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Abstract—With the wide-spread use of blockchain technology,
Byzantine fault-tolerant (BFT) protocols are explored as a means
to achieve consensus on which transactions should be processed
next. BFT protocols are not a one-size-fits-all solution: they
should be chosen according to the blockchain’s use case, which
can range from supply chain management to decentralised stor-
age, requiring specialisation e. g. regarding throughput, latency,
or level of decentralisation. Previously, consensus protocols were
usually hardcoded into the blockchain infrastructure and could
not be exchanged, therefore inhibiting flexible use of an otherwise
generic blockchain infrastructure. Hyperledger Fabric claims
to provide modular consensus and support for crash-fault and
Byzantine fault tolerant protocols. However, integrating a BFT
protocol has shown that Fabric’s architecture is currently not
well-suited for this fault model as it requires substantial changes
and thereby breaks Fabric’s modularity. This also has to be
repeated for each integrated BFT protocol.

In this paper, we present BLOXY, a blockchain-aware trusted
proxy running on the replica that encapsulates all BFT client
functionality. BLOXY enables transparent access to generic BFT
frameworks and preserves Fabric’s modularity even for the
Byzantine fault model. It runs inside a trusted execution en-
vironment based on Intel’s Software Guard Extensions. BLOXY
offers blockchain-specific communication mechanisms as well as
short-term block storage to handle crashes or disconnects to
ensure that all nodes receive block updates. We implemented two
BLOXY-based ordering services based on PBFT and the hybrid
BFT protocol Hybster. Our evaluation shows that our approach
increases the throughput of the ordering component by up to
71 % compared to directly integrated BFT protocols.

Index Terms—Byzantine fault tolerance, Blockchain, Hyper-
ledger Fabric

I. INTRODUCTION

Distributed ledger technology (DLT) is based on the concept
of a blockchain: the blocks, linked together by including the
hash of the predecessor, contain ordered transactions, thereby
securing the blockchain against manipulation. Two common
use cases for blockchain technologies are cryptocurrencies,
such as Bitcoin [[1]] working with a permissionless blockchain,
and supply chain management (SCM) [2], [3l], [4], the manage-
ment of material, information, and services for product manu-
facturing. In a permissionless blockchain, the number of users
is usually not known in advance and there is no regulation
of nodes entering or leaving the network. For SCM, however,
this regulation is necessary as it allows business partners to
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document transaction flows. Here, permissioned blockchains
should be employed, i. e. blockchains where access is restricted
and the participants are known and identifiable. Different use
cases have different requirements e. g. regarding throughput or
scalability, leading to use case dependent demands for the con-
sensus protocol that determines how transactions are included
in the next block. Allowing blockchain operators to choose
the consensus protocol most fitting for their use case would
be highly beneficial for the adoption of blockchain platforms
in industry as there is no “one-size-fits-all” solution for BFT
consensus [3]. Given a certain blockchain platform, however,
the consensus protocols so far cannot be adapted according
to the individual requirements, i.e. the consensus mechanism
is usually hardcoded and cannot easily be exchanged [6], [7],
181, (91, [10].

Platforms that allow operators the choice between consensus
protocols during setup are more versatile with regard to their
use cases. The permissioned blockchain platform Hyperledger
Fabric [11] is the only platform where the consensus module,
called ordering service, is claimed to be “pluggable”. This
means that different protocols can be chosen or integrated
without large effort by implementing a simple interface. Next
to a centralised Solo ordering service for testing purposes and
one based on the crash-fault tolerant (CFT) protocol Apache
Kafka [12]], recent work presented an ordering service support-
ing the Byzantine fault model based on BFT-SMART [13].
However, there is a fundamental challenge when transitioning
from crash-fault tolerance to the Byzantine fault model in
Fabric: BFT protocols require certain client functionality, such
as majority voting on the results, which would have to be
performed on all nodes. As this requires changes to these
nodes since parts of the ordering service are now performed
elsewhere, the modularity and “pluggability” of the ordering
service is therefore impossible to maintain. Additionally, this
is necessary for every integrated BFT protocol, i.e. repetitive
implementation of identical functionality has to be integrated
into Fabric. All BFT replicas have to send their reply, i.e.
the created block, to all nodes in Fabric’s network instead of
just the requesting client as typical in BFT, thus immensely
increasing network load. This shows that the integration of
BFT protocols into Fabric is not as trivial as the claim of
pluggability suggests, and for these reasons, the BFT-SMART
implementation had to make certain compromises to support a
Byzantine fault model in Fabric, e. g. running the BFT client



on the peer nodes. We aim for a completely modular — and
therefore truly pluggable — way to provide CFT and BFT
consensus in Fabric via a generic consensus proxy.

In our paper, we present BLOXY: a component to allow
modular deployment of BFT-based ordering services in Fabric.
It overcomes the challenges that BFT protocols such as BFT-
SMART face: (i) We offer full modularity by transparently
encapsulating all client functionality inside the BLOXY. (ii)
We rely on a trusted subsystem that can only fail by crash-
ing, thereby relaxing the Byzantine fault model to a hybrid
one [14], [130, [L6], [L7], [18], [19], [20], thus allowing us to
have trusted client functionality on BFT replicas. BLOXY is
running inside a trusted execution environment (TEE) based
on Intel’s Software Guard Extensions (SGX). (iii) Instead of
adapting the communication of BFT frameworks, the BLOXY
handles efficient and fault-tolerant block dissemination. Addi-
tionally, to ensure the completeness of the blockchain and to
offer Byzantine fault tolerance of Fabric’s orderers (see §[[I-B)),
we present a short-term block storage for efficient retrieval of
missing blocks.

