
Multi-site synchronous VM replication for persistent
systems with asymmetric read/write latencies

Vasily A. Sartakov
TU Braunschweig

Braunschweig, Germany
Email: sartakov@ibr.cs.tu-bs.de

Rüdiger Kapitza
TU Braunschweig

Braunschweig, Germany
Email: rrkapitz@ibr.cs.tu-bs.de

Abstract—
Novel non-volatile memory is considered as a future replace-

ment for conventional main memory. While besides persistence
non-volatile memory technologies promise higher storage density
and lower power demand, they also possess an asymmetry
between fast read and slow write access times. The latter can
be in the order of 2x to even 20x. While persistent main memory
per se asks for novel system software support, the asymmetry
between read and write access times needs to be addressed for
building efficient solutions.

This paper addresses virtual machine replication for high
availability when non-volatile memory is put in use. So far asyn-
chronous VM replication that stops a virtual machine, performs
a local copy of dirty pages, resumes the virtual machine, before
the data is transferred to a back-up site, is the state of the art.
In contrast, we propose a multi-site zero-copy synchronous VM
replication, which utilizes Remote Direct Memory Access and is
tolerant to different read/write latencies. We demonstrate that for
future hardware settings synchronous VM replication provides
a performance increase of up to 27% compared to current best
practices.

Index Terms—Persistent Systems; Replication; Virtualization;
RDMA; NV-RAM;

I. INTRODUCTION

In-memory computing builds a de-facto standard for low-
latency data center applications. To address growing workload
sizes, servers are equipped with more and more main memory.
While this trend presumably will continue, the attached rising
energy demand and scaling limitations of conventional DRAM
require a search for alternatives.

As a possible escape route novel non-volatile memory
technologies are considered, as they promise higher storage
density and less energy demand. In fact, first initiatives in
industry and research such as The Machine1 from HP and
Firebox [1], propose the use of universal byte-addressable
persistent memory, i.e. memory, which provides DRAM-like
performance and storage-level non-volatile capacity [2].

Systems based on non-volatile universal memory differ
from current architectures that utilize primary and secondary
storages in the following aspects: Firstly, main memory is
now persistent and recent works focus on efficiently utilizing

1http://www.labs.hpe.com/research/themachine

this property ([3], [4]). Secondly, systems based on non-
volatile memory technologies differ significantly from DRAM-
based system, since current persistent memory technology have
asymmetric read and write latencies of 2x up to even 20x ([5],
[6], [7], [8]). Thus, as for example demonstrated by this work,
established approaches for efficient system software need to be
revisited and revised when implementing software dedicated
for universal persistent systems.

As more and more internet-based services are considered as
critical, High-availability (HA) approaches such as continuous
replication of virtual machines are on the rise. With the adoption
of universal persistent memory, fault-tolerant virtual machine
replication will become even more important as all short- and
long-lived data will be stored in the same place. Also the risk
of data loss increases since recent works demonstrate ([9],
[5], [10]), that some Non-Volatile Random-Access Memory
(NV-RAM) technologies like Phase-Change RAM (PC-RAM)
have lower endurance (108 writings) compared to DRAM (1015

writings).
Asynchronous replication of virtual machines, as proposed

by REMUS [11], provides a HA service for virtualization
platforms. In detail, the replicated virtual machine is periodi-
cally stopped, a local copy of dirty pages is performed, and
afterwards the virtual machine is resumed before the copied
dirty pages are transferred to a back-up site. This way high-
performance replication is provided while still being able to
tolerate crashes.

The great success of asynchronous VM replication is based
on characteristics of memory-to-memory operations. Symmetric
and low read/write latencies allow fast copying of dirty pages
to a staging area and thus, enable to move the transfer
of state changes from the critical path. In the case of an
asymmetric read/write latencies, as typical for recent NV-RAM
technologies, where write operations take up to 20 times longer
than read operations [12], additional copy operations have a
strong negative impact on replication performance.

In this work, we propose a multi-site synchronous VM
replication technique optimized for rack-scale memory-centric
architectures with asymmetric read/write latencies. We use
modern interconnect technology like Remote Direct Memory
Access (RDMA) and utilize its low-level features to realize
zero-copy migration to multiple target hosts. As a result, for978-1-5090-5652-1/17/$31.00 c©2017 European Union

some candidate technologies of persistent memory [7], we
achieve a performance increase of up to 27%.

II. HIGH-AVAILABILITY TECHNIQUES FOR VIRTUAL
MACHINES

Virtual machine replication is a widely used approach to
achieve HA in virtual environments. It is transparent for the
guest system and does not require special hardware support.

The replication scheme involves two sides: the active side
performs actual execution while the passive side periodically
receives the state changes of the active side. Remus [11],
Kemari [13] and qemu-mc [14] are examples for this VM state
synchronization technique. These projects were developed for
different hypervisors (i.e. QEMU and XEN) but follow the
same general scheme of asynchronous VM replication.

The asynchronous VM replication consists of four steps2:
After several milliseconds the Virtual Machine Monitor (VMM)
stops execution of the primary VM, copies dirty pages and the
context of the VM to a local staging area. Next, it resumes
the VM and performs copying of the dirty page set to the
remote side in parallel with VM execution. On the remote
side the VMM applies the dirty pages and VM context to the
backup VM.

