
Themis: An Efficient and Memory-Safe
BFT Framework in Rust
SERIAL Workshop, December 9, 2019
Signe Rüsch, Kai Bleeke, Rüdiger Kapitza
ruesch@ibr.cs.tu-bs.de
Technische Universität Braunschweig, Germany

Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Byzantine Fault Tolerance

Consensus even with participants showing
arbitrarily wrong behaviour
E.g. used in permissioned blockchains
Tolerate f Byzantine faults with 3f + 1 nodes

BFT protocols have high message complexity
Frameworks are highly optimised regarding
processing time per message

Both on protocol and network layer

BFT frameworks should be fast, efficient, and resilient!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 2
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Byzantine Fault Tolerance

Consensus even with participants showing
arbitrarily wrong behaviour
E.g. used in permissioned blockchains
Tolerate f Byzantine faults with 3f + 1 nodes

BFT protocols have high message complexity
Frameworks are highly optimised regarding
processing time per message

Both on protocol and network layer

BFT frameworks should be fast, efficient, and resilient!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 2
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Byzantine Fault Tolerance

Consensus even with participants showing
arbitrarily wrong behaviour
E.g. used in permissioned blockchains
Tolerate f Byzantine faults with 3f + 1 nodes

BFT protocols have high message complexity
Frameworks are highly optimised regarding
processing time per message

Both on protocol and network layer

BFT frameworks should be fast, efficient, and resilient!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 2
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Programming Languages – C
So far, frameworks mostly written in C or Java

C: PBFT [Castro et al., OSDI’99]

Java: Reptor [Behl et al., Middleware’15]

Low-level programming languages like C offer
high performance

Direct access to memory
Translation into native instructions

But error-prone due to memory leaks and
undefined behaviour, e.g.:

Reading uninitialized memory
Dereferencing a NULL pointer, an invalid pointer
Out-of-bounds array access

Eliminate unsafe, unreliable code!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 3
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Programming Languages – C
So far, frameworks mostly written in C or Java

C: PBFT [Castro et al., OSDI’99]

Java: Reptor [Behl et al., Middleware’15]

Low-level programming languages like C offer
high performance

Direct access to memory
Translation into native instructions

But error-prone due to memory leaks and
undefined behaviour, e.g.:

Reading uninitialized memory
Dereferencing a NULL pointer, an invalid pointer
Out-of-bounds array access

Eliminate unsafe, unreliable code!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 3
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Programming Languages – C
So far, frameworks mostly written in C or Java

C: PBFT [Castro et al., OSDI’99]

Java: Reptor [Behl et al., Middleware’15]

Low-level programming languages like C offer
high performance

Direct access to memory
Translation into native instructions

But error-prone due to memory leaks and
undefined behaviour, e.g.:

Reading uninitialized memory
Dereferencing a NULL pointer, an invalid pointer
Out-of-bounds array access

Eliminate unsafe, unreliable code!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 3
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Programming Languages – C
So far, frameworks mostly written in C or Java

C: PBFT [Castro et al., OSDI’99]

Java: Reptor [Behl et al., Middleware’15]

Low-level programming languages like C offer
high performance

Direct access to memory
Translation into native instructions

But error-prone due to memory leaks and
undefined behaviour, e.g.:

Reading uninitialized memory
Dereferencing a NULL pointer, an invalid pointer
Out-of-bounds array access

Eliminate unsafe, unreliable code!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 3
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Programming Languages – Java

Strong type system offers safety
Runtime offers platform independence
No manual memory management: Garbage
Collector (GC)

Interpreting bytecode less performant
JIT and GC add uncertainty to performance
Not resource-efficient: JVM’s high memory
consumption

Tradeoff : performance vs. safety!
How can we combine both?

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 4
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Programming Languages – Java

Strong type system offers safety
Runtime offers platform independence
No manual memory management: Garbage
Collector (GC)

Interpreting bytecode less performant
JIT and GC add uncertainty to performance
Not resource-efficient: JVM’s high memory
consumption

Tradeoff : performance vs. safety!
How can we combine both?

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 4
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Programming Languages – Java

Strong type system offers safety
Runtime offers platform independence
No manual memory management: Garbage
Collector (GC)

Interpreting bytecode less performant
JIT and GC add uncertainty to performance
Not resource-efficient: JVM’s high memory
consumption

Tradeoff : performance vs. safety!
How can we combine both?

