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Abstract—Power outages and subsequent recovery are major
causes of service downtimes. This issue is amplified by the
ongoing trend of steadily growing in-memory state of Internet-
based services which increases the risk of data loss and extends
recovery time. Protective measures against power outages, such
as uninterruptible power supply are expensive, maintenance-
intensive and often fragile. With the advent of non-volatile
random-access memory (NVRAM) provided by commodity
servers, there is a scalable, less costly and robust alternative
to recover from power outages and other failures. However, as
of today, off-the-shelf software is not ready for benefiting from
NVRAM.

We present NV-Hypervisor a lightweight hypervisor ex-
tension that transparently provides persistence for virtual
machines. NV-Hypervisor paves the way for utilizing NVRAM
in virtualized environments (i.e., infrastructure-as-a-service
clouds) and protects stateful services such as key-value stores
and databases from data loss and time-consuming recovery.
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I. INTRODUCTION

In today’s rapidly progressing information society, we rely
on the availability of Internet-based services of all kinds.
Increasingly often services are delivered on top of virtualized
environments such as provided by infrastructure-as-a-service
clouds. To cope with the demand for providing services
that are available 24/7, service implementations as well as
hosting infrastructure should be resilient to faults. One cause
of service disruptions is power outages that can be addressed
by fault tolerance features of service implementations (i.e.,
a crash-tolerant design) and additional infrastructure, such
as uninterruptible power supply. In the first case, typically, a
time-consuming recovery operation is required once power
resumes and there is still a risk of data loss. In the second
case, additional infrastructure is required which is expensive,
maintenance-intensive and nevertheless fragile [1].

With the advent of non-volatile random-access memory
(NVRAM) provided by commodity servers, in-memory data
can be retained without an external source of power. It not
only enables to tolerate power outages without data loss but
also provides additional benefits such as preserving data in
case of crashes in general. Thus, it offers the opportunity to
implement measures for persistence and fault-tolerance in

main memory. The latter simplifies service implementations
and provides potential for performance improvements, e.g.
write ahead logging to disk can be skipped [2].

Over the recent years multiple technical variants of how
to implement NVRAM have been proposed. For example,
byte-addressable memory, based on phase-change random-
access memory [3] or spin-transfer torque random-access
memory [4], has a read/write latency similar to commodity
DRAM but promises beside persistence as well as higher
capacity. While these technologies are already in a stable state,
initial solutions that are already available on the market utilize
commodity memory technology [5]. For example, in form
of Non-Volatile Dual In-line Memory Modules (NVDIMMs)
which are DRAM memory modules that are backed by a
flash memory of the same size and a capacitor. In case of a
voltage drop the module uses the capacitor energy to mirror
DRAM state to the flash memory. At recovery time, the state
stored in flash memory is written back to volatile memory.

The availability of persistent main memory needs to be
reflected throughout the whole software stack. So far a
number of different approaches have been proposed: at
the user-space level as a new memory allocator [6], at the
kernel level [7], where persistence becomes a new feature of
processes [8], and system-wide [9]. All of these approaches
require software modifications to utilize the support of
NVRAM, thus legacy systems cannot profit right away from
the introduction of NVRAM.

In this paper, we propose hypervisor-based persistence as a
means to enable NVRAM-usage for legacy virtual machines.
Thereby, neither system nor application software of a virtual
machine which has to be adapted as NVRAM-support is
transparently provided by the virtualization layer. We have
implemented hypervisor-based persistence as part of NV-
Hypervisor, which builds a lightweight extension to the
QEMU 1 virtualization platform. For evaluating our approach,
we have used a market available capacitor-backed NVDIMM
solution [5] and measured the time to recover a database after
a power outage. Results are promising, while a server without
NVRAM support recovers slightly faster, our NV-Hypervisor-
based implementation enables services to continue request

1QEMU - www.qemu.org
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Table I
COMPARISON OF NV-RAM INTEGRATION ABSTRACTIONS

Type of Persistence Memory Connection NV-RAM Abstraction Modification
Language/library-based Hybrid, Parallel Variables and objects Kernel, libc, programs

Process-based Hybrid, Parallel Whole programs Kernel
System-wide NV-RAM All programs and kernel Kernel

Hypervisor-based NV-RAM All programs and kernel No modification for VMs

processing at full speed, immediately after recovery, without
any data loss.