We integrated two BFT-based ordering services for Fabric,
one based on PBFT [21] and one on the hybrid BFT protocol
Hybster [14], using the BLOXY for support of the Byzantine
fault model, easy integration, and maintained modularity. With
these ordering services, all of Fabric’s components can behave
arbitrarily within the limit of the Byzantine fault model. Our
evaluation shows that the lower communication complexity of
BLOXY increases the throughput of the ordering by up to 71 %
compared to natively integrated BFT protocols.

Our paper is structured as follows: outlines the problem
statement, the BLOXY and its implementation are presented
in and evaluation results are discussed in

gives an overview over related work, and §VII| concludes.

II. BACKGROUND AND PROBLEM STATEMENT

Next, we will give an overview of today’s BFT protocols
for blockchains (§ [II-A) as well as an introduction to Fabric
and the supported consensus protocols (§ [[I-B).

A. BFT-Ordering Services for Blockchains

Blockchains are increasingly employed in a growing number
of use cases, such as improving transparency in SCM [2],
notary or registration services [22]], and resilient distributed
storage services [23]]. However, these use cases have different
requirements, leading to use case dependent demands for the
consensus protocol, e.g. regarding performance or scalability
requirements, trust relations between participants, or whether
a trusted third party or trusted administration can be assumed.
If malicious behaviour can be excluded and nodes can only
fail by crashing, then a crash-fault tolerant protocol for the
ordering service suffices. Otherwise the need for Byzantine
fault tolerance arises. A consortium of a small number of
organisations using a permissioned blockchain for their SCM
might have one consensus node for each organisation running
in the cloud, possibly in the same data centre, requiring a high-
throughput consensus protocol. In a larger supply chain where
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Fig. 1: BFT protocols are optimized for different metrics,
ensuring that there is no “one-size-fits-all” solution. Higher
is better; higher synchrony equals asynchrony.

the partners are positioned all over the world, the consensus
protocol should be able to deal with higher latency and enable
geo-replication. Several BFT protocols for blockchains have
been presented, targeting these challenges. Fig.[T] shows how
different BFT protocols developed for blockchain deployment
are optimised for different requirements. Some protocols such
as FastBFT [24] are optimised for low-latency communica-
tion, whereas others such as OmnilLedger [25] aim for high
throughput communication. Algorand [26] targets blockchain
networks with a large number of participants and is therefore
highly scalable. Regarding network conditions, BFT protocols
typically assume partial synchrony. HoneyBadgerBFT [27] di-
verts from that and is also working on asynchronous networks.
A more comprehensive study of BFT protocols optimised for
blockchains can be found in [28]. Fabric is currently the
only blockchain platform providing the versatility of multiple
ordering services, each targeting different use cases. Providing
operators the freedom to choose the most fitting protocol
would greatly improve blockchain adoption in industry set-
tings. However, Fabric’s architecture for pluggable consensus
is not sufficient for the requirements of a Byzantine fault
model. The question how BFT protocols can be integrated
into Fabric generically so that the advantages of specialised
BFT protocols can be exploited according to the specific
requirements, is still open. To better understand this problem,
we now present the architecture of Fabric with focus on the
ordering service in more depth.

B. Hyperledger Fabric

Hyperledger Fabric [11] is a permissioned blockchain
framework. Compared to others, the main features of Fabric
are a modular architecture that allows e.g. using different
consensus protocols or identity management services, and
a new execute-order-validate paradigm [29]. Traditionally,
blockchains follow the order-execute paradigm: transactions
are broadcast to all nodes and at some point included in
a block, and executed as soon as the block is received.
Fabric differs significantly from this model, as transactions are
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executed first by a subset of nodes (peers) before being totally
ordered by another set of nodes (ordering service). After being
ordered, transactions are then broadcast to all nodes and the
state change that was computed in the execution phase is val-
idated and applied. This paradigm enables non-deterministic
smart contracts, improves performance, and allows Fabric to
be independent from cryptocurrencies [11]. State in Fabric
is a key-value store which can be modified by invoking
Fabric’s smart contracts, which are called chaincodes, and a
Fabric network can contain multiple independent blockchains
called channels. There are three groups of nodes in Fabric.
Clients submit transactions for execution and broadcast them
for ordering. Peers maintain the blockchain, i.e. they validate
incoming transactions and apply the state changes. Both peers
and clients are considered potentially Byzantine in Fabric. A
subset of the peers is responsible for executing the chaincode
transactions; these are called endorsing peers. The ordering
service consists of Ordering Service Nodes (OSNs), also called
orderers, and is responsible for establishing a total order of the
requests. Orderers either run the consensus protocol directly
or forward transactions to a cluster of dedicated consensus
nodes. The ordering service generally does not maintain the
blockchain. To reduce the network load of orderers, peers can
exchange blocks via gossip communication.

1) Transaction Flow in Hyperledger Fabric: Fabric’s trans-
action flow, shown in Fig.[2] consists of the three phases
execution, ordering, and validation. Chaincodes are invoked
by sending a signed transaction proposal to the endorsing
peers, the number of which is specified by the chaincode’s
endorsement policy. Endorsers then simulate the execution of
the transaction against their local state (1), i.e. no persistent
state changes are performed. After this, the endorser returns an
endorsement to the client. The client then collects and appends
the endorsements @ and transmits the transaction to the
ordering service, thereby starting the ordering phase @ The
ordering service establishes a total order on all transactions,
which are then batched into signed blocks and delivered to the
peers @ The ordering service explicitly does not maintain
the state of the blockchain or validate transactions. When the
ordering is completed, the validation phase is entered. After
receiving a block from the ordering service, it is the peer’s
responsibility to validate the contained transactions @ The
peer checks it against the policy of the invoked chaincode, as
well as the validity of the changed data. The block is appended

to the peer’s copy of the blockchain and all valid state changes
are applied to the local state.

