CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2022 52th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2022).

ZUGCHAIN: Blockchain-Based Juridical Data
Recording in Railway Systems

Signe Riisch*, Kai Bleeke*, Ines Messadi*, Stefan Schmidt*,
Andreas Krampf?, Katharina Olze!, Susanne Stahnke’, Robert Schmid¥, Lukas Pirl¥,
Roland Kittel®, Andreas Polze¥, Marquart Franz', Matthias Miillert, Leander Jehl*”, and Riidiger Kapitza*
*TU Braunschweig, Germany, ruesch@ibr.cs.tu-bs.de, kapitzalibr.cs.tu-bs.de
Siemens AG, Germany fSiemens Mobility, Germany $DB Systel, Germany YHPI, University of Potsdam, Germany
”University of Stavanger, Norway, leander. jehl@uis.no

Abstract—In modern trains, a juridical recording unit logs
events that occur during operation. This data is used to reconstruct
the exact chain of events in case of failures and crashes. To ensure
data recovery after an accident, the recorder is hardened against
physical damage and secured against tampering; however, it is a
single proprietary device and by no means indestructible.

This paper presents ZUGCHAIN, a distributed, blockchain-
based juridical recording unit that opportunistically utilizes on-
train hardware. ZUGCHAIN offers high reliability via replication
and tamper-resistance due to the nature of blockchains. It
implements a permissioned blockchain based on a Byzantine fault-
tolerant agreement protocol suitable for diverse communication
systems. To utilize the logged data for advanced services, e.g.,
predictive maintenance, ZUGCHAIN securely and continuously ex-
ports traces to private data centers. We demonstrate ZUGCHAIN’s
feasibility with an implementation running on real train hardware,
where we show that ZUGCHAIN orders data within 14 ms using
at maximum 15 % of the total available shared CPU resources,
thus fulfilling requirements of juridical recorders.

Index Terms—railway, BFT, event recorder, blockchain

I. INTRODUCTION

Trains, similar to planes and other safety-critical systems,
have a “black box” that logs any activity in the form of distinct,
configured events to facilitate investigations of accidents and
incidents. The events that must be recorded include e. g., speed,
brake activation, and door activity with their corresponding
timestamps, as specified in IEC 62625 [1]. The data collected
in such a black box, a so-called juridical recording unit (JRU),
can provide valuable insight into the operation of a train and
is primarily used to detect malfunctions during inspections and
for root cause analyses after accidents.

These JRUs are constructed according to strict requirements,
which ensure that the components are able to withstand
immense physical damage, e.g., in case of fire, impact, or
pressure [1], [2]. However, it is still possible that they become
damaged to the point of destruction, where logged information
cannot be recovered [3]. The centralized JRU therefore is a
single point of failure. There is also a question of trust in the
recorded data; while a train contains components from multiple
manufacturers, the proprietary JRU is constructed by only one
of them. Thus, one company has authority over the juridical
logging, instead of sharing this responsibility amongst these

Acknowledgements: We thank the anonymous reviewers and our
shepherd Katinka Wolter for their valuable feedback. This research was
supported by the German BMDV mFUND under grant no. 19F2093D.

competing and distrustful companies. Lastly, the handling of
recorded data is complicated, as the process of data extraction
is designed to limit the possibility of physical tampering. The
JRU can only be accessed by authorized personnel equipped
with a physical key. Currently, the time-consuming extraction
is done after longer intervals of operation, potentially up to
several days, during a train’s operational pauses. Despite the
physical protection, manipulation or data losses still occur [3].

Increasing privatization of railway operations and fragmen-
tation of companies lead to digitalization and interoperability
efforts [4], [5], e. g., in the OCORA project [6]. This includes
replacing centralized, expensive hardware such as the JRU,
whose safety is highly regulated but which only has relatively
weak security mechanisms. A theoretical analysis by Braband et
al. [7] used mathematical modeling to show that replicating the
JRU across multiple heterogeneous commodity hardware nodes
along the train offers comparable availability and reliability as
the centralized JRU in case of accidents. The probability of all
replicated JRUs getting destroyed while using commodity train
hardware is sufficiently low to ensure that at least one record
remains. Replication can also facilitate shared logging authority
between companies. Remote connections of replicas allow for
more timely and effective uploading and analyzing of data.
Continuously retrieving data during regular train operation
could prevent gaps due to partial data destruction during
accidents, as less data is stored only on the train.