In the remainder of this paper, we first provide an overview
of related approaches. Next, Section III and Section IV
describe the design and implementation of NV-Hypervisor,
respectively. In Section V we present initial evaluation results
and in Section VI we discuss about future improvements.
Finally, Section VII concludes the paper.

II. USES OF NON-VOLATILE MEMORY

As NVRAM support builds on hardware that is integrated
by software, we give a brief introduction to NVRAM. Next,
we focus on related approaches by detailing how to utilize
NVRAM to provide persistence at certain abstraction levels.

A. Basics of non-volatile memory
Data that are stored in NVRAM persist without an external

source of power. Thus, it is preserved in case of a power
outage or a system crash that causes a reboot.

As of today, NVRAM is implemented by multiple compet-
ing technologies. In particular spin-transfer torque random-
access memory and phase-change random-access memory as
well as capacitor-based solutions combined with traditional
memory technology [5] are gaining ground. As each of
them having individual strengths and weaknesses, it is
unclear which technology will gain wide-spread acceptance.
Due to its read/write performance and because it is byte
addressable, it can be integrated as main memory or as an
extension/replacement for classical storage. In this paper, we
focus on how NVRAM can be utilized as main memory.
Fortunately most existing proposals about how to integrate
NVRAM support in system and application software are
fairly independent from the actual hardware implementation
and demand only for support of ordered, atomic writes and
persistence.

Besides the technical realization of NVRAM, its hardware
integration is an important aspect. Some researchers envision
future systems as a hybrid architecture, where NVRAM
and DRAM share the same system bus and the responsible
memory controller maps the different types of memory
to distinct address ranges [10]. Alternatively, a system
could purely rely on NVRAM and omit volatile memory
altogether [9].

In our work and in the midterm, we consider a hy-
brid architecture as more realistic. Despite recent progress,
NVRAM comes as attached with additional costs that hinder

an immediate and complete supersession of conventional
volatile memory.

B. Software-based integration
The software support of NVRAM determines at which

abstraction level main memory persistence is provided.
Language- and library-based persistence: Persistent

memory can be offered to user-space applications as a new
type of memory provided by a special allocator that manages
the available persistent memory. In this way, programs only
benefit from non-volatile memory, if they are explicitly
programmed against a specific API offered by approaches
implementing language- or library-based persistence. Such
an approach is beneficial for systems where NVRAM and
DRAM co-exist, e.g. due to limited availability of non-volatile
memory.

NV-Heaps [7] and Mnemosyne [6] are examples for
NVRAM abstractions at the application level. While the
former provides a set of primitives to manage persistent
objects offered by so-called NV-Heaps, the latter introduces
beside other things a special keyword to C in order to make
variables persistent.

Such a language- or library-based persistence requires
modification to the kernel, the system libraries (i.e, the libc-
environment) and the applications themselves.

Process-based persistence: More coarse-grained is the
idea of providing the abstraction of process-based NVRAM
support as proposed by NV-process [8]. At creation time
of a process, it is either mapped to volatile or non-volatile
memory (i.e. as a NV-process). In case of a power fail-
ure, the NV-process instances persist in NVRAM and can
continue running from where they were left off as soon as
power returns and the operating system reboots. NV-process
uses independent virtual and physical memory organization
mechanisms implemented by the operating system, which
guarantees the same mapping between physical and virtual
addresses of the process after reboots.

Legacy and proprietary user-space software can take
advantage of process-based persistence, but it requires
modifications to the kernel.

System-wide persistence: Alternatively, an entire system
can run solely based on non-volatile memory. Whole-system
persistence [9] involves all parts of the system being executed
directly in non-volatile memory. Volatile data in CPU is
protected against loss by use of a flush-on-fail mechanism
which works at the time of power failure and saves volatile
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Figure 1. System overview

data such as registers and caches stored in the CPU to
NVRAM.

System-wide persistence transparently supports legacy and
proprietary user-space software, but it requires modifications
to the kernel.

Hypervisor-based persistence: In this paper, we propose
hypervisor-based persistence. It introduces NVRAM at the
level of virtual machines. On creation of a virtual machine
it is decided to be volatile or non-volatile. In the latter case
it can be recovered from a power outage or a system crash.