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 4
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

The Rust Programming Language

Combines performance and safety
Young language: 1.0 release in 2015
Initiated by Mozilla
Completely open source

Performance: no runtime or garbage collector
Reliability: strong type system
Safety: memory safety enforced at compile time

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 5
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Ownership: Safe Memory

Every value has an owner
Values are dropped when owner
goes out of scope
Values are moved to a new owner

// heap allocate
let x = Box::new(1000);
// move into y,
// x no longer accessible
let y = x;
println!("{}", x);
//error[E0382]:
// use of moved value: `x`

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 6
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Borrowing and Lifetimes: Safe References

Borrow value to get shared and
mutable references
Either single mutable reference
or multiple shared references

References have lifetimes
No reference to invalid memory

Enforced at compile time by the
borrow checker

let mut x = 1000;
//mutable reference
let c = &mut x;
let d = &x;
//error[E0502]: cannot borrow `x`
// as immutable because it is
// also borrowed as mutable

Rust eliminates a whole class of errors that potentially lead to
Byzantine behaviour!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 7
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Borrowing and Lifetimes: Safe References

Borrow value to get shared and
mutable references
Either single mutable reference
or multiple shared references

References have lifetimes
No reference to invalid memory

Enforced at compile time by the
borrow checker

let mut x = 1000;
//mutable reference
let c = &mut x;
let d = &x;
//error[E0502]: cannot borrow `x`
// as immutable because it is
// also borrowed as mutable

Rust eliminates a whole class of errors that potentially lead to
Byzantine behaviour!

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 7
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Themis Framework

Requirements for efficient BFT
frameworks:

Concurrency
Multiple small requests
Asynchronous execution

Event-driven, non-blocking I/O
Often realized with Java NIO

Rust: Async/Await, Futures,
Tokio libraries

Recently stabilized language features!

Library

Client

Protocol Module

Application Module

Communication
Module

Themis has three modules:
Communication
Protocol
Application

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 8
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Themis Framework

Requirements for efficient BFT
frameworks:

Concurrency
Multiple small requests
Asynchronous execution

Event-driven, non-blocking I/O
Often realized with Java NIO

Rust: Async/Await, Futures,
Tokio libraries

Recently stabilized language features!

Library

Client

Protocol Module

Application Module

Communication
Module

Themis has three modules:
Communication
Protocol
Application

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 8
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Communication Module

Handles connection management
Spawn tasks:

Listener for new connections
Sender and receiver for each connection

Communication between tasks with
asynchronous channels
Messages are verified and batched before
entering protocol stage

Library

Client

Protocol Module

Application Module

Communication
Module

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 9
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Protocol Module

Protocol implementation as interface (trait)
Easy implementation of new protocols
Handles incoming and outgoing messages
Currently includes:

PBFT: ordering, checkpointing, view change
Hybster [Behl et al., EuroSys’17]: hybrid protocol with
trusted subsystem based on Intel SGX

Library

Client

Protocol Module

Application Module

Communication
Module

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 10
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Application Module

Application implementation as interface
Asynchronous for higher flexibility:
execute()method takes request
Returns a Future of a response

Creates snapshots for checkpointing
and failure recovery
Does not have to be implemented in Rust

Library

Client

Protocol Module

Application Module

Communication
Module

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 11
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Evaluation
Themis implementation with PBFT

8.6 kLoC

Compare to Reptor framework: Java-based PBFT
Single-threaded execution
RSA for message authentication
Checkpoint creation at every 1000 requests
Four replicas and one client machine

Intel Core i7-6700 @ 3.40GHz, 24GB RAM
Intel Xeon E5645 @ 2.40GHz, 24GB RAM

Research Questions:
How does Rust’s throughput and latency compare to Java?
How is the memory consumption of the frameworks?

