
Themis: An Efficient and Memory-Safe
BFT Framework in Rust

Research Statement

CC-BY 4.0. This is the author’s version of the work. The definitive version will be published
in the proceedings of the 2019 3rd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers (SERIAL’19).

Signe Rüsch

TU Braunschweig, Germany

ruesch@ibr.cs.tu-bs.de

Kai Bleeke

TU Braunschweig, Germany

bleeke@ibr.cs.tu-bs.de

Rüdiger Kapitza

TU Braunschweig, Germany

rrkapitz@ibr.cs.tu-bs.de

Abstract
Byzantine fault tolerant (BFT) protocols have previously

been developed mainly in C or Java. C offers high perfor-

mance but is more error-prone, leading to more potential

Byzantine faults, whereas Java offers memory safety at the

cost of performance. The Rust programming language com-

bines the performance advantages of C with safe memory

management, and newer releases now enable the implemen-

tation of complex, non-blocking asynchronous frameworks,

as is needed for efficient BFT frameworks. We present a BFT

framework implementation in Rust and preliminary perfor-

mance evaluations for the PBFT protocol.

Keywords Rust, blockchain, Byzantine fault tolerance

1 Introduction
Byzantine fault-tolerant (BFT) protocols are a group of dis-

tributed consensus protocols that allow a certain number of

nodes in the system to fail in arbitrary ways. Due to higher

overhead compared to crash-fault consensus protocols, the

implementation of a BFT protocol aims to be highly opti-

mized regarding processing time per message, on the pro-

tocol as well as the network layer, while still ensuring the

correctness of the implementation, as software errors are a

possible source of Byzantine faults.

In the beginning, BFT frameworks have been implemented

in C for high performance, already using non-blocking com-

munication for efficiency [3]. C’s performance is partially

due to the raw memory access; however, it is the program-

mer’s responsibility to correctly handle this, and C’s weak

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SERIAL ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7029-5/19/12. . . $15.00

https://doi.org/10.1145/3366611.3368144

type system makes implementations prone to memory leaks

and undefined behaviour. A language includes undefined be-
haviour if it allows code whose behaviour is not defined in

the language’s specification [8], which can lead to program

crashes or execution using wrong data. Code that invokes

undefined behaviour is considered unreliable, and should be

eliminated. C exhibits multiple cases of undefined behaviour

centred around its weak type system and pointer arithmetic,

e. g. accessing out-of-bounds memory or use-after-free bugs.

Later, Java offered faster development, platform indepen-

dence, and higher safety due to its strong type system. The

majority of today’s BFT frameworks are therefore imple-

mented in Java [1, 2, 4], and many high-performance frame-

works also utilize non-blocking communication. By disallow-

ing direct access to memory and ensuring that the program-

mer can only work with references to valid objects, memory-

related undefined behaviour is eliminated. The garbage col-

lector (GC) of the Java Virtual Machine (JVM), which frees

no longer referenced objects, eliminates the most common

source of memory leaks. But interpreting bytecode is slower

than executing native instructions, despite optimizations

such as just-in-time (JIT) compilation; worse, a JIT compiler

and garbage collector add uncertainty to performance as the

programmer cannot predict their behaviour [7]. It is also not

resource-efficient, as the JVM is known for its high memory

consumption [6]. Thus, the choice is between high perfor-

mance but error-proneness, and slower but safer execution.

Recently, the Rust programming language has emerged,

which offers both performance and safety [5]. It is a strongly

typed language that does not include a runtime or GC and

does not feature undefined behaviour, making it both safe

and fast. A whole class of potential causes of Byzantine fail-

ures due to undefined behaviour are therefore eliminated,

and after recent releases Rust now offers the required fea-

tures for implementing efficient, asynchronous BFT frame-

works. As Rust is much more resource-efficient than Java,

it can open up new domains for BFT deployment, e. g. in

blockchains and embedded systems, making re-implementa-

tions even more desirable. We describe the BFT framework

Themis and a preliminary performance evaluation.

1

https://doi.org/10.1145/3366611.3368144

SERIAL ’19, December 9–13, 2019, Davis, CA, USA S. Rüsch, K. Bleeke, R. Kapitza

Client Library

Client Appl.

Client

ReplicaC
om

m
u-

ni
ca

tio
n

La
ye

rProtocol

P
ro

to
co

l
W

or
ke

r

Application

A
pp

l.
W

or
ke

r

Figure 1. Themis framework components.