2) Consensus in Hyperledger Fabric: Consensus in Hyper-
ledger Fabric is a modular component and can support differ-
ent levels of fault tolerance, i. e. crash-fault or Byzantine fault
tolerance, depending on the chosen protocol. The ordering
service itself assumes that all peer and client nodes are poten-
tially Byzantine [[11] and implements an atomic broadcast that
accepts transactions and ultimately delivers them in blocks to
all peers. Independent of the deployed protocol, the ordering
service provides the following guarantees [11]:

1. Agreement: Two blocks with the same sequence number
delivered to different peers should be identical. Forks are
not supported.

2. Hashchain integrity: Delivered blocks hold the correct
hash pointing to the previous block, thus forming a
hashchain. Blocks cannot be manipulated without invali-
dating all hashes in subsequent blocks.

3. No skipping: No peer can skip a block. If a peer receives
a block, it has already received all previous blocks.

4. No creation: Every transaction in a block was created by
a client before the block creation.

5. Liveness: If a client sends a transaction to the ordering
service, then every peer will eventually receive a block
containing this transaction.

Fabric currently ships with a centralised, non-replicated
Solo ordering service for testing purposes providing no fault
tolerance, and a distributed, CFT ordering service based on
Apache Kafka. Solo requires less computational resources,
but presents a single point of failure, whereas Kafka cannot
handle Byzantine faults. A BFT ordering service based on
BFT-SMART has recently been included [13]].

C. Integrating BFT-SMART into Fabric

BFT protocols require additional functionality on the client
side, e.g. the majority voting. Performing this voting on
the orderers directly is problematic: if an orderer crashes,
then peers can connect to another orderer; however, if it is
Byzantine and disseminates corrupted blocks, this might not
be detected by the peers, leading to an unsupported fork
in the blockchain. To avoid this, the BFT-SMART ordering
service, whose architecture is shown in Fig.[3a] requires a
BFT client library, called frontend, running on all peer and
client nodes. This frontend also contains Fabric’s orderer node.
The consensus cluster runs the BFT-SMART protocol, and
created blocks are signed and disseminated to all frontends.
The majority voting can then be performed by every peer
individually, provided that it receives 2f + 1E] responses from
the orderers, and the block can be appended to the blockchain.
However, this implementation requires changes to all nodes in
the network. In this architecture, Fabric’s ordering service is
not modular as changing the ordering service requires changes

IThe authors state that this number can be decreased to f + 1 if the peers
verify the block’s signature.
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to peers and clients as well. As peers in Fabric can be Byzan-
tine and the frontend is part of the peer, it might drop blocks or
return invalid ones. The no skipping property is therefore not
fulfilled in the BFT-SMART ordering service. Additionally,
the implementation is specific to BFT-SMART, meaning that
while the functionality is required for common BFT protocols,
it would have to be repeated for all protocols that Fabric’s
users choose to integrate. The integration of BFT protocols
into Fabric is therefore more complex than suggested by the
“pluggability” that was claimed in the original paper [11].

III. THE BLOXY

In this paper, we show an approach to provide truly plug-
gable consensus for different fault models in Fabric, without
any changes to its general architecture. For this, we relocate
the BFT client functionality to the BFT replica side, thereby
containing it inside the ordering service, by leveraging trusted
execution to increase the compatibility between an architecture
that works well for crash-fault tolerant protocols, but still
falls short for Byzantine faults. To provide generic, modular
consensus and support for both fault models, we present the
BLOXY: a blockchain-aware trusted proxy. We define the
following requirements:

RI1: Support for the Byzantine fault model. BLOXY should
allow Fabric to support the Byzantine fault model without
compromising the modularity, i. e. placing client functionality
of the ordering service onto peers. We aim to keep the ordering
service self-contained while still supporting BFT protocols.
R2: Generality and easy integration of BFT protocols. As
the BFT client functionality is almost identical across BFT
protocols, it would be redundant for each BFT framework to
repeat the integration work, especially if doing so compro-
mises Fabric’s modularity. BLOXY should provide generality,
i.e. it should enable support for multiple BFT protocols. It
should therefore be comparably easy to integrate new BFT
protocols into BLOXY, see § [[II-E]

R3: Fulfil Fabric’s requirements for ordering services. To be
considered a valid and complete system for ordering services,
BrLoxYy-backed solutions should fulfil all requirements of
Fabric, see § [[I-B}

R4: Low performance overhead. The usage of BLOXY should
incur only acceptable performance overhead compared to
ordering services running without BLOXY, see

A. BLOXY in a Nutshell

Fig.[3b] shows our approach. The BLOXY is inserted be-
tween Fabric’s orderer and the consensus cluster, i.e. the BFT
replicas, and each replica is equipped with a BLOXY. This
means that outside of the consensus cluster, Fabric is now
not required to know about the specific consensus protocol,
allowing us to completely abstract from it. Compared to the
current pluggable consensus of Hyperledger Fabric, which
does not work out of the box with BFT protocols without
modifications to peers, we go one step further. Using the
BLOXY to integrate a new BFT ordering service in Fabric, we
do not need to change the underlying Fabric architecture for
the Byzantine fault model. We have a two-layer abstraction:
the BLOXY abstracts from the BFT protocol and handles all
communication with the consensus cluster, whereas the orderer
abstracts from the underlying blockchain network.