The execution of the active side, which takes place during the
process of data copying and applying, is called speculative [11].
The speculative execution is not protected and in case of a
fault during the delivery process the HA system loses the last
checkpoint. Meanwhile, the asynchronous scheme is significant
in decreasing performance degradation since degradation
depends only on the size of the dirty set and the local
copying time, but does not depend on the network performance.
Network performance determines the maximum frequency
of checkpoints, but not the performance of a virtualization
system. With increasing of replication frequency, the count
of dirty pages decreases, and, respectively, the copying and
delivery time decrease too. In sum, this approach demonstrates
reasonable performance degradation (31% for 10 replication
phases per second), while providing high-availability [11].

A. Persistent environment

Future rack-scale memory-centric architectures such as The
Machine from HP and Firebox from UC Berkeley rely on
a universal memory layer based on NV-RAM technologies
but also industrial consortiums, like SNIA3 work on the
development of computation architectures featuring a universal
memory layer. There are multiple possible technologies for
future memory-centric architectures, for example, Spin-Torque
Magnetoresistive RAM (ST-MRAM), PC-RAM and RRAM.
All of them have different characteristic regarding their read
and write latencies as reported by recent studies ([12], [15]).

As highlighted in Tab. I, the ratio between read and write
latencies reaches up to 20 times for 3D Xpoint technology, the

2For simplicity, replication of primary storage and I/O are omitted.
3Storage Networking Industry Association (SNIA), http://www.snia.org

TABLE I
READ/WRITE LATENCY OF RECENT NON-VOLATILE MEMORY

TECHNOLOGIES

Characteristic SDRAM ST-MRAM 3D Xpoint RRAM
Supplier Samsung Everspin Intel/Micron Crossbar

Write Latency 10ns 20 ns 1 µs 100 µs
Read Latency 10ns 10 ns 50 ns 100ns

Write/Read ratio 1 2 20 1000

latter being a variation of PC-RAM4. Another candidate tech-
nology – ST-MRAM developed by Everspin, also demonstrates
strong asymmetry in read/write operations [12]. Thus, write
operations become more costly compared to read operations,
and this should be taken into account for novel software designs.

In the case of NV-RAM-based rack-scale memory-centric
computing, replication approaches should be revisited to
prevent unnecessary intermediate writes. Indeed, the replication
techniques based on copying of dirty pages, i.e., asynchronous
VM replication as described above, will cause a significant
performance degradation. Solutions featuring a zero-copy
behavior, for example, synchronous VM replication as proposed
by work, in turn, can provide better performance.

B. Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a modern
communication technology, which allows data transfer from
the server to the client in a zero-copy manner. Classical
approaches based on a Network Interface Controller (NIC)
and TCP/IP come attached with reasonable overhead when
sending/receiving data. For example, to send data a user-space
application needs to pass the data to the TCP/IP stack, the
stack passes the data to the device and the device delivers the
data via the network. The main idea of RDMA is to offload
TCP/IP from the system to the RDMA enabled NIC (RNIC) –
as result, RDMA communication works in user-space without
the involvement of the kernel (Fig. 1).

RDMA-based transfer is handled by the following three
components: RDMA itself, DDP (Direct Data Placement) and
a transport protocol. Transport could be Infiniband (IB) or
ethernet (an ethernet with the support of RDMA is called
RDMA over Converged Ethernet - RoCE). DDP describes
mechanisms of data transfer. For example, a DDP header for a
read request should consist [16] of five tags: Data Sink Steering
Tag, Data Sink Tagged Offset, RDMA Read Message Size,
Data Source Steering Tag and Data Source Tagged Offset. The
idea of these tags is that each memory region used for RDMA
has a unique identifier (ID) within the network cluster, and
both communication partners have their own IDs associated
with local buffers. RDMA itself is an upper layer, which
"provides the semantics to enable Remote Direct Memory
Access between peers in a way consistent with the application
requirements" [17].

4http://www.eetimes.com/document.asp?doc_id=1328682

Fig. 1. Software stack for RDMA and
traditional network applications Fig. 2. Data transfer and RDMA queues Fig. 3. Scatter/gather data transfer via RDMA

On the programming level, RDMA support is provided by a
dynamically loaded library verbs5, which enables mechanisms
to register memory regions, an API to perform data transfer
and more. The basic concept of RDMA programming is as
follows: firstly, there is a preparation phase performed on both
sides of a future connection. Memory regions for future transfer
shall be allocated. Secondly, there is a process to establish
a connection. Thereby, a connection is identified as a Queue
Pair (QP). This term is conceptually close to an IP socket.
In general, RDMA software deals with three queues: Sending
Queue, Receiving Queue and Completion Queue (Fig. 2). The
first two are the Queue Pair and are always created together.
The Completion Queue is used to notify when a task in one of
the work queues is completed. Creation of a QP is accompanied
by the registration of memory regions. The memory regions are
used for data transfer and should be registered with verbs, i.e.
an RNIC should be notified that the region of virtual memory
is used by an application. Then, RNIC can establish a transfer
channel from hardware to the user-space program. Also, on
this stage access permissions to memory regions are defined.
Next, data transfer operations can be performed.

RDMA provides asynchronous communication only. Com-
munication is performed by assigning Work Requests (WR)
to internal queues, which can be checked for completion.
Furthermore, asynchronous events are generated by the RNIC,
which can be affiliated, or unaffiliated 6. Affiliated events are
used to notify of data delivery, while unaffiliated events are
used for the detection of connection faults.