Independent logging of multiple nodes is not sufficient: As
a central JRU, despite being a hardened device [3], [7], is a
single point of failure, the naive approach is to use multiple
independent JRUs distributed across the train. The trade-off
for increased probability of them surviving a crash intact is
having unsynchronized logs, which may lead to data loss.
Manipulation of individual JRUs is still possible and hard
to detect, and multiple JRUs are expensive. Next, one might
consider a leader-follower architecture. Here, data can still be
read from any surviving node in case of a crash, i.e., only one
node is needed to get the recorded data. However, these data
can still be compromised. If due to cost factors followers run
on heterogeneous commodity train hardware, this also means
losing the advantages of a hardened device.

The commodity follower nodes can be more easily com-
promised, and if multiple followers log different data, then in
case of a crashed leader it cannot be distinguished between

correct and manipulated data. Additionally, events are received
via a time-triggered bus system, where a message might get
corrupted during transmission, leading to nodes missing data
or receiving different input [8], [9]. Thus, multiple independent
nodes need to receive the logging data and agree on their
reception and order, which can be achieved via an agreement
protocol. Furthermore, the replicated logging is co-located on
the same machines as the observed system, which might behave
arbitrarily and therefore cause software on these machines to
fail unexpectedly. This, in turn, can influence the logging to
provide erroneous messages to the replication group, meaning
that any kind of errors from faulty hardware, interfering
processes, or external manipulation can lead to a diverging or
incomplete log. To ensure that such faulty nodes will not disrupt
the correct recording of events, a Byzantine fault tolerant (BFT)
protocol [10] should be used to tolerate arbitrary failures.

A traditional JRU protects data integrity mainly via physical
hardening and access control. A JRU design with replicated
nodes, however, must offer software-based data integrity. One
solution is a blockchain [11]: a blockchain is an append-only,
immutable record of transactions, where any modification of the
content after it has been written is impossible without detection,
and the data is stored on multiple independent, untrusted
nodes. This allows external verification of data integrity, even
in the case of only one remaining record. A blockchain-
based solution therefore offers the required tamper-resistance.
However, it is necessary to consider the safety-critical train
communication which is performed via time-triggered bus
systems such as ProfiNet, ProfiBus, or the Multifunction Vehicle
Bus (MVB) [12]. The blockchain communication, in particular
the BFT protocol, could lead to congestion.

This paper presents ZUGCHAIN, an efficient blockchain-
based event recorder for railway systems with real-time capa-
bility. The traditional, specially tailored and hardened device
of the JRU is superseded by a replicated solution of on-board
commodity hardware while maintaining fault tolerance within
the timing requirements. We design a permissioned blockchain
platform with BFT consensus which is suitable for the train
domain in order to achieve secure data logging according to the
requirements of modern JRUs. We avoid changes to the safety-
critical bus systems; instead, we utilize certified, non-intrusive
solutions by opportunistically using existing, non-critical links
for consensus communication. Storing the data on remotely
accessible devices allows externalization of logged data to
private data centers operated by railway companies, where
data integrity can be verified due to the blockchain structure.
This allows safe pruning of the blockchain on the devices,
i.e., deleting exported blocks to reduce memory usage. Our
contributions are as follows:

o To the best of our knowledge, ZUGCHAIN is the first
blockchain system used in operational railway aspects. We
show how the specialized device of the JRU can be replaced
by software distributed on on-board devices, identify domain
demands, and present a design tailored to the specific fault
model and requirements, namely complete, tamper-proof,
and timely recording.

Ethernet

1116 901-8

Fig. 1: Overview of data logging in trains today (ACS:

acceleration control system; BCS: brake control system).

o We present the ZUGCHAIN BFT communication layer, which
adapts the authenticated, individual clients of primary-based
BFT protocols to input via a single, unauthenticated bus.
It receives bus data and ensures completeness of juridical
recording while reducing the overhead with filtering.

e We show how a blockchain can simplify data collection
during train operations with our data export protocol. The
lightweight export is decoupled from the agreement, and
synchronizes between agreement and storage for secure,
early, and consistent persistence of data.

o ZUGCHAIN runs on commodity hardware available on trains
instead of a specialized JRU. We present a testbed and
performance evaluation of ZUGCHAIN on this hardware,
showing that we can match JRU requirements while utilizing
at maximum 15 % of CPU resources, indicating the suitability
of shared device usage.

The structure of the paper is as follows: §II gives relevant
information; §III presents the system design; §IV gives imple-
mentation details; §V discusses evaluation results; §VI shows
related work; and §VII concludes the paper.