The defined properties for the Fabric ordering service have
been described in § [[I-B] However, the integration of the BFT-
SMART ordering service shows that Fabric’s architecture does
not allow the property of no skipping to be satisfied for BFT
protocols. An orderer or frontend can return a wrong block
or not respond at all, which might lead to forks or delays if
peers have to query other orderers for blocks, respectively. A
wrong block might not be detected by peers.

The BLOXY provides a generic interface for the consensus
cluster and behaves identically regardless of the underlying
protocol. We are therefore not bound to any specific protocol
implementation. BLOXY’s extensibility is discussed in § [[II-E}

The BLOXY completely confines the consensus protocol to
the ordering nodes, from receiving and forwarding the request
to voting on correct responses and disseminating the new block
in the network. As the BLOXY is running inside a TEE, we
assume the operations to be trusted, leading to a hybrid fault
model: the BLOXY behaves correctly and can only fail by
crashing, whereas all other components of the network are
untrusted and can behave arbitrarily. The BLOXY can crash or
get disconnected from any connected nodes. This is equivalent
to a failing BFT replica. Fail-over mechanisms such as DNS
round-robin or a load balancer can be used to deal with this
and to connect to another BLOXY instance. As the BLOXY
handles majority voting in the TEE, we do not require peers
to take any further action to verify the created blocks, i.e. to
perform the voting themselves as with BFT-SMART. This way
we maintain Fabric’s modularity. Permissioned blockchains
require administrators, e.g. from different organisations, for
setup, whose roles can be managed via the Membership
Service Provider (MSP) and who can mutually monitor each
other. We add to this setup process the provisioning of TEEs
with cryptographic keys.

To summarise, the tasks of the BLOXY are as follows:

1. Establishing secure connections with orderers and repli-
cas by keeping the TLS session key inside the TEE.

2. Decrypting received transactions from orderers and for-
warding them to replicas as BFT requests: as this is done



inside the trusted subsystem, modification of transactions
or other manipulation is not possible.

3. Collecting, verifying, and comparing the received results,
i.e. the blocks, from the replicas in the trusted voting
stage, and afterwards disseminating the created block in
the network.

B. System Model and Trusted Subsystem

In the Fabric network, all peers and clients are potentially
Byzantine, and the ordering service should also support the
Byzantine fault model. BFT-SMART e. g. needs to extend the
trust of the frontends, placing them in the peer trust domain.
The BLOXY takes over all responsibility from the BFT clients
and runs it in a TEE on the replica. The TEE allows us to
place trust in the performed operations, so that we do not
require re-execution on the peers or similar mechanisms. The
TEE’s integrity can be remotely attested. We therefore assume
a hybrid fault model [14], [15], [16], [L171, (18}, [19], [20]:
the ordering service can be Byzantine, whereas all BLOXIES
in the system are assumed to behave as expected or fail only
by crashing. Nodes can therefore trust the correctness of the
block if they receive it from a BLOXY over a secure channel.
If a block is received that does not match the winning hash,
this means that some fault occurred during the block creation
process, leading to a faulty state of the replica. This faulty state
will eventually be corrected by the replica when its present
state is compared to the state of the other replicas during the
regular checkpointing process.

The number of required replicas depends on the protocol
requirements. Traditional BFT protocol [21], [30], [31], [32]
require up to 3 f+1 replicas to tolerate up to f faults. Protocols
that utilise trusted components [14], [L15], [L6], [L7], [18],
[19], [20] and thus assume a hybrid fault model, can reduce
this number to 2f 4+ 1 as they can use the TEE to prevent
equivocation. One challenge of trusted execution is to keep
the trusted code base (TCB) as small as possible to reduce the
probability of failures [17]. For this, we place only limited
parts of the BLOXY inside the TEE. The secure connection
establishment is performed by generating and storing the TLS
key as well as performing cryptographic operations inside the
TEE so that the key never leaves it. The actual connection
handling can be done in the untrusted part of the application.
After receiving a request, it is decrypted inside the TEE and
the validity is checked, before it is immediately authenticated
using HMACs to prevent any modification once it is passed
outside of the TEE again. When the BLOXY has collected a
sufficient number of replies, it performs the majority voting
again inside the TEE, where it assembles and encrypts the
correct reply to all connected orderers. The actual transmission
can be performed by the application’s untrusted part as the
TLS keys are not available there, so manipulation is prevented.

C. Transaction Flow with BLOXY

The message flow of a transaction using the BLOXY is
shown in Fig.[4] As mentioned previously, every replica is
equipped with a BLOXY instance running on the same machine
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Fig. 4: Transaction flow of a BLOXY-based BFT ordering
service

inside a TEE, which possesses a key pair and whose authen-
ticity can be remotely attested. A client sends its transaction
to an orderer who forwards it to the BLOXY @ Neither
node has to be aware of the underlying consensus protocol.
The BLOXY now assumes the role of the BFT client, forms
a BFT request containing the transaction, and forwards it to
the leader of the BFT protocol. It then sends an ACK to the
blockchain client that its transaction has been received and
that the client does not need to retransmit this transaction.
If this step fails, the BLOXY sends a NAK. The consensus
nodes now deterministically establish a total order on the
received transactions according to the protocol @ After either
a certain limit of requests or the total block size has been
reached, the transactions are batched, and the block is created
and signed for authenticity. This is done by invoking the block
cutting mechanism, which runs as a replicated service. To
increase fault tolerance and availability, we let every BLOXY
vote on the replies: the BLOXY broadcasts the hash of the
received block to all other BLOXIES, which have to receive
the full signed block from their connected replica @ The
BLOXIES verify the signatures of the replicas and perform the
trusted voting, i.e. check that at least f + 1 identical blocks
have been received. This voting is necessary to ensure that
the block has been created correctly, to fulfil the agreement
property of permissioned blockchains and to prevent forks. We
require only f+1 identical responses as the BLOXY is running
inside a TEE and we can therefore prevent equivocation. Once
the BLOXIES have voted on the block, it is disseminated in
the network by sending it to all connected orderers which then
deliver it to the peers