There are three general types of communication: read/write,
send/receive and atomic operations. The difference between
the first two types is as follows: the read/write operation
requires registration of memory on both sides while the
send/receive operation requires registration with the QP only on
the local side. Moreover, send/receive operations generate Work
Completion (WC) events on the remote side, while read/write
operations generate WC events only if used in the "Immediate"
(IMM) form of read/write. In other words, there are two
approaches how to transfer data: two allocations on both sides

5Open source project supported by Open Fabrics Enterprise Distribution
(OFED), http://openfabrics.org

6RDMA Aware Networks Programming User Manual, Mellanox, rev 1.7

or one allocation on the local side accompanied by automatic
allocation on the remote side. Also, there are two methods
of notification for sending: without notification (possible
only with write/read) and with notification (send/receive and
read/write with IMM). The third type of communication -
atomic operations – is presented in two forms: Compare and
Swap operation and Fetch and Add operation. We do not use
this kind of operations in our work.

Another important feature of RDMA and also important for
our approach is hardware support for scatter and gather (SG)
data. RDMA can receive a list of memory regions from a user
program, deliver all of them to the remote side and place them
successively on a remote buffer without additional copying
(Fig. 3). The SG data is described by a structure, which includes
data offset in the virtual memory of the process, the size of the
region, and the local key (identifier) of the registered buffer.
The number of elements in SG list is defined by the hardware.

III. PRE-CONSIDERATIONS REGARDING SYNCHRONOUS
VM REPLICATION

Synchronous VM replication as presented in this work
consists of four steps: after several milliseconds, the VMM
stops the execution of the VM, identifies dirty pages, sends
the pages and the context of the VM to a remote side, applies
them to the backup VM, and then resumes execution. Instead
of copying dirty pages to a staging area, we transfer dirty pages
directly to the remote side.

A. Comparison of synchronous versus asynchronous replication
Conceptually, both synchronous and asynchronous VM

replication only need one write step, as part of the critical
path, when the VM is paused. In the case of asynchronous
VM replication, we are doing it once and local, while in the
synchronous case we are doing it once, but remote. There is also
a second write operation which does not affect the performance
of replication, but instead affects frequency of replication:
asynchronous VM replication performs the transfer by copying
from the local to the remote side, whereas the synchronous VM
replication, as will be described in the following, requires an
update of the local VM copy inside each replica. However, the
latter can be delayed and performed when needed, i.e. when
the primary node has crashed.

Fig. 4. Throughput of DRAM with RoCE Fig. 5. Throughput of ST-MRAM with RoCE Fig. 6. Throughput of ST-MRAM with IB

B. Local copy versus distributed remote transfer

We assume that both sides utilize the same memory tech-
nology and that remote writing therefore cannot be faster than
local writing. Modern network interconnects, such as RDMA,
however, allow a parallel transfer of memory content via
multiple network devices. Using multiple network connections
as well as the earlier outlined features of RDMA, we can speed
up synchronous VM replication.

As an initial analysis, we performed preliminary measure-
ments and estimations regarding the possible speedup of syn-
chronous VM replication when utilizing modern interconnect
technology. For these measurements, we used the following
infrastructure: two identical servers with 2.5GHz Intel Xeon
CPU E5-2430, two ConnectX-3 Pro 10Gb PCIe dual port
RoCE adapters, Ubuntu 14.04.3 LTS with Linux kernel version
3.13.0-66, and Mellanox OpenFabrics Enterprise Distribution
version 3.1-1.03 as the RDMA support library. On top of
this infrastructure, we compared the performance of RDMA
remote transfer with local memory-to-memory copy (memcpy)
operations for different sizes of data.

Our experiments demonstrate that both RDMA data transfer
and memcpy have linear scalability, which can be described by
the function T = A∗S where T is the time of the transfer/write
operation, S is the data size, and A is the throughput coefficient.
The throughput coefficient in our case is 0.65 milliseconds per
megabyte for RDMA transfer and 0.27 ms/MB for memcpy.
As transfer size of data matters to RDMA, its overall migration
time is the sum of both coefficients, while that for memcpy
is only affected by the second coefficient.

Fig. 4 shows the performance of RDMA transfer com-
pared to memcpy. The x-axis shows different configuration
schemes, where x1 is an original scheme without parallelization,
memcpy is measured in hardware as well performance of x1,
x2 and x4 are the analytical estimations about performance
in case 2 and 4 RNICs are used, respectively. It is evident
that synchronous VM replication on top of DRAM and two
10GB RoCE (one device with two uplinks) cannot outperform
asynchronous VM replication. Four uplinks (two devices with
two uplinks) can, but the performance improvement is not
significant (14.8%).

Fig. 5 shows the same experiment, but now we assume

the use of ST-MRAM memory where write latency is two
times higher than read latency. One can see that with slow
memory, the impact of data transfer becomes more important,
and while one device with two uplinks could provide near the
same performance as asynchronous VM replication, it is still
slower (8.5%). Two devices with four uplinks, however, will
achieve a significant performance increase.

Fig. 6 shows our estimations about the use of ST-MRAM
with 40GB IB. We extrapolated IB performance from 10GB
RoCE by simple multiplication. The use of IB significantly
decreases transfer costs, and with increased write latency,
replication behavior changes extremely: parallelization of data
transfer provides up to 35% performance improvement just for
two uplinks, and more than 60% performance improvement for
four uplinks. Furthermore, 100GB switches are on the market
by now, thus even higher speedups are possible.7

However, these considerations are based on a simplified
model of VM replication and there are some restrictions. For
example, the real copying of dirty memory by replication mech-
anisms could be faster than the measured memcpy test because
some dirty pages of the VM might be cached. Also, the division
of RDMA write latency into two independent operations like
transfer and write operation complicates measurements, and
we therefore used approximated values which can be different
for real systems. Nevertheless, it can be seen that with modern
interconnects we can improve the performance of replication.

