deployment settings in the evaluation.

6.4.1 Performance of one-to-one communication. In the following,
we evaluate the scalability of an EActors-based XMPP service with
concurrent emulated clients (c.f., Section 5.1), where a thread is
spawned for each client. A client is based on the libstrophe library
to implement XMPP client behavior [3]. We first consider an XMPP
service with One-to-One (O2O) client communication, where, after
connecting to the service, a client sends a message to another client,
receives a response message back from that client, and repeats this
inter-client communication during 1 minute. Message payloads are
pseudo-random generated strings of maximum 150 bytes. In the
experiments, half of the clients is senders of messages, and the other

EActors: Fast and flexible trusted computing using SGX Middleware ’18, December 10–14, 2018, Rennes, France

half is receivers. A sender client randomly selects a receiver client to
which it will send messages. To evaluate scalability, we measure the
request throughput, i.e., number of pairs of sent/received messages
per second. Fig. 14 presents the evaluation results when varying the
number of concurrent clients. It compares the baseline JabberD2
(JBD2) messaging service, the baseline ejabberd (EJB), and various
configurations of EActors-based XMPP service depending on the
number of eactors used for deploying the service. For instance, EA/3
EActors-based XMPP is deployed with 3 eactors, i.e., an enclaved
XMPP eactor with own worker, an untrusted READER eactor and
an untrusted WRITER eactor with worker (c.f., Section 5). EA/3 uses
thus as many threads as the communication process of JBD2. JBD2
and EA messaging systems rapidly reach their steady state and
scale well when the number of clients increases, with a maximum
throughput for EActors EA/3 that is 81% higher than JBD2. EJB
messaging systems reaches its steady state at approximately 600
clients. For this number of clients, the corresponding throughput
for EActors EA/3 is 2.42× higher.

0 200 400 600 800 1,000

102

103

104

105

Number o f concurrent clients

T
h
ro
u
дh
pu

t
(#
re
q
/s
)
(l
oд

sc
al
e)

EJB JBD2 EA/3 EA/6 EA/48

Figure 14: Scalability with different #eactors

We also consider other deployments of the EActors-based XMPP
service such as EA/6 that involves a total of 6 eactors consisting
of two enclaved XMPP eactors, two untrusted READER eactors and
two untrusted WRITER eactors, and similarly EA/48 with a total of
48 eactors. Fig. 14 shows that deploying EActors-based XMPP with
more enclaves significantly improves scalability. Here, EA/48 out-
performs other systems with a factor of up to respectively 40 when
compared to EJB, 29 when compared to JBD2, 17 when compared
to EA/3, and 8 when compared to EA/6.

6.4.2 Performance of one-to-many communication. The following
section considers the O2M case. In this experiment, we define group
chats, and, for each group chat, one of the clients sends a new
message to the group chat when it receives its previous message.

With EActors, a group consists of an XMPP eactor as well as
its READER and WRITER eactors. A worker is associated to each
of these three eactors. As a first experiment, we observed that
the throughput does not change when we increase the number of
groups. This result is expected since each group works almost in
isolation. For this reason, we report in Fig. 15 the throughput of
the O2M experiment when we increase the number of clients of a
single group. We evaluate two configurations: in the EA/trusted

20 40 60 80 100
0

500

1,000

Group chat participants

T
h
ro
u
дh
pu

t
(#
re
q
/s
)

EJB JBD2 EA/trusted EA/untrusted

Figure 15: Group communication, trusted vs. untrusted

experiment, the XMPP eactor runs in an enclave, while in the
EA/untrusted experiment, the XMPP eactor runs in untrusted
memory. Since we run our XMPP server with a single thread, we can
also compare the performance of our XMPP server with the single-
threaded JabberD2 (i.e., baseline JBD2) when SSL is enabled and
when it uses the MU-Conference modules to handle chat groups.

We can observe that EA/untrusted and EA/trusted have ex-
actly the same performance, and that they slightly outperform the
baseline JabberD2 server. This result shows that, regardless of SGX,
the EActors actor model is competitive as compared to the multi
process model used by JabberD2. Moreover, while EA/untrusted
and JabberD2 provide the same security guarantee (if the server
is compromised, the server can read the messages), EA/trusted
allows to protect the messages in a compromised server. Moreover,
when we use a configuration with more enclaves and more groups,
our XMPP server also ensures that if an attacker is able to compro-
mise one of the enclaves, the other enclaves remain safe under the
assumption that there is no a common flaw that can be exploited.
Thus, EActors can achieve efficiency while ensuring privacy.