II. BACKGROUND

We give information on train communication networks and
JRUs (§1I-A), blockchains (§11-B), and BFT protocols (§1I-C).

A. Communication and Data Logging in Trains

In today’s trains, juridical recording units (JRUs) are the
central logging unit of any juridically relevant train events
and operational parameters. They allow data recovery after
accidents, thus providing information related to these inci-
dents. There is no legally binding global definition of the
JRU requirements; instead, national railway companies issue
their own based on existing standards [1], [2]. JRUs usually
store data in a capacity-limited ring buffer in flash memory.
Therefore, authorized personnel need to regularly access the
recorder to extract the data if a continuous history is required.
The JRU is located in a central point on the train, e.g., the
locomotive as shown in Fig. 1, where it is connected to a
bus to record all relevant signals. Which signals are to be
recorded is configured during deployment or maintenance.
Among others, these are the train’s speed and location, safety-
relevant commands from the train driver, or interventions by
the automatic train protection (ATP) [1]. Devices of the ATP
receive data from sensors, e. g., antennas or control elements,
perform computations, and send the result via the bus to be
displayed for the train driver and to be logged by the JRU.
Although it is recording safety-critical data, the process of

recording itself is not safety-critical. A train continues its drive
normally in case of a failed or malfunctioning JRU. The JRU is
mainly secured against unauthorized access, physical damage,
and tampering via integrity protection using checksums. It is
not required to perform any verification of the received signals
before logging. Yet, malicious attacks and bit manipulations
are possible, and as the JRU is not indestructible and is a
centralized component, data loss can still occur [3].

The standard infrastructure to reliably exchange information
throughout multiple vehicles of trains is the train communi-
cation network. Commonly used systems include ProfiBus,
ProfiNet, or CAN buses [12]. However, most widely used is
the combination two types of buses: a wire train bus (WTB)
to connect separate wagons and a Multifunction Vehicle Bus
(MVB) to connect devices within one wagon [13]-[15]. This
way, signals from the MVB of one wagon can be forwarded
via the WTB to the JRU. The MVB is standardized by IEC
61375-3-1 [13], supported e. g., by Siemens and ABB [14],
and transfers process, message, and supervisory data [15]. For
the JRU, the focus is on periodically transmitted process data,
which represents urgent data such as speed and emergency stops.
The MVB is a synchronized bus system with a leader/follower
communication scheme, where the bus master sets the cycle
and polls the connected devices for data. Communication errors
such as bit flips still occur despite its robust design [9].

Braband et al. [7] analyze the reliability of a JRU replicated
across commodity hardware distributed across the train. For this,
data must be neither partially nor completely lost or changed
after a crash. They argue that this can happen when the JRU
fails and is not logging data (note that train operation continues
with a failed JRU), or when the JRU is compromised during a
crash. Using data of crashes from recent years published by the
International Union of Railways (UIC) and the European Union
Agency for Railways (ERA), the authors evaluate different
incident scenarios. They conclude that a JRU distributed across
the train can reach the required reliability, thus allowing to relax
the reliability requirements of the hardware itself. This enables
the use of commodity hardware, with a mean time between
failures of 20,000 h. However, the authors’ work is purely
theoretical and does not present a system or design of how
such a distributed JRU could be realized. It builds the empirical
basis for our fault assumptions that aim at avoiding any lost
or changed data after malfunctions of any kind, including the
categories of crashes considered by Braband et al.

ZUGCHAIN supersedes the data logging of a centralized
JRU with distributed, tamper-resistant logging using a permis-
sioned blockchain while maintaining the original requirements
and protection of a JRU. ZUGCHAIN’s blockchain runs on
commodity on-train hardware. In our specific prototype, we
assume components to be connected via an MVB, but our
approach is independent of the underlying bus technology and
can be extended to any bus, e. g., ProfiNet.

B. Selecting a Blockchain Technology for ZUGCHAIN

Blockchain-based distributed ledger technologies (DLTs)
such as Bitcoin [16] or Hyperledger Fabric [11] enable a diverse

set of use cases, from financial to industrial applications.