IV. MULTI-SITE SYNCHRONOUS VM REPLICATION

A key element in synchronous VM replication is the data
transfer from the active side to the passive one. To decrease the
downtime of the replicated VM, we need to reduce the transfer
time of the state changes to the remote side. We achieved
this by utilizing multiple RDMA-capable network devices for
parallel data transfer and identifying dirty regions as transfer
units and for effective load balancing. To implement this, we
use the following features of RDMA:

• We use multiple network devices on the server side to
perform parallel data transfer. This is possible since RNICs
do not block or hold registered memory regions.

7https://www.mellanox.com/related-docs/products/Ethernet_Switch_Brochure.pdf

Fig. 7. Synchronous VM replication: Main Server with running VM and two replication servers

• We directly access the virtual memory of a VM without
any intermediated copying, since RDMA enables direct
remote transfer.

• We group modified data and transfer theses groups via
SG lists.

A. Design
Fig. 7 shows the architecture of the synchronous VM

replication approach. As one can see, there is the Main Server
(MS) with a VM, which requires protection. The server is
connected to a maximum of four Replication Servers (RSs)
via RDMA-capable network cards. Futhermore, there is an
ordinary TCP/IP network for sending additional information.
RSs are used to store parts of the VM memory image. All RSs
receive data from the MS, but one of them also receives the
additional context (device states and CPU context) of the VM.
We call this server the Leader. The Leader, like the MS, has a
virtual environment with a hypervisor to host a backup VM.
In case of a crash of the MS, the Leader can recover the VM
using microcheckpoints. Replicas, in contrast to the Leader,
only store microcheckpoints and thus do not need a hypervisor.

Our fault assumptions are as follows: our primary goal
is to tolerate crashes of the MS. Should it fail, the state of
the VM can be recovered from the RSs. We do not assume
that the MS and parts of the backup system fail at the
same time. Nevertheless, plain replicas can fail, except the
Leader. However, the current architecture can be modified to
be completely symmetric by broadcasting the VM state to all
replicas, in which case the Leader can also fail.

The MS has a VMM with an extension, which performs
continuous synchronous VM replication, thereby the following
steps are performed:

1) Every n ms, the VMM stops the execution of the
replicated VM

2) The VMM identifies dirty pages and prepares the list of
non-dirty regions between them

3) The VMM performs grouping of dirty regions by merging
the closest dirty pages

4) The VMM assigns parts of dirty regions to different
RDMA devices in accordance with a user-defined policy
and performs transactions in a synchronous manner. Also,
at the same time, the VMM transfers the VM state via the
TCP/IP connection and applies this state to the remote
backup VM hosted by the Leader.

5) The VMM resumes execution of the VM for n ms. At
the same time, each replica replaces the local set of dirty
pages by the received new data.

B. Memory management
A VM consists of the VM state (the state of devices including

CPUs) and the memory image. To recover the VM, we need
to have a full set of the memory pages together composing
the memory image and the VM context. As shown above, we
use the Leader replica to store the backup VM and apply the
backup VM state to the replicated VM. Typically the size of the
context usually does not exceed hundreds of kilobytes while
the size of transferred dirty pages easily exceeds 50 MB.

Obviously, we cannot send the entire VM each round.
Instead, we track dirty pages, i.e. we only send changes that
occurred after the previous round. For live migration [18] and
asynchronous VM replication, there is usually only one remote
server and all new dirty pages just are used to update outdated
pages at the remote side. In our case, we use several remote
servers to perform parallel writing, and the same dirty pages

Fig. 8. Grouping of dirty pages Fig. 9. Assigning of dirty regions to multiple RNICs Fig. 10. Parallel delivery

from different rounds can be delivered to different remote
servers because of the replication policy and our proposed
balancing algorithm. Moreover, we deal with dirty regions
(a contiguous set of dirty pages) and send more than one
region at the same time, since RDMA provides SG support. We
accompany each dirty region with a map, which describes where
this memory region should be stored and from which round
(called epoch number) this data came from. As a result, each
replica has a copy of the replicated VM’s memory represented
as a set of pages from different rounds and different regions.

Fig. 8 provides a detailed example of the memory delivery
mechanism. On the server side, we use the VM memory region
as a source of data and one small memory region to map the
transfer. On the remote side, we also allocate two buffers: one
buffer for the memory transfer and one for the memory map.
Moreover, on the remote side there are two additional buffers
not involved in data transfer, where the replica stores pages
and page epoch numbers. Regions for data and regions for the
map are registered with a QP and both regions are used for
RDMA transfer.

Imagine that the VMM assigned three dirty regions (gray
boxes on the diagram) to be delivered via a single RNIC.
Dirty regions are not contiguous and distributed across the
VM memory, but after delivery, all regions will be contiguous
since we send all three regions at the same time. Thus, we
need to restore the original page position on the remote side in
some way. For that we send the structure m_struct, which
describes each region: offset of the region, the size of the
region, and the epoch number. Firstly, we deliver this map via
RDMA_WRITE without IMM notification. Then we prepare
SG list for RDMA in accordance with the map and queue
RDMA_WRITE with IMM. We need IMM to notify the remote
side that the data transfer is complete, after which the remote
side can update the local store with fresh data. This is done by
a thread, thus without blocking. The server can continue the
execution immediately when the transaction is completed. On
the replica side the delivered data is safe, and the replica must
perform an update of the local store before the next epoch
comes.