1 2 16
0

20

40

60

Number o f enclaves

T
h
ro
u
дh
pu

t
(1
03

re
q
/s
)

Figure 16: Impact of number of enclaves

6.4.3 Impact of number of enclaves. In the following, we evalu-
ate the impact of the number of enclaves on the performance of
the underlying application. We consider an EActors-based XMPP
service that consists of a total of 48 eactors, i.e., 16 XMPP eactors,
16 READER eactors and 16 WRITER eactors. In these experiments,
400 clients concurrently access the service in a One-to-One (O2O)
communication mode as described earlier. Fig. 16 presents the
client request throughput in the following deployment scenarios:
all 48 eactors are located inside the same enclave, 2 enclaves host

Middleware ’18, December 10–14, 2018, Rennes, France Sartakov et al.

0

20

40

60

Number o f eactors

T
h
ro
u
дh
pu

t
(1
03

re
q
/s
)

trusted
untrusted

Figure 17: Trusted mode vs. untrusted mode

each 24 eactors, or 16 enclaves are used each one hosting the three
XMPP, READER and WRITER eactors. The two latter scenarios have
similar performance, whereas the former scenario’s throughput
is 6.2% better. Indeed, in case of a single enclave the data shared
between eactors is directly stored and accessed inside the enclave
memory without encryption.

6.4.4 Overhead evaluation. In order to evaluate the cost of using
trusted environments, Fig. 17 compares the performance of EActors-
based XMPP when the underlying eactors are hosted in enclaves vs.
when they run in untrusted mode. As in previous experiments, we
consider an XMPP service deployed in a total of 3, 6 or 48 eactors (re-
spectively EA/3, EA/6 or EA/48), running in trusted or non-trusted
mode. Here, 400 concurrent clients access the service. Fig. 17 shows
very similar performance results for enclaved vs. non-enclaved
eactors, with no perceptible overhead.

7 RELATEDWORKS
Frameworks and programming languages that feature the actor
model have a long history [4, 5, 29, 30]. To our knowledge there
is no related work that proposed a framework that is tailored to-
wards the use of trusted computing. For example, the CAF frame-
work [13], which evolved from the libcppa [14] project, is an actor-
based programming framework written in C++. It offers a high-
performance, lightweight messaging system implemented using
atomic Compare-and-swap (CAS) operations and supports het-
erogenous actors, which can interact with devices such as GPUs.
The lowest communication layer of the EActors framework shares
some similarities with the queue implementation of CAF. However,
the CAF framework misses any support for trusted execution, as
well as central ideas of EActors like effective enclave-to-enclave
communications, flexible reconfiguration andmore. Java extensions,
like Kilim [50] and Akka [23], as well as languages like Erlang [5]
offer an actor-based execution model based on lightweight threads
and fast communication using queues. None of these frameworks
supports trusted execution and porting such heavyweight runtimes
like a JVM or the Erlang VM to SGX is a challenge in itself.

As previously presented, a couple of works already identified
shortcomings of the SGX SDK and aimed to address specific aspects:
for example HotCalls [52] offers hand-crafted spin-locks for SGX
to reduce the synchronisation overhead, and SCONE [6] as well as
Eleos [39] aim at avoiding costly enclave exits. However, none of
these works addresses multi-enclave settings. The same applies to
Glamdring [33], which enables automated partitioning of legacy
applications but also does not offer support for multiple enclaves.

More related to the presented framework is Panoply [49], which
offers lightweight enclave-based microns. However, their inter-
enclave communication support requires a custom mapping us-
ing a reference monitor and is as costly as using the SGX SDK.
Furthermore, Panoply misses configurability as offered by EActors.

There is a growing number of middleware-alike systems that
utilise SGX: VC3 enables map reduce [47], SecureStream provides
tailored support for stream processing [26], and SecureVertex en-
ables secure Cloud micro services [10]. None of these works offers
fine-grained and fast support for multi-enclave programming. In-
stead, these systems use standard communication mechanisms such
as the socket interface (i.e. VC3 and SecureVertex).