Hypervisor-based persistence requires integration of non-
volatile memory at the virtualization layer, but otherwise it
is transparent to virtual machines.

Comparison: Table I summarizes the discussed related
approaches. While language- and process-based persistence
explicitly introduces a hybrid system, where volatile and non-
volatile state co-exist, whole-system and hypervisor-based
persistence only relies on non-volatile memory. In the latter
case this is of course restricted to virtual machines. Finally,
hypervisor-based persistence is fully transparent to virtual
machines, as NVRAM is integrated at the virtualization
layer. Therefore, it is well-suited for legacy systems and
can be easily integrated in virtualized environments, such as
infrastructure-as-a-service clouds.

III. NV-HYPERVISOR

In order to provide hypervisor-based persistence for virtual
machines, we developed NV-Hypervisor as a lightweight
layer that extends a commodity hypervisor by integration of
non-volatile memory. In the following, we detail our system
assumptions and the architecture of NV-Hypervisor as well
as basic operations like handling a power outage and the
subsequent recovery procedure.

A. Assumptions and hardware support
We assume a commodity server system that is equipped

with DRAM and NVRAM, both connected to a shared system
bus. Such a hybrid system architecture is in line with market
available system designs. Furthermore, in our system model
all CPU state such as registers and caches are volatile and
will be lost in case of a power outage.

To preserve recent execution results that only reside in
the volatile CPU state, as well as to implement essential
housekeeping functionalities regarding the management of
non-volatile memory, we assume the availability of a
power outage detector (POD). This detector measures the
current voltage of the external power supply and generates
an interrupt if power fails (see Heiser et al. [11] for a
possible design). Thereby, we assume that the residual energy
contained in capacitors of the power supply is enough to
save relevant volatile CPU state to NVRAM after detecting
a power outage. In fact, recent experiments indicate that
these capacitors provide residual energy for generating
stable voltage between 40 to 60 ms after detecting a power
outage [11], which suffices our demands (see Section V).

B. System architecture
NV-Hypervisor builds a lightweight extension to an exist-

ing virtualization platform. Our architecture assumes a host
operating system that manages the hardware and a hypervisor
providing support for executing virtual machines.

Figure 1 outlines a system overview aligned with our
QEMU-based implementation. The host operating system is
extended by a POD-driver. This driver handles interrupts
indicating an imminent power outage, detected by the
POD. The NVRAM-driver provides support for non-volatile
memory and is responsible for adding physical NVRAM
addresses to the memory map (À).

Beside these kernel-level extensions, a special memory
allocator for managing the NVRAM is provided as a library
( ). The hypervisor uses this library to allocate VMs in
NVRAM (Ã). Furthermore, the hypervisor is equipped with
a power outage handler that is triggered by the POD-driver
in case of power drop. It is responsible for saving volatile
management state of persistent virtual machines, e.g. CPU
state, to NVRAM. Finally, internal management functions
and the user interface of the hypervisor are extended to
enable the management of persistent virtual machines.

C. Creation of a persistent virtual machine
Creation and startup of a persistent virtual machine is very

similar to an ordinary volatile virtual machine but requires
two modifications:

• If the user instructs the hypervisor to create a persistent
virtual machine, our memory allocator has to assign
space in NVRAM.

• Information about the assigned memory and other long-
lived state needs to be made persistent, e.g. by using a
configuration file, to enable a recovery.

D. Handling of a Power Fault
Imminent power outage is handled by the following four

consecutive steps:
¿ The POD fires a non-maskable interrupt, once a drop

of the input voltage is detected.



¡ The interrupt is caught by the POD-driver, which
notifies the NV-Hypervisor about the upcoming power
outage.

¬ The NV-Hypervisor saves volatile state of virtual
devices and virtual CPU states of persistent VMs to
NVRAM.

√ The POD-driver regains control and stops any memory
operations, freezes CPUs and flushes the caches.

After this procedure all persistent VMs and their environ-
ment are saved and can be recovered once the system is
restarted. Finally, it has to be noted that step number three
can be omitted if all management state of persistent VMs is
directly stored in NVRAM.