2 Themis: A BFT Framework in Rust
Rust is intended for safe and concurrent systems program-

ming. It is considered safe as it eliminates undefined be-

haviour but still allows for direct memory management with-

out using a GC. Rust introduces ownership: each value of

Rust has exactly one variable as its owner, and when the own-

ing variable goes out of scope, it is dropped and deallocated.

Rust assigns values by moving them instead of copying, thus

preventing memory leaks. Owned values can be borrowed,
creating a reference to the value. References are mutable or
shared, with only mutable references allowing mutation. At

any given time theremay be either a single mutable reference

to a value or multiple shared ones. Rust prevents dangling

pointers and use-after-free errors by enforcing the lifetimes
of references. From the ownership, Rust knows the scope in

which a value exists and a reference to that value must not

outlive that scope. All these rules are enforced at compile

time, allowing for safe implementations.

Our framework is designed to be modular and easily exten-

sible for different protocols. It is a fully featured re-implemen-

tation of PBFT, including the ordering, checkpointing, and
view change subprotocols, and uses asymmetric cryptography

for message authentication. It is event-driven and utilizes

non-blocking channels, i. e. asynchronous message queues,

for communication. It consists of three modules, shown

in Figure 1: communication, protocol, and application. For

the implementation, we use the futures and tokio crates,
offering newly released and stabilized async/await features.
The message-oriented communication layer handles connec-

tion management for both replicas and clients. Here, mes-

sages are verified and batched before they even enter the

protocol stage; currently, RSA is used for message authen-

tication. The protocol layer implements the actual BFT pro-

tocol as a trait, i. e. an interface, which handles the received

messages from communication and application layer, and

is implemented for the PBFT protocol including ordering,

checkpointing, and view change. The application layer trait

sends and receives requests and replies, and creates snap-

shots for checkpointing and failure recovery. A client library

sends BFT requests to the replicas.

Preliminary Evaluation. We run four replicas and mul-

tiple clients on servers with Intel i7-6700 CPUs. We use

2048bit RSA for message authentication, and our current

0 20 40
0

10

20

30

40

Clients

T
h
ro
u
gh

p
u
t
[k
rp
s]

1KB/Rust 10KB/Rust 1KB/Java 10KB/Java

0 20 40
0

50

100

150

Clients

L
a
te
n
cy

[m
s]

Figure 2. Comparison of Rust- and Java-based PBFT.

evaluation compares single-threaded execution. The frame-

work is compared to a Java-based PBFT implementation in

the Reptor framework [1] running on one pillar, i. e. one

non-parallelized single instance. Due to the computationally

expensive RSA scheme, it is expected that the throughput

will be limited by the rate at which signatures can be created.

We use messages of 100B and allow the frameworks to

batch 10 and 100 requests into 1KB and 10KB messages, re-

spectively. The results for throughput and latency can be

seen in Figure 2. The overall throughput of the Rust frame-

work can be observed to be significantly higher by up to

46%, with up to 33% lower latency. The throughput is pri-

marily bound by the number of signatures. For messages of

100B and batches of 100 messages, the Rust implementation

requires 15.1 KB of memory, whereas Reptor requires 1.7GB.

The lack of a runtime for Rust results in a memory usage

orders of magnitude lower than the Java implementation.

3 Future Work
This overview shows potential for future work: (i) Can the

Rust BFT framework be employed on embedded devices with

restricted memory capacity? (ii) Can the BFT framework run-

ning on embedded devices be used for consensus in an (em-

bedded) blockchain platform? (iii) Can a Rust-based BFT pro-

tocol offer comparable performance to a high-performance

Java implementation even in multi-core configurations?

References
[1] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids on

Steroids: SGX-based High Performance BFT. In EuroSys’17.
[2] Alysson Bessani, João Sousa, and Eduardo Alchieri. 2013. State Machine

Replication for the Masses with BFT-SMaRt. Technical Report.
[3] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault

Tolerance. In OSDI’99.
[4] Allen Clement et al. 2009. UpRight Cluster Services. In SOSP ’09.
[5] Nicholas Matsakis et al. 2014. The Rust Language. In HILT ’14.
[6] Oracle. 2019. FAQs About the Java HotSpot VM.

[7] Fridtjof Siebert. 2004. The Impact of Realtime Garbage Collection on

Realtime Java Programming. In ISORC’04.
[8] Xi Wang et al. 2012. Undefined Behavior: What Happened to my Code?.

In APSYS’12.

2

	Abstract
	1 Introduction
	2 Themis: A BFT Framework in Rust
	3 Future Work
	References