A blockchain is a replicated, distributed data structure that
stores transactions occurring in a peer-to-peer network. This
record of transactions is stored in the form of a timestamped
list of blocks. Each block contains multiple transactions, is
identified by its cryptographic hash, and includes a reference to
the previous block’s hash. Linking the blocks via their hashes
results in a linear, chronological chain of blocks. Creating and
agreeing on the next block of a chain across the network is not
trivial; agreement protocols such as Proof-of-Work (PoW) [16],
Proof-of-Stake (PoS) [17] or BFT protocols (see II-C) ensure
integrity and consistency of the blockchain. They offer a
sufficiently high difficulty for block creation, thus preventing
a malicious actor from creating a chain of blocks containing
manipulated transactions with correct hashes. This results in
an immutable ledger, which allows the tamper-resistant storage
of transactions or assets. Based on the permissions of the
ledger, blockchains can be classified into permissioned or
permissionless. Permissionless blockchains allow any new user
to join and users are typically pseudonymous, whereas users
in permissioned blockchains are known, authenticated entities.

Our system records train events which may contain sensitive
information that should not be publicly accessible and runs
on internal train components. We have a limited number of
participating nodes reading events from the bus; these nodes
are known and authenticated at startup and changes to this
network are only expected during train maintenance or overhaul.
The train requirements of ZUGCHAIN therefore match well
with a privately accessible, permissioned blockchain; or, more
precisely, a consortium blockchain, where nodes are typically
provided by different companies. This allows using BFT for
block creation: BFT protocols are more performant than PoW,
though they generally are less scalable [18]. Due to these
requirements and the demand to offer a lean and resource-
efficient system, BFT is the fitting basis for ZUGCHAIN.

C. Byzantine Agreement for Juridical Event Logging

In the train, we have a closed system with a limited number
of participants. Malicious behavior is therefore less of a concern
compared to the multitude of hardware errors that can occur on
the shared devices and which may lead to Byzantine behavior.
As the JRU has to log reliably even in critical situations,
we need to consider faults beyond simple device crashes.
Especially after accidents, a wide spectrum of faulty behavior
should be addressed, such as deleting events or changing their
content or order [3]. Accordingly, we consider a Byzantine fault
model [10]: in BFT protocols, a group of replicas aims to reach
consensus on the order and result of client requests, despite a
subset of these replicas potentially behaving arbitrarily faulty.
Total order agreement is necessary for creating a blockchain
since processes need to agree on the next block to be appended.
BFT protocols have been used in blockchain platforms in the
past, both traditional protocols for small, selected groups of
participants [11], [18], [19], as well as for wide-area, high-
scalability systems [20]-[22]. In the train, we do not require
high scalability for large numbers of changing participants;

instead, traditional protocols such as Practical Byzantine Fault
Tolerance (PBFT) [10], achieving high performance with a
limited number of participants, are well suited.

PBFT implements a primary-based consensus and assumes
a partially synchronous network for liveness. Clients are
authenticated and issue requests to invoke operations on the
replicated service. To agree on the order of requests, the replicas
perform three phases: preprepare, prepare, and commit. In
the preprepare phase, the primary proposes a message by
broadcasting it to all replicas, during which a sequence number
is assigned to this request. Then, replicas multicast a prepare
message to confirm they have received the same number for
this request. After receiving at least 2f prepares from different
replicas, each replica multicasts a commit message to finalize
the acceptance of the assigned order. Finally, after receiving
2f 4+ 1 commit messages, possibly including its own, each
replica executes the request. The result is sent to the client,
who waits for f + 1 identical replies to ensure correctness.

Any replica can become faulty or unavailable, provided that
the number of faults is less than f. The primary can be affected
as well, e. g., by not forwarding requests. Once backup replicas
detect this via timeout, they trigger the view change to elect a
new, correct primary. This subprotocol is crucial for resuming
normal-case operation in the presence of faults. Here, replicas
exchange view change messages informing about their state
since the last stable checkpoint. Once 2f replicas have sent
this to the new primary, which is selected in a round-robin
way, the primary starts a new view.

In the train, logging input is received via unreliable bus
communication and potentially diverging input from all replicas
should be logged. By reading from the bus on all nodes,
it is feasible to receive and process all available inputs.
However, in the case of standard PBFT clients, this would
result in all clients individually submitting their requests to
the primary. If the received data is identical, this incurs high
logging overhead as multiple requests containing these data
are ordered. In ZUGCHAIN, we present a BFT communication
layer suitable for the train domain by replacing traditional BFT
client behavior with efficiently handling requests received over
bus communication, thereby preventing payload duplication.