Fabric has two kinds of configuration transactions which
are placed in dedicated blocks: (i) new channel transactions
which when received in a block by the orderer will cause
them to create a new channel, i. e. blockchain, and (ii) channel
configuration updates. Configuration transactions are ordered
the same way as regular transactions. While this works well
for new channel transactions, manual oversight is required
for configuration updates to ensure that they are applied
correctly at every orderer. This can be an additional task of
the blockchain administrators designated via the MSP.

To summarise, the orderer forwards the transactions to the
BLOXIES, which then handle all BFT-specific operations and
return the created blocks after successful majority voting. This
encapsulation of client functionality allows for completely
abstracting the consensus protocol from the blockchain archi-



tecture, and the BFT protocol is not aware of any blockchain-
specific behaviour as well.

D. BLOXY Communication

The communication of BFT protocols used in blockchains
differs from that of traditional BFT protocols. The reply, i.e.
the created block, has to be disseminated to all nodes in the
network instead of sending a reply to one single client. Several
protocols use gossip protocols for this [33]], [26]]. For the BFT-
SMART ordering service, the framework was extended to
send the block to every connected frontend. With BLOXY, we
have a two-phase broadcasting mechanism for blocks. First,
all BLOXIES need to receive the created block: as described
in § the BLOXY that forwarded the client transactions
receives the created block from the replica and then sends
it to the other BLOXIES. The BLOXIES can also exchange
only hashes of the received blocks to reduce messaging
overhead with potentially large blocks. With this optimization,
however, every BLOXY needs to receive the created block
from the connected replica, as it is necessary that each BLOXY
possesses at least one full block to perform the trusted voting.
Having each replica send the reply to the connected BLOXY
might require minor modification of the framework, as this is
not standard behaviour for BFT protocols.

In the second stage after the voting, the block is then broad-
cast by each BLOXY to all connected orderers to disseminate
the block in the network. As the BLOXY only sends the
block after the majority voting has been performed instead of
multiple replies from the replicas to all peers, we drastically
decrease the messaging overhead. This can be seen in Fig.[3]
and is later shown in our evaluation in § The orderers
can connect to the BLOXIES using round-robin or other load
balancing mechanisms to evenly distribute the load across
all available BLOXIES. This dissemination means that the no
skipping property of Fabric ordering services can be fulfilled,
as the block is not only available on one node, but every node
can query the orderers.

BLOXY Short-Term Block Storage. With the exception of
no skipping, the properties of Fabric’s ordering services can be
fulfilled by any BFT protocol. Fabric depends on the orderers
to disseminate the block in the rest of the network. The
orderers store a certain range of previous blocks for the peers
to query; however, up to f orderers can behave Byzantine.
This means that the orderers can suffer from disconnects,
crashes, or arbitrary behaviour, and we cannot guarantee that
only correct orderers store and receive the created blocks. The
correctness of blocks is guaranteed and can be verified by
the BLOXY’s trusted voting and the replicas’ signatures, any
manipulation of the block would thus be detected. The orderers
can only misbehave by not delivering the block to peers, i.e.
by behaving as if crashed. To satisfy the no skipping property,
peers can query orderers for created blocks. If a peer only
contacts one orderer, it might not detect e. g. a crash and that
it is missing blocks. To ensure that no skipping is fulfilled and
Byzantine orderers in Fabric can be tolerated, the replicas store
a certain number of past blocks in a Short-Term Block Storage.

A benign orderer can then query this short-term storage for any
missing blocks, and blocks are only deleted from the short-
term storage, when at least f + 1 orderers have acknowledged
its reception. This satisfies our requirement R3 as all properties
of Fabric’s ordering service are fulfilled.

Fabric now has to handle crash faults on the orderer side,
especially in the Byzantine fault model, which is currently
only partially addressed by simply querying other orderers for
blocks. To handle reliable reception of blocks as well as correct
voting, the BFT-SMART ordering service merged the orderer
and peer nodes in the frontend to assume the same fault model,
i.e. that orderers can be assumed to run correctly. Our short-
term block storage allows reliable dissemination of blocks in
the network. A block is stored until a certain threshold of
orderers has acknowledged it, thereby offering Byzantine fault
tolerance for orderers.

Blocks that have passed the majority voting inside the
TEE are stored inside the short-term storage, which can be
queried by orderers and peers in case they are missing a recent
block, e.g. because they re-connect after a longer crash. The
blocks, once they are created, are not changed by further write
requests. The short-term storage is running as a replicated
service on the BFT replicas and can be queried via BFT read
requests. Read requests for stored blocks are forwarded to the
replicas, and the BLOXY receives either the block if it is stored,
or a NAK otherwise. After voting on the result, it is passed
to the requesting node. As the BFT cluster should not store
the blockchain and to limit the required storage space, blocks
are removed from the short-term storage after they have been
received by a sufficient number of nodes in the network, i.e.
by at least f + 1 nodes to offer crash-fault tolerance. Orderers
are therefore required to acknowledge the reception of a block.
If orderers or peers request a block that has been purged from
short-term storage, they in addition to the NAK receive a list
of a fixed number of node addresses that have previously
acknowledged the block to query them directly and receive
the missing block.