E. Recovering
In our current design we do not make further assumption

than that VMs and their management state are stored in
NVRAM. Thus, the host operating system performs an
ordinary boot process like a system without support for
non-volatile memory. Once the host operating system and
the NV-Hypervisor are up and running, persistent VMs have
to be recovered. This is achieved by retrieving information
about persistent VMs that were running when the power
outage occurred. Taking this information into account, per-
sistent VMs are recovered by reassigning their memory and
integrating virtual device information. Finally, the virtual
CPU state of the recovered VMs is restored and the VMs
are marked as ready for execution.

IV. IMPLEMENTATION

Our NV-Hypervisor prototype extends the QEMU virtual-
ization platform and integrates NVDIMMs [5], a NVRAM-
solution provided by Viking Technology. The NVDIMMs are
implemented by DRAM memory modules that are backed
by a flash memory of the same size and a capacitor. In case
of a power drop, the module uses the capacitor energy to
mirror the DRAM state to the flash memory and vice versa
at reboot time.

A. Integration of NVDIMMs.
In line with the proposed architecture, we have imple-

mented an allocator for managing NVRAM. It consists of
two parts: a kernel module that adds NVRAM into the
system memory map and provides operations for reading and
writing configuration registers of NVDIMMs; and a user-
space library (libnvram.so) that provides functions (i.e.
nv_alloc(), nv_free()), nv_init()) for allocating
and freeing regions in NVRAM.

B. NV-Hypervisor core services.
The detection of a power outage is implemented by

a POD handler that comes attached with the NVDIMMs.
Communication between the POD-handler and our QEMU
extension is implemented as a blocking ioctl-syscall. We

added a thread to our QEMU extension that issues the
ioctl-syscall and blocks inside the POD-driver until a
power outage is detected. For managing persistent VMs, we
have implemented two additional QEMU Monitor commands:
dump-devices and nv-restore. The former saves the
environment of the VM into storage, the latter performs the
recovery of persistent VMs by merging the VM image in
NVRAM with virtual devices that are restored from storage.
Two additional flags were added to QEMU: nv-restore
and -nvm. The first one tells QEMU that do_nv_restore
function should be performed after start automatically. The
second flag obliges QEMU to use NVRAM for allocation
of VM.

V. EVALUATION

As evaluation platform we used a NVDIMM equipped
server (2 Xeon CPUs and 8 GB RAM, with 4GBs of it
being non-volatile memory) provided by Viking [5], running
Linux (kernel version 3.4.12) as a host operating system.
As an implementation basis for NV-Hypervisor we utilized
QEMU (version 1.4.2). Our initial evaluations focused on the
timing behavior of NV-Hypervisor during a power outage and
a comparison between NV-Hypervisor and a vanilla Linux
server when recovering a memory-heavy VM.

A. Handling of a power fault
As detailed in Section IV our current implementation is

based on the assumption that the system has enough residual
energy to continue execution for 30-50ms after detecting a
power outage [11], [9]. To ensure that we are under the limit,
we instantiated a large VM with eight virtual cores and a
default set of devices including graphic and network support.
Next, we measured the time for processing the non-maskable
power-outage-interrupt provided by the POD and saved all
volatile state that belongs to the persistent VM. The size of
volatile state was 80 KB. Saving took only 8 ms and ensures
that a limited set of persistent VMs can be preserved in case
of a power outage.

However, this limitation can be overcome by allocating
memory for virtual devices of VMs in non-volatile memory
but requires additional changes to QEMU. Moreover, the
use of hardware virtualization techniques like VT-x can
reduce volatile state in the hypervisor. According to Intel’s
specification [12], the NMI driver performs a VM exit event
if an interrupt arises when the CPU is occupied by a VM.
The event stops the VM execution and places the VM state in
NVRAM automatically. In this case it is no longer necessary
to send a message from the NMI handler to the Hypervisor.
These additional modifications of the current NV-Hypervisor
implementation remove the limitation on the count of VMs
that can be saved during the power outage.

Regarding the implementation of the POD, we evaluated
the Viking-provided detector which utilizes the Power Good
signal generated by the power supply unit. However, this



Table II
BOOT PROCESS COMPARISON

Boot phase Commodity system (sec) NV-Hypervisor (sec)
DB warm up 566 n/a
DB recovery 54 n/a

GuestOS boot 31 n/a
QEMU start 0.2 8

Host boot 108 108
BIOS 15 15

NVDIMMs init n/a 109
Server boot 36 36P

810.2 276
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Figure 2. Process of a database recovery: Commodity system versus NV-Hypervisor

solution provides a smaller advance warning time than
documented by related approaches [11], [9]. In fact, it
provides only enough time to quiescent the memory bus for
securing all ongoing operations regarding the NVDIMMs, but
is too small for saving the volatile state of multiple persistent
VMs. Therefore, in the remainder of our evaluation, we
assume the availability of a POD similar to the one proposed
by Heiser et. al [11].