III. DESIGN

In this section, we give a complete system overview (§11I-A),
discuss system and fault models (§1II-B), and present the BFT
communication layer (§1II-C) and the export protocol (§1II-D).
We discuss how our following requirements are fulfilled:

R1 Replacing the JRU with a replicated system, ensuring high
performance despite arbitrary failures;

R2 Replacing an expensive, dedicated device with opportunis-
tically utilizing on-train commodity hardware, without
changes to safety-critical communication infrastructure;

R3 Fulfilling the JRU requirements while preventing omission
of data received over the bus as well as retroactive
manipulation of logged data;

R4 Securely and consistently export data while protecting
integrity and garbage collect without omission of data.

Data Center
“F Export
2 8 :

Bus Communication

.} &

zC zC Z zC N\
Atp| |oog |acs| |ood |Bes o1\

. 1

Fig. 2: ZUGCHAIN (ZC) runs on shared nodes, uses existing
Ethernet links and exports the blockchain to private data centers.

A. ZUGCHAIN in a Nutshell

There are several parties in our system: the railway company,
multiple companies producing trains or train components, and
federal authorities that investigate responsibility in the case
of incidents. No single party should be able to tamper with
the logged data. As a train is a heterogeneous system, not
only one company is producing installed hardware or software
components. In the case of an incident, currently the previous
behavior of each safety-relevant component is analyzed and
reconstructed based on JRU data. As we replace a certified,
tamper-proof device with software running on commodity
hardware, the new setup allows for more options of involuntary
and possibly malicious interference. Accordingly, we aim to
avoid one single company having control over the logging and
thus the ability to possibly implicate others for any misconduct,
and to instead allow all companies partial responsibility.

Blockchain-Based Train Event Logging. Our design, which
is shown in Fig. 2, replaces the JRU with a distributed
blockchain-based solution. By using already deployed, on-
board hardware as ZUGCHAIN nodes, we minimize changes to
the train. These nodes, which have enough resources available
to host the ZUGCHAIN system, can come from each of the
companies, satisfying R2. Messages are received as signals
via bus communication. Data loss on the bus, e. g., deletion
of signals sent via the bus or blocking of data reception on
nodes, is covered by bus specifications [13] and thus out of
scope. Messages are read from the unreliable bus by all nodes
independently. ZUGCHAIN records the same data as the JRU,
i.e., we do not require changes of the signals after they have
been sent, e.g., by the ATP. Data is recorded in the same bus
frequency and quality as in the original JRU, meaning that
existing requirements are still fulfilled. Some data is received by
the JRU in encrypted form and logged as is, which ZUGCHAIN
handles identically. This data may include sensitive information
that is encrypted and authenticated at the data source before bus
transmission and which should only be available to authorized
parties after export.

From Signals to Blocks. Data is received via the bus in a raw
format from which we derive the signals. This uses identical
transformation steps as in the JRU, which have been verified
and approved ensuring that they are correct and free of side-
effects. Nodes receive, parse, and filter the data according to
relevance and for higher efficiency as is common practice in
JRUs, e. g., to log the speed only upon changes. After this,
messages received from the bus are unique.

Once the message has been transformed, it is submitted to
the BFT protocol. By using a combination of a BFT protocol
for agreement and a blockchain for integrity, we safeguard both
against faults during operation, e. g., crashes that destroy all
blockchain nodes except one, as well as faults during ordering,
ranging from arbitrary influences of any co-located processes
on shared nodes to adversarial behavior. The BFT nodes agree
on the content of the next block, thereby recording any input
from the unreliable bus and maintaining a consistent log despite
potential arbitrary behavior. The ordered messages are stored in
a blockchain, making deletion impossible without detection or
tampering of the blockchain copy on all nodes, thus satisfying
R3. This is especially relevant after accidents: after salvaging
the ZUGCHAIN nodes, at no point should it be possible to
selectively delete, reorder, or otherwise modify the logged
events without detection, which is achieved by the blockchain.
Additionally, a checkpoint of the BFT protocol is created for
each block, which is thus backed by 2f 4+ 1 asymmetric replica
signatures. Even one remaining ZUGCHAIN node prevents
undetected modification of logged requests. If all copies are
lost or in the hand of an attacker, then they can delete the head
or even the complete chain; however, this is identical to the
JRU [3], and the probability that multiple ZUGCHAIN nodes
are destroyed is sufficiently low [7].