An update of the local store is performed as follows: step-
by-step, we take pages from the data buffer and copy them to
the local store at the proper offset. We also update the epoch
numbers of the corresponding pages in the epoch buffer. In
case of a failure, the Leader reads all epoch and data buffers
from the replicas in a similar way and then, step-by-step, copies
pages with larger epoch numbers to the backup VM.

C. Load balancing, assigning, and policy

The algorithm of assigning, i.e. how parts of dirty regions
are assigned to each RNIC, fulfills several important functions.
Firstly, assigning balances the load: within the same period
of time, each network card should deliver almost the same
amount of data. If one network card sends more than others, the
downtime increases since we do a blocking transfer and cannot
resume execution until all RNICs complete transfer. Secondly,
assigning enables fault-tolerance policies. In the moment of
assigning, the VMM decides whether all replicas will receive
the same data or different chunks. Since each replica receives
sub-regions of dirty regions, overlapping of such regions defines
the redundancy level and performance: when all replicas receive
the same data, the downtime and redundancy are the highest.
Similarily, when all replicas receive unique dirty regions, the
redundancy as well as the downtime are the lowest.

For the "mirroring" ("fault-tolerant") mode, there is no
special algorithm of assigning because each RNIC sends the
same data: we prepare identical records for each dirty region
in the map structures.

For the "performance" ("fast") mode, when there is no
duplication of pages, we developed a balancing algorithm. We
analyzed the structure of dirty regions and found several issues.
The first issue is the granularity of the data transfer: we cannot
transfer less than one memory page. Secondly, we observed
many small dirty regions, especially with an idle VM. Another
common issue is that dirty regions are not evenly divisible
by the number of RNICs. Moreover, after several experiments
we found that the assigning algorithm shall consider previous
assignments to provide for the same load of RNICs not only
with one dirty region, but within a period of time. As an
example, imagine that we have three RNICs and the size of
the first dirty region is 17 pages. 17 is not evenly divisible by
3, thus we need to split 17 pages as evenly as possible. For
example, our algorithm splits 17 pages into [5, 6, 6]. This split
is the closest to the mean value and all RNICs will send near
the same number of pages, therefore there is no better division.
But if we have the same task (dirty region) several times in a
row, for example 5 times, the overall load processed by RNICs
will be as follows: [25, 30, 30]. The difference in the load
of RNICs is 16%. The situation becomes more dramatic as
time goes on due to the accumulation of this mismatching. Our
experiments demonstrate situations when the difference in load
exceeds 40% for different RNICs.

Our heuristic to load balancing consists of the following

two components. Firstly, we split each dirty region to even and
equal subregions. Secondly, we perform rotation of subregion
assigning. The Algorithm 1 describes the process of assigning
in pseudocode. Assume that we need to transfer a set of
regions dirty regions via REPLICAS RNICs. Each region
has offset and size stored in array regions[i] where i is the
current region. For each replica, we identify the assignment
based on the number of rotations b and a uniform distribution
of load defined by an even division of unassigned region size.

Algorithm 1 Integer partition
1: b← 0
2: for i← 0, regions do
3: csize← regions[i].size/4096
4: offs← 0
5: for r ← 0, REPLICAS do
6: h← (r + b) mod REPLICAS
7: step← (csize)/(REPLICAS − r)
8: maps[i][h].offset← regions[i].offset+ offs
9: maps[i][h].size← step ∗ 4096

10: csize← csize− step ∗ 4096
11: offs← offs+ step ∗ 4096
12: maps[h].stamp← stamp
13: end for
14: b← (b+ 1) mod REPLICAS
15: end for

Let’s take our previous example and send five dirty regions
consisting of 17 dirty pages each via three RNICs. For the
first region, the balancer b is 0. For the first replica, csize is
17 pages, the identifier r is 0, step is 17/(3− 0) = 5 pages
started from offs = 0. For the second replica, the csize is
17 − 5 = 12, the identifier r is 1, step is 12/(3 − 1) = 6
pages started from offs = 5. For the third replica, the csize
is 12 − 6 = 6, the identifier r is 2, step is 6/(3 − 2) = 6
pages started from offs = 11. For the second dirty region,
the balancer b is 1, thus all assignments perform a shift to the
right. The table II shows assignments for all five regions.

TABLE II
BALANCED ASSIGNMENTS

Region R0 R1 R2
0 5 6 6
1 6 5 6
2 6 6 5
3 5 6 6
4 6 5 6∑

28 28 29

As one can see, all RNICs have near the mean value within
each dirty region and within the entire set of dirty regions. Our
experiments with real load after 1000 transactions demonstrate
the imbalance in data transfer via four RNICs to be less than
2%.

Next, we will describe how we prepare dirty regions for the
actual remote transfer.

D. Grouping

Grouping is an operation on dirty pages for the purpose
of reducing their scatter. There are two reasons to do that:
the limited size of the SG list provided by RNICs and the
characteristics of dirty memory structure.

To analyze the structure of dirty memory, we compiled the
Linux kernel with kcbench inside a VM with 512MB of virtual
memory and 2 CPU cores. Fig. 11 and Fig. 12 provide statistics
about the distribution of dirty and non-dirty (unmodified) pages
at some random moment during kernel compilation 100 ms
after the last checkpoint has been made.