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 12
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Evaluation: Throughput

0 5 10 15 20 25 30 35 40
0

10

20

30

+28%

+77%

Clients

T
h
ro
u
gh

p
u
t
[k
rp
s]

Themis 100B/10 Themis 100B/100

Reptor 100B/10 Reptor 100B/100

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 13
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Evaluation: Latency

0 5 10 15 20 25 30 35 40
0

50

100
-44%

-25%

Clients

L
at
en

cy
[m

s]
Themis 100B/10 Themis 100B/100

Reptor 100B/10 Reptor 100B/100

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 14
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Evaluation: Memory Consumption

100B / 10 100B / 100
Themis 12.5 MB 44 MB

Reptor 1.8 GB 2.8 GB

Reptor: 64–144× higher memory consumption
Complete memory per process measured at end of benchmark runs
Lower memory consumption due to lack of runtime

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 15
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Roadmap

Improvements since submission:
Bug fixes in evaluation
Message authentication using elliptic curve cryptography, e.g. ECDSA

93 % higher throughput, 53 % lower latency than RSA
WIP implementation of Hybster

Future Work:
BFT for embedded settings with restricted memory capacity
Consensus in embedded blockchains, e.g. in railway systems

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 16
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Conclusion

Rust has high performance and memory safety
New features allow implementation of safe
high-performance BFT frameworks

Themis presents a first prototype of PBFT
Evaluation shows promising results
Investigation of usage of BFT for blockchains in
embedded settings

Library

Client

Protocol Module

Application Module

Communication
Module

0 10 20 30 40
0

10

20

30

Clients

T
h
ro
u
gh

p
u
t
[k
rp
s]

Themis 100B/10 Themis 100B/100

Reptor 100B/10 Reptor 100B/100

0 10 20 30 40
0

50

100

Clients

L
at
en
cy

[m
s]

Thank you for your attention! Questions?
ruesch@ibr.cs.tu-bs.de

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 17
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Conclusion

Rust has high performance and memory safety
New features allow implementation of safe
high-performance BFT frameworks

Themis presents a first prototype of PBFT
Evaluation shows promising results
Investigation of usage of BFT for blockchains in
embedded settings

Library

Client

Protocol Module

Application Module

Communication
Module

0 10 20 30 40
0

10

20

30

Clients

T
h
ro
u
gh

p
u
t
[k
rp
s]

Themis 100B/10 Themis 100B/100

Reptor 100B/10 Reptor 100B/100

0 10 20 30 40
0

50

100

Clients

L
at
en
cy

[m
s]

Thank you for your attention! Questions?
ruesch@ibr.cs.tu-bs.de

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 17
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 18
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Evaluation: ECDSA

0 10 20 30 40
0

20

40

Clients

T
h
ro
u
gh

p
u
t
[k
rp
s]

Themis RSA 100B/10 Themis RSA 100B/100

Reptor RSA 100B/10 Reptor RSA 100B/100

Themis ECDSA 100B/10 Themis ECDSA 100B/100

0 10 20 30 40
0

50

100

Clients

L
at
en

cy
[m

s]

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 19
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Async/Await in Rust

Event-based
architecture
Reactor: notifies
about incoming event
Executor: takes data
and executes async
function (Future)

https://dev.to/gruberb/explained-how-does-async-work-in-rust-46f8

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 20
Institute of Operating Systems
and Computer Networks

https://dev.to/gruberb/explained-how-does-async-work-in-rust-46f8

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Executing Futures

Spawned as tasks on an Executor
Executor polls tasks when Waker is
called
I/O objects (sockets) register with
Reactor
Reactor waits for socket readiness
Reactor wakes task when socket is ready

Executor Reactor

poll register

wake

Future Futurechannel

poll

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 21
Institute of Operating Systems
and Computer Networks

Introduction Rust Themis: BFT in Rust Evaluation Conclusion

Futures
trait Future {
type Output;
fn poll(&mut self, waker: &Waker) -> Poll<Self::Output>;
}
enum Poll<T> {
Ready(T),
Pending,

}

trait Future {
type Output;
fn poll(self: Pin<&mut Self>, waker: &Waker) -> Poll<Self::Output>;

}

Future are lazy and have to be polled
Future resolves to type Output, provided by implementer

2019-12-09 Signe Rüsch Themis: An Efficient and Memory-Safe BFT Framework in Rust Page 22
Institute of Operating Systems
and Computer Networks

	Introduction
	Rust
	Themis: BFT in Rust
	Evaluation
	Conclusion