While the nodes read the relevant signals from the bus, the
consensus messages are exchanged over a secondary commu-
nication link, e. g., Ethernet, which has become increasingly
common in trains [14], [23], [24]. This prevents changes to
the bus schedule, does not interfere in the existing, safety-
critical communication, and older trains can be retrofitted more
easily. The blockchain is permissioned, where the participants
are the train devices and no unauthorized device can join the
network. The blocks are created on the nodes after finishing
BFT ordering, and stored until they can be securely exported
to the railway companies’ private data centers. Different from
traditional BFT systems, where clients submit unique requests,
the ZUGCHAIN nodes read mostly identical data from the
bus, but omissions and reordering may occur. In §III-C, we
describe a communication layer for BFT protocols that filters
such duplicates to reduce system load while ensuring that no
information is omitted from the log, thus satisfying RI.

Secure Export of Blockchain Data. Continuously exporting
logged data traces during train operation simplifies the extrac-
tion process, enables mechanisms for predictive maintenance,
and is desired due to the nodes’ limited memory. The train is
connected to the outside world via external gateways, e. g., via
LTE or Wi-Fi, whose coverage has immensely improved over
the last years. Additionally, as the competing railway companies
mutually distrust each other, it is not desirable to have only
one record of the blockchain; instead, multiple synchronized
records are maintained in independent, private data centers
each operated by a company. When the train is in range of a
cell tower, the ZUGCHAIN nodes establish a connection to a
data transfer endpoint, which can request the nodes to send any
blocks created since the last export. Our protocol ensures that

only correct blocks are accepted by data centers, and that recent
blocks are actually exported and subsequently deleted. For this,
data centers query the nodes independently, synchronize and
verify the data, and confirm the export to allow deletion of
blocks on nodes. The private data centers permanently store
the blockchain data, and faster, less complicated access to
the collected data for predictive maintenance is possible. The
protocol for export and blockchain pruning satisfies R4 and is
described in more detail in $I1II-D.

B. System Model and Fault Assumptions

Ordering and Blockchain. For ZUGCHAIN nodes, we assume
a Byzantine fault model [10]: we have a set N of n > 3f + 1
nodes of which up to f can behave arbitrarily faulty. As
consensus messages cannot be allowed to congest the safety-
critical bus, an Ethernet network is used between replicas.
For the consensus, we therefore have a partially synchronous
network, i.e., communication is asynchronous and messages
can be delayed for up to a constant, but unknown time d,
after which the network is temporarily synchronous. All nodes
are equipped with a public-private key pair for signature
generation and verification, and all messages exchanged by the
ZUGCHAIN nodes are signed via asymmetric cryptography to
ensure integrity. We assume that cryptographic techniques are
secure and cannot be broken by the adversary.

As typical in BFT models, replicas may behave arbitrarily
faulty, which includes delaying, duplicating, omitting, reorder-
ing, or corrupting protocol messages. A faulty replica may, for
example, omit or send inconsistent protocol messages to other
replicas, to get the system in an inconsistent or dysfunctional
state. Additionally, faulty nodes may omit, duplicate, reorder,
or even add new data not received from the bus. Reordering
or addition of data may be done either to mislead analysis or
to incur additional system load as a denial of service attack.
The detection of such added data and the reestablishing of
the correct order is done after export during lab analysis and
out of scope for the juridical logger. Other DoS attacks, e. g.,
spamming of messages with false authenticators is out of scope.

Bus Communication System. The main challenge arising
from bus communication is to filter duplicated input, while
ensuring that all individual inputs are included in the blockchain.
Inputs are received synchronously by the nodes via a time-
triggered bus where the bus master regulates communication.
All signals transmitted in a bus cycle are consolidated into one
BFT request. Safety is ensured for the bus and the connected
devices by fulfilling corresponding standards [25]. Data is
not authenticated, which means that individual data sources
are indistinguishable. Requests that a node reads from the
bus are unique, but the same message is read by multiple
nodes. Such duplicates should be filtered to avoid high load.
However, messages from the bus can be dropped or reordered,
i.e., a replica does not receive any signals in a cycle, and all
signals from one bus cycle are received during a different one,
respectively. It is also possible for nodes to read diverging input
during the same bus cycle. Filtering must not prevent such
individually received signals to be logged. As system load