As one can see, each round the VM modifies a huge number
of 1-2 page sized regions separated by very small 1-2 page sized
non-dirty regions. Transfer of these one-page sized regions
is inefficient (we will provide a comparison of grouped and
non-grouped transfers in Section V). Furthermore, our RDMA
cards can only send 32 SG regions within one transaction.
Thus, we decided to use grouping of dirty pages.

The algorithm for grouping consists of two phases. Since
our goal is to merge dirty pages into solid dirty regions, we
should prepare a set of non-dirty regions and then remove the
smallest one. To achieve this, we first prepare a list of non-dirty
regions, and then, in the second phase recursively remove the
smallest regions until the total amount of regions does not
reach the limit. The limit in our case is 32 regions, i.e. the
number of SG regions supported by hardware. All operations
are performed on pointers, i.e. there is no copying of pages.

After grouping the dirty pages into 32 dirty regions, the
VMM is ready to apply the policy and perform assigning of
subregions of dirty regions to different RNICs.

V. EVALUATION

Our evaluation was focused on the validation of the initial es-
timations provided in Section III. We implemented synchronous
VM replication on top of qemu-kvm and used the compilation
of the Linux as a benchmark in different configurations.

A. Implementation

We carried out synchronous VM replication on QEMU
version 2.3.50. We took the general design of continuous
replication from qemu-mc [14] and reworked it significantly in
accordance with our approach. The mechanisms that we took
without modifications are the following: dirty page tracking,
VM state extractor and serializer as well as VM state delivery
via TCP/IP. Grouping, assigning, and RDMA-based delivering
of dirty regions were implemented from scratch and integrated
into the qemu-mc source tree. The remote side, i.e. the
replication servers were also implemented from scratch. Also,
in our benchmarks we always used the qemu-mc source tree
as a baseline for performance and functionality since qemu-mc
was developed in a similar way to REMUS, i.e. qemu-mc
provides asynchronous VM replication.

For our test bed, we used five identical servers with a 2.5GHz
Intel Xeon CPU E5-2430. Four of these five servers were used
as RSs and one as the MS. The MS was equipped with two
ConnectX-3 Pro 10Gb PCIe dual port RoCE adapters. Also,

Fig. 11. Number of Non-modified regions with different size Fig. 12. Number of dirty regions with different size

each RS was equipped with the same adapter. All RSs were
attached to the switch via SFP+ connectors and the MS was
attached to the switch via four connectors. This connection
scheme enables us to create a set of virtual networks that
simulates a one-to-one connection of the MS and the RSs. In
addition to RNICs, we also used a 10Gb Ethernet network for
sending VM states from the MS to the Leader.

In terms of software, we used Ubuntu 14.04.3 LTS with
Linux kernel version 3.13.0-66 on all servers as a host operating
system, and Fedora 19 with Linux kernel version 4.1.13
as a guest VM. RDMA support was provided by Mellanox
OpenFabrics Enterprise Distribution version 3.1-1.03.

B. Benchmarks
As an application workload, we used kcbench on a VM

of 512MB with two virtual CPU cores. The MS and the
Leader used the VM image provided by an independent
network storage and shared via NFS, so there was no storage
replication. We compared our implementation of synchronous
VM replication with asynchronous VM replication provided by
qemu-mc and native execution without continuous replication.
In our experiments we used a delay of 100 ms between
checkpoints, two modes of work – native execution and
emulation of read/write asymmetry, two different policies
("fast" and "fault-tolerant") and different count of RNICs (2 and
4). For each test we performed three runs of kernel compilation
and averaged the results.

1) Native execution and emulation of asymmetry: The
overall kernel compilation time was measured for two modes.
The first mode is native execution of the VM and replication
service on existing commodity hardware. In this mode, there
is no asymmetry in read/write latency. The second mode is an
emulation of ST-MRAM behavior. Read latency of DRAM and
ST-MRAM from Everspin are nearly the same [12], while write
latency of NV-RAM is twice higher: we decided to emulate
the behavior of the persistent system by slowing down write
operations.

In the case of qemu-mc, we doubled write operations in
the replication subsystem of the VMM, while in the case
of synchronous VM replication we added timeouts in RSs
proportional to the size of microcheckpoints. This emulation
is very rough since we cannot decrease8 memory latency

8Our hardware does not allow to change DRAM latency.

on servers. Instead, we slow down some memory-related
operations that, in fact, are only part of the asymmetry impact.
For example, increasing write latency leads to a decrease in
VM performance, which in turn in turn decreases the count of
dirty pages produced within one period. This should decrease
the downtime, as it depends on the size of transferred data.
We assume that the increase of write latency by a factor of
two leads to a proportional reduction in the number of dirty
pages, and following this assumption we adjusted the timeout
coefficients identified in Section III.

We also measured VM downtimes. Although the overall
performance is affected by replication performance, it is not
the main factor. For example, compilation time also depends
on network bandwidth of the network-attached storage used
by the VM. The kernel compilation time provides the integral
characteristic of the virtualization system, while downtime
provides precise measurements of replication implementation
impact. Previously, in Section III, we made preliminary
estimates of synchronous VM replication use, and now we
can compare the results with the original model.

2) Measurements: Table III shows the kernel compilation
times and VM downtimes for the different configurations,
divided into four columns. The first column includes absolute
values of the indicator time (compilation time or downtime) in
seconds or microseconds. The second, third and fourth columns
display the same values, but in relation to the baseline.