The short-term storage is not inside the TEE as the memory
of current TEE technologies such as Intel SGX is highly
limited, which is problematic as the default block size in
Fabric is ~2MB. Our evaluation results in § show that the
Byzantine fault tolerance comes at the cost of higher latency.

E. Providing Generic Consensus

Using the BLOXY and trusted execution, we can unobtru-
sively bridge the conceptual gap between a crash fault model
and a Byzantine fault model without introducing complex
changes to Fabric’s architecture. The orderers are now acting
purely as proxies, forwarding transactions to the BLOXIES in
the BFT cluster and storing the blockchain to be queried by
peers. Assuming that f from 3f + 1 orderers are Byzantine,
we can still reliably and transparently provide the BFT client
functionality in the BLOXY and peers can connect to another
orderer if they detect misbehaviour.

With regard to employed BFT protocols, we are not limited
to any specific protocol, though some minor changes to the



§ ‘ Ordering ‘ ‘ Checkpointing ‘
Q.
& ‘ View Change ‘
e Majority Voting
< || Communication
g Request Block
Invocation Dissemination

Fig. 5: Functionality of the BFT replica and of the BFT client
as performed by the BLOXY

BFT frameworks might be necessary for integration. The
BFT framework can include the BLOXY as a library. An
overview of the functionalities performed by the BFT replica
and the BLOXY is shown in Fig.[5] The BLOXY is needed for
establishing secure TLS connections with orderers and BFT
replicas, achieved by placing the en- and decryption routines
of the communication inside the TEE. It also transforms the
blockchain transactions into BFT client requests, for which it
has to know the message format of the protocol. Lastly, the
BLOXY has to perform the majority voting inside the TEE,
after which the valid reply is encrypted and sent to all con-
nected orderers via the TLS connections. The essential parts
of the BFT protocol, however, remain unmodified, namely the
ordering, view change, and checkpointing subprotocols. As
BFT protocols generally provide similar interfaces and pose
similar requirements to the applications, the underlying BFT
protocol can therefore be changed at will. The BLOXY only
forwards the transformed requests to the replicas and requires a
certain amount of replies for the majority voting, otherwise it is
completely independent from the BFT protocol. Our approach
is orthogonal to the recent improvements of BFT protocols for
blockchains, which offers the opportunity to take advantage of
improved BFT protocols that are the most useful for Fabric
and the given use case. We therefore satisfy requirement R2
regarding generality and easy integration.

IV. IMPLEMENTATION

We now give insight into the implementation of the BLOXY
with details on Intel SGX (§ [[V-A), as well as the BLOXY-
based ordering services based on PBFT and Hybster (§[IV-B).

A. BLOXY Implementation

The trusted execution environment used to run the BLOXY
is based on Intel SGX, an extension to Intel’s x86 processor
instruction set. SGX enables the generation of trusted compart-
ments, called enclaves. Enclaves are used to ensure integrity
and confidentiality of security-sensitive computations, while
the remainder of the machine is assumed to be untrusted or
malicious. Confidentiality of code and data is ensured using
memory encryption, while checksums are used for integrity.
Enclaves can only be entered or exited using pre-defined entry
points. We use the SGX SDK version 2.1 for the definition of
calls inside the trusted enclave (ecalls) and calls from inside
to the untrusted outside (ocalls). We utilize a modified version
of the TalLoS [34] library for trusted cryptographic operations
inside the enclave, which offers the same interface as LibreSSL

for cryptographic operations that are then performed securely
inside the enclave. The modification includes running Tal.oS
completely inside the enclave as it is only accessed via the
trusted BLOXY. This library is used to handle bidirectional
TLS connections securely inside the enclave.

Intel provides a remote attestation service that can verify
the validity of enclaves. After attestation, the enclave can be
provisioned with cryptographic keys, e.g. a private key for
establishing the TLS connections.

BLoxY is implemented in C/C++. To keep the TCB small,
we aim to keep the number of lines of code (LoC) within
the enclave to a minimum. BLOXY’s trusted part inside the
enclave consists of 251 kLoC: 219 kLLoC for TaLoS, 12 kLoC
for BLOXY logic including 2 kLL.oC for a protobuf implemen-
tation [35] ported to the enclave, and 20 kLoC for the SGX
SDK. The code base of TaLoS is an upper bound estimation: it
offers the same interface as LibreSSL, but BLOXY only uses a
limited subset of its functionality. Additionally, we have kept
the interface as minimal as possible, containing only 20 ecalls
and no ocalls. The ecalls include sanity checks on input values
to prevent lago [36] attacks or time-of-check-to-time-of-use
attacks [37]], as well as bound checking of pointers to ensure
that they point to enclave memory.

B. BLOXY-based Ordering Services

Hybster [14]] is a hybrid BFT protocol, i.e. it uses a trusted
subsystem for message authentication to prevent equivoca-
tion. It therefore requires only 2f -+ 1 replicas to tolerate
f Byzantine faults. Hybster is implemented in Java and,
with the consensus-oriented parallelisation scheme [38]], is
optimised to fully exploit multi-core CPUs. This BFT protocol
therefore achieves a high throughput, which makes it suitable
for deployment in blockchain use cases. The trusted subsystem
is also based on Intel SGX and therefore well-suited to be
combined with the BLOXY. The interface between the BLOXY
written in C/C++ and Hybster written in Java is implemented
using the Java Native Interface (JNI). PBFT [21]] was imple-
mented in previous Fabric versions, but not in the current one.
Using BLOXY, it can be re-integrated with minimal effort.