B. Recovery of a database server

To evaluate hypervisor-based persistence, we were inter-
ested in the recovery behavior of a virtual machine hosting
a memory-heavy service.

We created a virtual machine containing a typical Web-
based application, composed of an Apache web server
instance as front end and a MySQL database as back end.
As workload we selected sysbench oltp test suite [13].

Next, we compared the recovery behavior of an unmodified
vanilla Linux system running plain QEMU with our NV-

Hypervisor prototype.
Table II details the different phases during the boot process.

The actual boot process of the host operating system is quite
similar. In fact, the NV-Hypervisor-based system is even
slower as the NVDIMMs have to be initialized and checked.
As we used an early evaluation platform, this boot step might
get faster once NVDIMMs reach the final product stage. After
QEMU/NV-Hypervisor is running, the situation changes as
for the commodity system: the VM and its services have
to be started while in case of NV-Hypervisor this is not
necessary. Still, up to this point, the NV-Hypervisor-based
solution is about 13% slower.

However, the picture changes once the actual runtime
behavior of both implementation is taken into account. A
relational database typically has a long warm-up phase until
queries can be answered at full speed. Accordingly, we
measured the time until both settings were fully operational.
This was performed using the sysbench utility which creates
a table with 1000000 lines and measures request response



time for a random query applied to this table. While for the
NV-Hypervisor-based solution, there is virtually no warm-up
time, and it took 566 seconds for the commodity system.

Figure 2 details the warm-up process. First, we see normal
operations for both system. After normal operation we induce
a power outage and start a recovery at time zero. While
the commodity solution continues operation after 244.2
seconds the NV-Hypervisor-based requires 31.8 seconds
more. Furthermore, we see that initially the queries of the
commodity system are about a factor of 5 slower than NV-
Hypervisor-based instance.

Our evaluation shows that NV-Hypervisor has a constant
time for any VM recovery, which heavily depends on the
hardware support of NVRAM. When taking into account the
actual service response time, the commodity system demands
for a factor of 2.9 longer until the recovery is fully finished.

VI. FUTURE WORK

Both types of virtualization techniques, hardware-based
as well as binary translation, use virtual memory for VM
allocation. Our current implementation instead directly allo-
cates NVRAM for VMs, i.e. we use a one-to-one mapping
thereby omitting the use of virtual memory. Unused virtual
pages of common VMs can be stored in a swap file to free
physical space for other VMs. Since NVRAM is attached to
the memory controller like ordinary DRAM, our approach
could also utilize virtual pages, and hence, some fragments of
VMs could be placed in a swap file if physical memory is not
enough. However, swapped out pages could be buffered in a
storage cache, and this volatile cache is lost in case of power
fault. Recovering of swapped out pages of persistent VMs is
not the only obstacle when utilizing virtual memory. Virtual
to physical memory mappings are placed in the memory
management unit (MMU). The MMU state is also volatile
and needs to be preserved in case of a power failure. As
identified in the context of mobile devices, mixed volatile/non-
volatile memory settings might even have some more pitfalls
[14]. In summary, virtual memory support for persistent
memory, hardware virtualization support, interaction of
volatile hardware and non-volatile software - all of those are
issues for future research.

VII. CONCLUSION

In this paper, we introduced hypervisor-based persistence
as a means to integrate NVRAM to provide persistent virtual
machines. Our NV-Hypervisor builds a lightweight realization
of this abstraction and initial evaluation results based on the
recovery of memory-heavy services are promising. For the
future, we envision NV-Hypervisor to support the use of
virtual memory and extend persistence to the host operating
system thereby shortening the overall recovery time of
persistent VMs. With the widespread availability of NVRAM
in commodity servers, hypervisor-based persistence provides

the basis to immediately utilize it for legacy VMs, especially
in the context of infrastructure-as-a-service clouds.
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