As one can see, qemu compilation, i.e. execution of kcbench
without replication, requires 338 seconds. Asynchronous VM
replication provided by qemu-mc increases the compilation time
by 57 percentage points (pp). Synchronous VM replication in
"fast" scheme, in turn, increases compilation time by 43 pp in
four uplinks mode, and by 116 pp in two uplinks mode. The
"fault-tolerant" scheme, when all RNICs send the same data,
increases compilation time by up to 258 pp.

Fig. 13 and Fig. 14 visualize kernel compilation time and
average VM downtime, respectively, for two configurations:
native execution and ST-MRAM emulation. We can draw
several conclusions from the data.

Firstly, these results confirm some preliminary estimations
provided in Section III: In the case of DRAM, four uplinks
demonstrate decreasing compilation time (9%), as well as
decreasing average downtime (measured 60%, estimated 17%).
Also, for ST-MRAM we see that four uplinks decrease

TABLE III
KERNEL COMPILATION TIMES AND VM DOWNTIMES FOR THE DIFFERENT CONFIGURATIONS

Kernel compilation time VM Downtime
Time, s base=qemu, % base=qemu-mc, % base=fast(4), % avg. downtime, ms base=qemu, % base=qemu-mc, % base=fast(4), %

D
R

A
M

qemu 338 100 64 70
qemu-mc 531 157 100 110 38 100 161 54

fast(2) 731 216 138 151 37 99 159 54
fast(4) 483 143 91 100 23 62 100 34
ft(4) 1211 358 228 251 69 184 295 100

M
R

A
M

qemu-mc 782 100 84 127 60 100 114 181
fast(2) 927 119 100 151 52 88 100 158
fast(4) 614 79 66 100 33 55 63 100
ft(4) 2009 257 217 327 146 244 278 440

Fig. 13. Average value of kernel compilation time Fig. 14. Average VM downtime

downtime ultimately as well as decreasing compilation time.
Secondly, we see that there is a mismatch between modeled

and measured data in emulation of ST-MRAM and DRAM.
For example, "fast(2)" mode in our model should provide
near the same downtime value as "qemu-mc" in the case of
ST-MRAM use and a 1.5 downtime increase in the case of
DRAM use. But we do not see such behavior: In DRAM,
"fast(2)" demonstrates near the same downtime value as "qemu-
mc", and with ST-MRAM emulation, "fast(2)" is better than
"qemu-mc" by 13 pp. Thus, measured average downtime values
are better than modeled. Meanwhile, compilation time as well
as overall performance are closer to modeled behavior: "fast(2)"
takes more time than "qemu-mc". This proves that overall
performance does not only depend on downtime.

3) Recovery time: The recovery process is initiated and
performed by the Leader. The Leader tracks the RDMA
connection and detects a on_disconnect event from the QP.
Also, recovery is initiated if there is no incoming data from
the MS within the user-defined timeout. The Leader has the
actual state of the VM since the MS sends its actual state each
replication. Since the Leader does not have the actual memory
image, the recovery time is the time needed for reading memory
from replicas to the Leader.

Recovery has a constant time depending on number of
replicas and the size of the VM. The structure of local sets, i.e.
the number of dirty pages inside each replica is irrelevant since
we read the whole memory region. In our experiments, the
average recovery time for the 512MB VM with four replicas
did not exceed 2.0s (the average value is 1.94s).

4) Measurement of overhead: Fig. 11 and Fig. 12 show the
distribution of dirty pages in the VM. As mentioned before,
during the process of kernel compilation, there are many small
dirty regions interleaved with non-dirty regions. Our mechanism
of grouping removes some of the non-dirty regions, and as a
result, there is an overhead, since RNICs should also transfer
non-modified pages. For each transaction, we compute the
overhead as a ratio of transferred page count to dirty page
count.

For the kernel compilation, the overhead values differ, de-
pending on the compilation phase and the replication intervals.
For example, for a delay of 500 ms, the overhead varies from
0% to 2304% with the average value 513%. For a 100 ms delay,
the overhead range is more extensive: from 186% to 14163%
with the average value 813%. At first sight, these overhead
values seem immense, but most of them are the result of small
transfers (tens of kilobytes).

After performing these experiments, we can draw several
conclusions. Firstly, high-frequency microcheckpoints have
fewer, but more scattered dirty pages, whereas low-frequency
microcheckpoints have more, but less scattered dirty pages.
Secondly, any mechanisms for increasing the dirty pages
generation rate, for example, by increasing the number of
compilation threads, also makes dirty pages less scattered.

In other words, the replication performance significantly
depends on the content of the guest VM, while the location of
dirty pages depends on the program and allocation mechanism
provided by the operating system. General-purpose operating
systems like GNU/Linux provide an universal allocator and

do not take migration problems into account. We think that
specialized projects like OSv [19], developed especially for
the virtual environment, could be a good platform for the
development of a migration-aware memory allocator.

5) Sequential sending versus grouping: With 813%, the
average overhead resulting from grouping looks huge. We
decided to compare grouped delivery with sequential delivery.
Sequential delivery is a RDMA write of all dirty regions
without grouping. Sequential delivery cannot be performed
as a single transaction as we made it with the grouped one, but
we used all 32 SG for each delivery to increase performance.
The results were surprising: kcbench demonstrates longer
compilation time as compared to delivery with grouping, with a
difference of 8-12 seconds. The reason for this is the structure of
dirty memory: as we showed previously, each microcheckpoint
consists of a large number of small dirty regions shuffled with
small non-dirty regions, and sometimes delivery of one large
region is much faster than sequential delivery of many small
regions.