The replicated service running on the replicas is the block
cutting. When the service receives the ordered requests, it
checks whether the maximum number of transactions for one
block or the maximum block size has been reached. If this
is the case, the block cutter bundles these transactions into
one block which is then disseminated. The service maintains
all necessary Fabric channels, i.e. blockchains, adding new
channels or modifying configurations if configuration transac-
tions are received. In this case, all previous transactions are
flushed into a new block, before the configuration transaction
is placed in a dedicated block. For Hybster, the signing of
a block as well as the block dissemination are performed in
separate pillars, i.e. threads.

We integrated the BLOXY into Hyperledger Fabric v1.2,
released in July 2018, utilising the Fabric Java SDK. The
communication between Fabric nodes, e.g. the orderers and
peers, is done via gRPC, whereas the communication between



the orderers and the BLOXY as well as the BLOXY and the
Hybster or PBFT replicas is done via TLS. For the short-term
block storage, it is necessary to know to which channel a block
belongs. A minimal protobuf implementation [35]] was ported
inside the enclave to enable extraction of the channel name.

V. EVALUATION

We evaluate the security and performance of the BLOXY-
based ordering services against Fabric’s Solo, Kafka, and the
natively integrated BFT-SMART protocols. Our results show
that BLOXY-based ordering services (i) are resilient against
multiple attacks, (ii) achieve higher throughput and lower
or similar latency as BFT-SMART, (iii) do not affect the
performance of a full Fabric setup, and (iv) provide higher
fault tolerance of blocks due to the short-term block storage.
We therefore completely satisfy our requirement R4 regarding
performance overhead.

A. Experimental Setup

We use a cluster of ten machines divided into three classes
for our evaluation. Class consists of four machines
equipped with SGX-capable 4-core Xeon v5 CPUs and 32GB
of memory; they are running the consensus cluster. Class
are five machines equipped with 4-core Xeon v2 CPUs and
16GB of memory. Four are running a peer and orderer node
each, while the other runs the clients. One class machine
is used for orchestration; it has a 4-core Intel Xeon E3 CPU
and 16GB of memory. All machines have hyper-threading
enabled and are connected via a 10Gpbs network. Class

runs Ubuntu 18.04, and @ run Ubuntu 14.04.

B. Security Evaluation

Inspired by [39]], we present attacks on BLOXY and our
countermeasures.

1) Side-channel attacks: As side-channel attacks are not
considered in the SGX attack model, they are out of scope.
However, previously suggested mitigation techniques for SGX
can be applied to BLoxY [40], [41], [42].

2) Bypassing BLOXY: To prevent malicious replicas from
bypassing the BLOXY and sending corrupted blocks directly
to the orderers, we use TLS connections between orderers and
BLOXIES. The session keys are stored securely inside the TEE.

3) Interface attacks: The interface of an enclave can be
attacked in an attempt to gain access to BLOXY’s secrets, e. g.
with Tago attacks [36]. We have hardened the interface with
checks on input and return values.

4) Denial-of-service (DoS) and flooding: Faulty replicas
could perform DoS attacks by not running the BLOXY, or flood
correct replicas and orderers with corrupted blocks. BLOXY
can use existing techniques [43] for prevention, e. g. by limit-
ing the number of requests a client can issue simultaneously.

5) Block signatures: Blocks are signed by the replicas,
i.e. orderers are incapable of manipulating them without
immediate detection. They would need access to the replicas’
private keys and certificates. However, even then they could
only discard or reorder transactions in a block, not manipulate
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Fig. 6: Throughput and latency of the ordering service (5
repetitions, 10s each)

specific transactions as they are again signed by the client. The
trust in the blocks therefore comes from the block signature
and the security of the replicas’ private keys.

6) Malicious orderers: The only faults orderers can exhibit
are delivering blocks with invalid signatures or no block at
all, which are both equivalent to a crashed orderer. The same
applies for withholding submitted transactions, which a client
can re-issue. Peers can detect this behaviour and as a failover
mechanism reconnect with another orderer. This requires that
at least one correct orderer has the created blocks, which can
be ensured with the short-term block storage.

C. Microbenchmarks

Ordering Service. We have measured the latency and through-
put of the ordering services for an increasing send rate for
messages of 1KB. The client sends transactions and receives
the created blocks, which contain 100 transactions. The latency
is the average latency of all transactions in the block from
sending until delivery of the block. The results, which can be
seen in Fig.[6] show that BLOXY-based Hybster and PBFT
have 71 % and 51 % higher throughput compared to BFT-
SMART, and only 20 % and 29.5 % less throughput than the
centralised Solo, respectively. The performance of Kafka is
limited as block generation and signing are not parallelised,
which was necessary in previous versions of Fabric. For send
rates higher than 15,000rps, the latency of both BLOXY-
backed PBFT and BFT-SMART is 125.7 % higher than Solo’s;
in comparison, the latency of BLOXY-backed Hybster is only
99.5 % higher than Solo. In this measurement, we can see
that the decreased communication overhead of BLOXY, which
we achieve by performing the majority voting on the replicas
inside the consensus cluster, is advantageous for throughput
and latency of the ordering service.