In line with our secure multi-party computation use case there
is a limited number of works that specifically focused on the combi-
nation of SMC and trusted computing. Iron [19] provides practical
functional encryption scheme, which involves several enclaves.
To achieved this intensive message exchange is required, initiated
and managed by different components of the Iron platform. Com-
munication between enclaves is performed using standard ECalls.
Accordingly Iron could profit from EActors’s fast inter-enclave
communication support.

Another SGX-based protocol for multi-party computation was
introduced by Bahman et al. [7]. This protocol has two phases: a
preparation phase and an online phase. During the preparation
phase, parties, represented by SGX enclaves, establish encrypted
communication channels. During the online phase they evaluate
built-in functions. Overall, their proposed SGX multi-party compu-
tation protocol and our SMC use case implemented in Section 5.2
share some similarities, however the work of Bahman et al. misses
support for fast inter-enclave communication and system support
as provided by EActors.

At a higher level, EActors is inspired by the concept of separation
of mechanisms and policies [24, 53] and supports the ideas of lateral
trustworthy apps [25].

8 CONCLUSION
The EActors1 frameworks enables multi-enclave programming and
interaction at low costs. This is achieved by an SGX-tailored im-
plementation of the actor model that prevents costly execution
mode transitions, offers uniform communication primitives, and
can be flexibly configured for different deployments. EActors offers
a lean programming interface that can be further extended but also
leads to a framework with a small trusted computing base of less
than 3.3K lines of code plus some additional libraries provided by
SGX SDK. Together this paves the way for novel privacy preserv-
ing multi-party computing schemes and strengthens the security
of privacy critical services such as the presented use cases. Our
evaluations show that previously considered costly multi-enclave
programming comes almost for free and that off-the-shelf instant
messaging services can be outperformed between 1.11× up to 40×.

ACKNOWLEDGEMENT
This project received funding from the German Research Foun-
dation (DFG) under grant no. KA 3171/9-1 and from the National
Agency for Research (ANR) under grant no. ANR-17-CE25-0017.
1Available at https://github.com/ibr-ds/EActors

https://github.com/ibr-ds/EActors

EActors: Fast and flexible trusted computing using SGX Middleware ’18, December 10–14, 2018, Rennes, France

REFERENCES
[1] 2017. 6th Gen Intel Core X-Series Processor Family Datasheet, Vol. 1.
[2] 2017. Signal taps up Intel’s SGX to (hopefully) stop contacts falling into hackers,

cops’ hands. https://www.theregister.co.uk/2017/09/27/signal_turns_to_intels_
sgx_to_lock_down_contacts_from_spying_eyes/

[3] 2018. "libstrophe - An XMPP library for C". http://strophe.im/libstrophe/
[4] Gul Agha, Ian A Mason, Scott Smith, and Carolyn Talcott. 1992. Towards a

theory of actor computation. In International Conference on Concurrency Theory.
Springer, 565–579.

[5] Joe Armstrong. 1996. Erlang – a Survey of the Language and its Industrial
Applications. In Proc. INAP, Vol. 96.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel O’Keeffe, Mark L
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[7] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-
Reza Sadeghi, Guillaume Scerri, and Bogdan Warinschi. 2017. Secure multiparty
computation from SGX. In International Conference on Financial Cryptography
and Data Security. Springer, 477–497.

[8] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 8.

[9] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger Kapitza.
2017. Rollback and Forking Detection for Trusted Execution Environments
using Lightweight Collective Memory. In Proceedings of the 47th International
Conference on Dependable Systems and Networks (DSN’17). 157–168.

[10] Stefan Brenner, Tobias Hundt, Giovanni Mazzeo, and Rüdiger Kapitza. 2017. Se-
cure Cloud Micro Services using Intel SGX. In Proceedings of the 17th International
IFIP Conference on Distributed Applications and Interoperable Systems. Springer.

[11] Stefan Brenner, Colin Wulf, Matthias Lorenz, Nico Weichbrodt, David Goltzsche,
Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper: Con-
fidential ZooKeeper using Intel SGX. In Proceedings of the 17th International
Middleware Conference. ACM.

[12] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution. In 26th USENIX Security Symposium (USENIX
Security 17).

[13] Dominik Charousset, Raphael Hiesgen, and Thomas C Schmidt. 2014. CAF –
the C++ Actor Framework for Scalable and Resource-efficient Applications. In
Proceedings of the 4th International Workshop on Programming based on Actors
Agents & Decentralized Control. 15–28.