Module | Call | Explanation Algorithm 1 ZUGCHAIN Communication Layer
(D down | PROPOSE(r) proposes request to consensus group 1: function INIT
@ down SUSPECT(id) suspect node to be faulty, init. view change 2: R+ 0 > ZUGCHAIN node request queue
O up DECIDE(T, sn) totally ordered request and seq.no. 3: id € N > ZUGCHAIN node id
@ up NEWPRIMARY returns new primary after view change 4: primary € N > initial primary
(@ down | RECEIVE(req) read parsed request from bus .))
@ up LoG(req, id, sn) | append request to totally ordered log 5 upon RECEIVE(req;) do & read parsed data from bus
6: insert(R,req;)
7 if (¢id == primary) A (linLog(req;)) then
TABLE I: Interfaces of BFT (@) and ZUGCHAIN (@) 8: r + sign(req;, id) > authenticate and include (primary) node id
Bus ¥ T T 9: PROPOSE(T) > propose to BFT if co-located with primary
@ ; Blockehain (BC 8 5 10: else
% [Bus !nterface (B1)] [Blockehain ®C)| | BI [[BC][BI | BC] 11: t[regq;] < timer.start(SOFT_TIMEOUT)
> | receive log
'-z:Eu | ZugChain BFT Laye'_' (zCBFT)||[ZCBFT || ZCBFT |... 12: upon DECIDE(r, sn) do > receive ordered request returned from BFT layer
S propose* decide * 13: if r.req € R then
o BFT <> BFT <p» BFT <> 14: delete(R, r.req)
. . 15: if 3 t[r.req] then
Fig. 3: Overview of the ZUGCHAIN node components. 16: cancel ¢t[r.req] > cancel hard or soft timeout

can be accurately estimated during setup, message buffers
for phases of asynchrony can be appropriately sized. All
data sent over the bus is considered valid data to be logged,
even if it is only received by one node. However, nodes
can propose corrupted or fabricated data, which was not
originally received via the bus. This data should be logged in
combination with the node identifier, as it is especially relevant
for failure analysis to have a complete log of the whole system
behavior. Detection of such messages and analysis of data is
out of scope. The blockchain, as an append-only data structure,
prevents new data (fabricated or correct) to be mixed with
older data. While also correct data can be delayed, e.g. due
to network failures or omission by a faulty primary, out of
order data that is included long after its proposed creation
should be regarded sceptical during analysis. ZUGCHAIN
employs a specific communication layer that ensures no
payload duplication: No correct process logs the same payload
more than once. Additionally, ZUGCHAIN ensures correct
filtering and avoids discarding inputs despite primary changes
as client-side bus retransmissions are unavailable, handles
input from multiple sources such as several independent

buses, and writes the ordered requests into the blockchain.

We note that, in accordance with the JRU specification and
requirements communicated by domain experts, ZUGCHAIN
does not guarantee that the order in which data is recorded
reflects the order in which it is sent on the bus.

C. The ZUGCHAIN BFT Communication Layer

ZUGCHAIN is an extension layer to primary-based BFT
protocols which replaces traditional client interactions with
optimal handling of input via bus communication. It ensures
that all bus input received on a correct node is captured, while
avoiding the overhead of recording identical input multiple
times via filtering. In case of diverging input, ZUGCHAIN
ensures that requests that are received on single nodes are
also logged, and that each request is logged in conjunction
with the id of a node that has actually received it. ZUGCHAIN
uses an interface as typically provided by a primary-based
BFT protocol, shown as (1) in Tab. I. This interface explicitly
exposes the BFT primary election and suspicion to the
ZUGCHAIN layer, allowing implementation of filtering on the

primary and suspecting primaries that are not filtering correctly.

17: if inLog(r.req) then > primary has submitted duplicate request

18: SUSPECT(primary) > initiate view change
19: else
20: LoG(r.req, r.id, sn) > append to log, include id of origin node

21: upon SOFT_TIMEOUT t[req] expires do

22: r < sign(req, id) > authenticate and include node id
23: t[req] < timer.start(HARD_TIMEOUT)

24: BROADCAST(r)

25: upon BROADCAST(r) do
26: if inLog(r.req) then

27: return > ignore duplicates already in the log
28: if (id == primary) A (r.req ¢ R) then

29: PROPOSE(T) > propose with id of broadcasting node
30: else

31: t[r.req] < timer.start(HARD_TIMEOUT)

32: forward r to primary > ensure primary receives request

33: upon HARD_TIMEOUT t[r] expires do
34: if linLog(r) then

35: SUSPECT(primary) > initiate view change
36: upon NEWPRIMARY(pid) do
37: primary pid

38: for V req € R do

> after view change

> for all open requests

39: if (id == primary) A (linLog(req)) then

40: r + sign(req, id) > authenticate and include (primary) node id
41: PROPOSE(T) > propose on new primary
42: else

43: t[req] < timer.start(SOFT_TIMEOUT) > reset timers

Tab. I also shows the interface of ZUGCHAIN nodes (@),
which RECEIVE data from the bus and LOG requests ordered
by the BFT module to the blockchain. The interactions of the
ZUGCHAIN node components are shown in Fig. 3.