Short-Term Block Storage. We measure the latency when an
orderer (i) successfully queries the short-term block storage
for a missing block, (ii) queries the short-term storage, does
not receive the block, and queries another orderer based on the
returned address (see § , or (iii) queries other orderers



BLOXY (iii) Orderer

(i) Storage Hit
21.79 ms

(ii) Storage Miss
7.19 ms

Duration 7.28 ms

TABLE I: Latency for fetching missing blocks from short-term
block storage or from other orderer nodes (5 repetitions)

Solo Kafka BFT- BLoOXY BLOXY

SMART Hybster PBFT

SL 09s 0.96s 1.09s 0.81s 0.85s
SR, 1,400 rps 1,300 rps 1,200 rps 1,500 rps 1,300 rps
sT 147.64rps  360.28rps  155.5rps  120.58rps  122.851ps
SRsp 1,400 rps 1,600 rps 1,600 rps 1,500 rps 1,500 rps

TABLE II: Maximum standard deviation for latency (sz,) and
throughput (s7) and the corresponding send rate (SR,

SL/T)'

randomly. The results are shown in Table[l] Even if the block is
not stored in the short-term block storage, the BLOXY responds
with the address of at least one orderer that has acknowledged
the block reception which can then be queried. The latency of
a storage miss is therefore still smaller than querying other
orderers at random, which might require multiple attempts
before the block is received. When the block is stored on
the replicas, the BLOXY queries it via a BFT read request,
receives three blocks as response, and votes on them before
sending it to the requesting orderer. The induced latency
is therefore higher than directly querying orderers; however,
this is justified by the fault tolerance offered to the orderers
with the short-term block storage. The recovery strategy can
be configured in the orderer, thus allowing the low-latency
querying of orderers to be standard behaviour and querying
the short-term block storage as a fail-safe mechanism.

D. Macrobenchmarks

We use the Hyperledger Caliper [44] project to compare
the ordering services regarding throughput and latency within
a full Fabric network, again with increasing send rates. In
the network, we have twelve clients, two peers in the same
organisation, and two CAs. The consensus cluster consists of
four replicas, except for Hybster which as a hybrid protocol
is run with three. We execute Caliper’s Simple benchmark.
The results are shown in Fig.[7] The latency of all ordering
services starts to increase rapidly with a send rate higher
than 1,000 rps; similarly, the throughput starts to decrease at
1,300 rps. The maximum standard deviations for send rates
above 1,200 rps are given in Table[[} This behaviour is similar
across all ordering services, leading to the conclusion that the
ordering service is not the bottleneck of Fabric’s network. The
results are in line with previous results for evaluating Fabric
with Caliper [43].

VI. RELATED WORK
BFT protocols for blockchains. Most BFT protocols target
the permissioned setting; however, compared to the Proof-

of-Work (PoW) consensus, they are severely restricted re-
garding scalability. Examples of protocols for permissioned
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Fig. 7: Throughput and latency of a complete Fabric network
with different ordering services (5 repetitions, each 205s)

blockchains are ByzCoin [46], Stellar Consensus [47], Rip-
ple [9], HoneyBadgerBFT [27], and Gosig [33]]. Algorand [26]
is a BFT protocol designed for permissionless blockchains.
Here, every decision and voting step is done by secretly
choosing a comparatively small subset of nodes, and each
node is chosen via Proof-of-Stake (PoS). Several blockchain
platforms already employ BFT protocols as basis for their
consensus. Hyperledger Fabric v0.6 used PBFT, while v1.0
was extended by a BFT-SMART ordering service [13[]. Ten-
dermint [10] uses a round-based voting similar to PBFT.
Quorum [8] has two consensus protocols, based on Raft
and PBFT; and Hyperledger Iroha [7] uses the PBFT-based
protocol YAC. Some consensus protocols make use of trusted
execution. In the “Proof of Elapsed Time” (PoET) [48] pro-
tocol, an SGX-based timer is employed, similar to the “Proof
of Luck” (PoL) [49] protocol. As BLOXY is designed for
easy integration of BFT protocols, suitable protocols targeting
permissioned blockchains can be integrated, allowing to make
use of their individual advantages. The approaches of these
protocols are therefore orthogonal to ours.

SGX as trusted proxy. There have been several approaches to
use TEEs for establishing secure proxies [50], [39], [51]. BFT
systems are not wide-spread compared to crash-fault tolerant
systems, since they require several changes to the clients,
e. g. the additional voting step to reconcile multiple responses.
Changing all client implementations especially for commonly
used protocols such as HTTP and IMAP would not be feasible.
Instead, Troxy [39] presents a trusted proxy running inside
a TEE that abstracts the BFT client functionality from the
actual client device, instead shifting it to the BFT replicas. We
follow a similar approach of shifting BFT client functionality;
however, the BLOXY is tailored for the blockchain use case by
including blockchain-specific communication, the short-term
block storage, as well as integration into Hyperledger Fabric.

Database servers running in the cloud are vulnerable to sev-
eral exploits that can cause the client to receive wrong results.
VeritasDB [50] presents a key-value store which guarantees



integrity to the client by offering a network proxy that employs
an SGX enclave. This enclave performs integrity checks to
reduce the necessary trust in cloud providers. LibSEAL [51]
is an audit library to detect integrity violations on user data
by creating non-repudiable audit logs inside an enclave. To
capture all service messages in the logs and prevent tampering,
the TLS connections are terminated inside the enclave.

VII. CONCLUSION

In this paper, we presented BLOXY, a consensus proxy for
Hyperledger Fabric. BLOXY encapsulates the client function-
ality of BFT protocols, thereby enabling easy integration of
consensus protocols in Fabric and allowing operators to choose
protocols suitable for their use cases. Furthermore, BLOXY-
backed ordering services maintain Fabric’s modularity. Our
evaluation shows that due to BLOXY’s lower communication
complexity, we can achieve up to 71 % higher throughput for
the ordering compared to directly integrated BFT protocols.
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