[14] Dominik Charousset, Thomas C Schmidt, Raphael Hiesgen, and Matthias Wäh-
lisch. 2013. Native actors: a scalable software platform for distributed, heteroge-
neous environments. In Proceedings of the 2013 workshop on Programming based
on actors, agents, and decentralized control. 87–96.

[15] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference (USENIX ATC 17). 645–658.

[16] Nikos Chondros, Bingsheng Zhang, Thomas Zacharias, Panos Diamantopoulos,
Stathis Maneas, Christos Patsonakis, Alex Delis, Aggelos Kiayias, and Mema
Roussopoulos. 2013. A distributed, end-to-end verifiable, internet voting system.
In International Conference on Distributed Computing Systems (ICDCS’13).

[17] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y.
Zhu. 2002. Tools for Privacy Preserving Distributed Data Mining. SIGKDD Explor.
Newsl. 4, 2 (Dec. 2002), 28–34.

[18] Wenliang Du and Mikhail J Atallah. 2001. Secure multi-party computation
problems and their applications: a review and open problems. In Proceedings of
the 2001 workshop on New security paradigms. 13–22.

[19] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov. 2017.
Iron: functional encryption using Intel SGX. In Proceedings of the ACM Conference
on Computer and Communications Security (SIGSAC). 765–782.

[20] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford University.
[21] Rachid Guerraoui, Anne-Marie Kermarrec, Rhicheek Patra, Mahammad Valiyev,

and Jingjing Wang. 2017. I know nothing about you but here is what you might
like. In 47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 439–450.

[22] Saikat Guha, Mudit Jain, and Venkata N Padmanabhan. 2012. Koi: A location-
privacy platform for smartphone apps. In Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation. 14–14.

[23] Philipp Haller and Martin Odersky. 2009. Scala Actors: Unifying thread-based
and event-based programming. Theor. Comput. Sci. 410, 2-3 (2009), 202–220.

[24] Per Brinch Hansen. 2001. The evolution of operating systems. In Classic operating
systems. Springer, 1–34.

[25] Hermann Härtig, Michael Roitzsch, Carsten Weinhold, and Adam Lackorzyn-
ski. 2017. Lateral Thinking for Trustworthy Apps. In IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). 1890–1899.

[26] Aurélien Havet, Rafael Pires, Pascal Felber, Marcelo Pasin, Romain Rouvoy, and
Valerio Schiavoni. 2017. SecureStreams: A Reactive Middleware Framework for
Secure Data Stream Processing. In Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems. 124–133.

[27] Intel. 2017. Intel® Software Guard Extensions SDK for Linux* OS , Re-
vision 2.0. https://01.org/intel-software-guard-extensions/documentation/
intel-sgx-sdk-developer-reference.

[28] Intel. 2018. Intel® Software Guard Extensions SDK for Linux* OS , Revision
2.2. https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_
Reference_Linux_2.2_Open_Source.pdf.

[29] Dennis G. Kafura and Keung H Lee. 1989. ACT++: Building a Concurrent C++
with Actors. Technical Report. Blacksburg, VA, USA.

[30] Laxmikant V Kale and Sanjeev Krishnan. 1993. CHARM++: a portable concurrent
object oriented system based on C++. In ACM Sigplan Notices, Vol. 28. 91–108.

[31] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent Byunghoon Kang. 2017. Hacking
in darkness: Return-oriented programming against secure enclaves. In USENIX
Security. 523–539.

[32] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In 26th USENIX Security Symposium (USENIX Security 17).
557–574.

[33] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, Christof Fetzer, and Peter Pietzuch. 2017. Glamdring: Automatic Applica-
tion Partitioning for Intel SGX. In USENIX Annual Technical Conference (USENIX
ATC 17). 285–298.

[34] Yehuda Lindell and Benny Pinkas. 2008. Secure Multiparty Computation for
Privacy-Preserving Data Mining. IACR Cryptology ePrint Archive (2008), 197.

[35] Robert Love, So Here We Are, Along Came Linus, and Before We Begin. 2005.
Linux kernel development second edition. Novell Press.

[36] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. [n. d.]. ROTE: Rollback Protection
for Trusted Execution. In 26th USENIX Security Symposium (USENIX Security 17).
1289–1306.