VI. RELATED WORKS

This work revisits virtual machine replication in the light of
novel hardware trends. Remus [11], Kemari [13], qemu-mc [14],
as well as commercial products like VMware [20] focus on
an asynchronous VM replication of changes. There are several
extensions to this general concept, like an implementation
of copy-on-write techniques [21], [22] to reduce downtime.
In contrast to these approaches, we propose to transfer dirty
pages synchronously in a zero-copy manner and parallelize the
transfer for performance improvements.

Huang et al. utilize RDMA to speed-up the migration of
VMs [23]. They propose their own mechanism for memory
registration and provide an approach for non-contiguous data
transfer. In contrast, we always copy memory directly host-to-
host aided by a grouping of pages instead of remapping them.
Furthermore, our solution supports different HA policies.

VII. CONCLUSION

Non-volatile memory technologies are characterized by
strong asymmetry of read and write access times. In this
work, we demonstrate how a common HA practice in a rack-
scale environments – asynchronous VM replication – needs
to be revised when facing asymmetric read/write access times.
We proposed and implemented multi-site synchronous VM
replication, which performs contiguous migration of VMs in a
zero-copy manner. The proposed synchronous VM replication
utilizes different features of RDMA, like parallel reading of
virtual memory by multiple RNICs, offloading network commu-
nication from the OS and the smart use of hardware supported
SG lists. Effective load balancing by grouping and parallelly
transferring dirty pages increases the replication performance
compared to common asynchronous VM replication by 10%
in a commodity DRAM-based system, and up to 27% for
emulated prospective NV-RAM-based systems.

REFERENCES

[1] K. Asanovic and D. Patterson, “Firebox: A hardware building block for
2020 warehouse-scale computers,” in USENIX FAST, vol. 13, 2014.

[2] M. Wuttig, “Phase-change materials: towards a universal memory?”
Nature materials, vol. 4, no. 4, pp. 265–266, 2005.

[3] D. Narayanan and O. Hodson, “Whole-system persistence,” in ACM
SIGARCH Computer Architecture News, vol. 40, 2012.

[4] V. A. Sartakov and R. Kapitza, “NV-Hypervisor: Hypervisor-based
Persistence for Virtual Machines,” in Workshop on Dependability
of Clouds, Data Centers and Virtual Machine Technology
(DCDV 2014), 2014. [Online]. Available: https://www.ibr.cs.tu-
bs.de/users/sartakov/papers/sartakov14dcdv.pdf

[5] R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next storage
system technology,” IBM Journal of Research and Development, vol. 52,
no. 4/5, p. 439, 2008.

[6] J. C. Mogul, E. Argollo, M. A. Shah, and P. Faraboschi, “Operating
system support for nvm+ dram hybrid main memory.” in HotOS, 2009.

[7] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-
class memory,” IBM Journal of Research and Development, vol. 52, no.
4.5, pp. 449–464, 2008.

[8] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A. Lastras,
“Preset: improving performance of phase change memories by exploiting
asymmetry in write times,” ACM SIGARCH Computer Architecture News,
vol. 40, no. 3, pp. 380–391, 2012.

[9] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ecp, not ecc,
for hard failures in resistive memories,” in ACM SIGARCH Computer
Architecture News, vol. 38, no. 3. ACM, 2010, pp. 141–152.

[10] R. Azevedo, J. D. Davis, K. Strauss, P. Gopalan, M. Manasse, and
S. Yekhanin, “Zombie memory: Extending memory lifetime by reviving
dead blocks,” in ACM SIGARCH Computer Architecture News, vol. 41,
no. 3. ACM, 2013, pp. 452–463.

[11] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual machine
replication,” in Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, 2008, pp. 161–174.

[12] Everspin, “Mram into mainstream,” 2016.
[13] Y. Tamura, “Kemari: Virtual machine synchronization for fault tolerance

using domt,” Xen Summit, vol. 2008, 2008.
[14] M. R. Hines. (2013) Rdma migration and rdma fault tolerance for qemu.

[Online]. Available: http://www.linux-kvm.org/images/0/09/Kvm-forum-
2013-rdma.pdf

[15] 288pin Registered DIMM based on 8Gb B-die, Samsung, 2015, rev. 1.3.
[16] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia, “A remote

direct memory access protocol specification,” RFC 5040, October, Tech.
Rep., 2007.

[17] S. Bailey and T. Talpey, “The architecture of direct data placement
(ddp) and remote direct memory access (rdma) on internet protocols,”
Architecture, 2005.

[18] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.

[19] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov, “Osv—optimizing the operating system for virtual ma-
chines,” in 2014 usenix annual technical conference (usenix atc 14),
2014, pp. 61–72.

[20] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a practical
system for fault-tolerant virtual machines,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 4, pp. 30–39, 2010.

[21] M. H. Sun and D. M. Blough, “Fast, lightweight virtual machine
checkpointing,” 2010.

[22] B. Gerofi and Y. Ishikawa, “Rdma based replication of multiprocessor
virtual machines over high-performance interconnects,” in 2011 IEEE
International Conference on Cluster Computing. IEEE, 2011, pp. 35–44.

[23] W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High performance virtual
machine migration with rdma over modern interconnects,” in 2007 IEEE
International Conference on Cluster Computing. IEEE, 2007, pp. 11–20.