[37] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. HASP@ ISCA 10 (2013).

[38] Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo Pasin, Rafael Pires,
and Valerio Schiavoni. 2017. X-search: revisiting private web search using intel
SGX. In Proceedings of the 18th International Middleware Conference. 198–208.

[39] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos:
ExitLess OS Services for SGX Enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys ’17). 238–253.

[40] Albin Petit, Thomas Cerqueus, Sonia Ben Mokhtar, Lionel Brunie, and Harald
Kosch. 2015. PEAS: Private, Efficient and Accurate Web Search. In Trustcom,
Vol. 1. 571–580.

[41] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof Fetzer. 2016. Secure
Content-Based Routing Using Intel Software Guard Extensions. In Proceedings of
the 17th International Middleware Conference (Middleware ’16). 10:1–10:10.

[42] Ravi Rajwar and James R Goodman. 2001. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture. 294–305.

[43] Alessandro Rubini and Jonathan Corbet. 2001. Linux device drivers. " O’Reilly
Media, Inc.".

[44] Paul Rösler, Christian Mainka, and Jörg Schwenk. 2017. More is Less: On the End-
to-End Security of Group Chats in Signal, WhatsApp, and Threema. Cryptology
ePrint Archive, Report 2017/713.

[45] Peter Saint-Andre. 2011. Extensible messaging and presence protocol (XMPP):
Core. https://xmpp.org/rfcs/rfc6120.html

[46] Vasily Sartakov, Nico Weichbrodt, Sebastian Krieter, Thomas Leich, and Rüdiger
Kapitza. 2018. STANlite–a database engine for secure data processing at rack-
scale level. In IEEE International Conference on Cloud Engineering (IC2E). 23–33.

[47] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich. 2015. VC3: Trustworthy Data Analytics in the Cloud Using SGX.
In 2015 IEEE Symposium on Security and Privacy. 38–54.

[48] Ming-Wei Shih, Sangho Lee, Taesoo Kim, andMarcus Peinado. 2017. T-SGX: Erad-
icating Controlled-Channel Attacks Against Enclave Programs. In Proceedings of
the 24th Annual Network and Distributed System Security Symposium (NDSS).

[49] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. PANOPLY:
Low-TCB Linux Applications With SGX Enclaves. In Proceedings of the 24th
Annual Network and Distributed System Security Symposium (NDSS).

[50] Sriram Srinivasan and Alan Mycroft. 2008. Kilim: Isolation-Typed Actors for
Java. In ECOOP, Vol. 8. Springer, 104–128.

[51] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-
Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves. In Proceedings of
the 21st European Symposium on Research in Computer Security (ESORICS’16).

https://www.theregister.co.uk/2017/09/27/signal_turns_to_intels_sgx_to_lock_down_contacts_from_spying_eyes/
https://www.theregister.co.uk/2017/09/27/signal_turns_to_intels_sgx_to_lock_down_contacts_from_spying_eyes/
http://strophe.im/libstrophe/
https://01.org/intel-software-guard-extensions/documentation/intel-sgx-sdk-developer-reference
https://01.org/intel-software-guard-extensions/documentation/intel-sgx-sdk-developer-reference
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://xmpp.org/rfcs/rfc6120.html

Middleware ’18, December 10–14, 2018, Rennes, France Sartakov et al.

[52] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA ’17). 81–93.

[53] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. 1974.
HYDRA: The Kernel of a Multiprocessor Operating System. Communications of
the ACM (CACM) 17, 6 (June 1974), 337–345.

[54] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In Security
and Privacy (SP), IEEE Symposium on. 640–656.

	Abstract
	1 Introduction
	2 Towards multi-enclave scenarios
	2.1 The case for multi-enclave applications
	2.2 Background on SGX
	2.3 Attacker model
	2.4 The actor model as starting point

	3 EActors overview
	3.1 EActors programming model
	3.2 EActors runtime
	3.3 Uniform communication primitives

	4 System components
	4.1 Persistent object store
	4.2 Networking

	5 EActors use cases
	5.1 XMPP instant messaging service
	5.2 Secure multi-party computation service

	6 Evaluation of EActors
	6.1 Evaluation system
	6.2 Inter-enclave communication
	6.3 Secure multi-party computation service
	6.4 Evaluation of messaging service use case

	7 Related works
	8 Conclusion
	References