Agreeing on Requests. The ZUGCHAIN algorithm is shown
in Alg. 1. The algorithm combines content- and primary-aware
request filtering, where duplicate requests are filtered based
on their payload and nodes other than the primary avoid
submitting duplicates. This filtering is based on the log of
previously decided requests as well as the request queue R,
which contains any open and in-flight requests. If a faulty
primary proposes duplicates, this is detected during log checks,
leading to suspicion and change of the primary. This filtering
lowers the ordering overhead while still ensuring a complete
log. Note that the filtering is done for performance reasons, not
for correctness of the log. Further, ZUGCHAIN employs timers
to ensure swift logging and prevent lost or omitted requests,
e. g., backups submit requests only when their received input
has not been decided upon within a certain time.

The nodes receive the requests via the bus and maintain

their own request queues (In. 5, 6). Backup nodes start a
SOFT_TIMEOUT timer for each received request (In. 11),
while the ZUGCHAIN node co-located with the current BFT
primary (in the following referred to as (ZUGCHAIN) primary)
signs the first request in its queue and calls PROPOSE (In. 9).
Once the BFT module delivers an ordered request via the
DECIDE call, ZUGCHAIN nodes check whether they have the
corresponding request in their queue, in which case they remove
it and cancel its SOFT_TIMEOUT (In. 14, 16). Next, the log
is checked for duplicates and the primary is suspected when
duplicates are detected (In. 17). When the SOFT_TIMEOUT on
a ZUGCHAIN node expires, the corresponding request has not
been proposed by the primary thus far, in which case the node

proposes it by broadcasting the request to all replicas (In. 21-24).

The ZUGCHAIN nodes then start a HARD_TIMEOUT timer and
forward the request to the primary (In. 23, 32). If the request is
decided within the HARD_TIMEOUT, then the backups cancel
this timer (In. 16). Otherwise, the backups suspect the current
primary to be faulty, triggering a view change and, eventually, a
new primary (In. 35). After a new primary has been established
(In. 36), the co-located ZUGCHAIN node calls PROPOSE for
all its open requests, i.e., requests without a corresponding
DECIDE or running consensus instance (In. 41), while the other
nodes restart their SOFT_TIMEOUTSs (In. 43).

The ZUGCHAIN algorithm ensures that all requests received

by correct nodes are logged consistently and with according ids.

Additionally, in case the primary is correct, all duplicates are
filtered before submitting them to the BFT protocol, reducing
ordering overhead for BFT input via bus communication. If the
primary is faulty, the duplicates are detected and the primary
is suspected and eventually changed (In. 17). This is achieved
by checking the log of previously decided requests. In practice,
a check of the complete blockchain for every request is not
feasible; instead, we check against the recent history. This is
done efficiently with a hashmap over the requests of a sliding
window of past checkpoints as well as open requests in R. The
soft timeout is an optimization to avoid the additional load
of duplicate logging on the system, allowing to filter requests
received on multiple nodes. The hard timeout is used to detect
censorship of a faulty primary, equivalent to timers used, e. g.,
by PBFT. As in other work [10], the hard timeout has to be
adjusted to the actual network delay to avoid false suspicion of
correct primaries. As an optimization, for an underlying BFT
protocol such as PBFT, ZUGCHAIN nodes can already use a
primary’s preprepare as an indicator that this request will be
ordered and cancel the corresponding soft timeout.

Faulty Nodes. According to our fault model (§1II-B), a faulty
ZUGCHAIN node that is not the primary may misbehave in
five ways: (i) Request duplication: the faulty node broadcasts
duplicate requests. If these are already in the log or are
currently getting ordered, they will be filtered out by all replicas
(via the inLog function, In. 26). Other request duplicates are
filtered by the primary (In. 28); if these duplicates are not
part of the log yet, corresponding hard timeouts (In. 31) will
be cancelled on reception of the original message’s DECIDE

(In. 16). (ii) Request omission: requests received only at faulty
nodes may be omitted. This is identical to a lost bus connection
and in accordance with JRU behavior; however, in ZUGCHAIN,
we still log the input of the correct nodes. Typically, requests
are received on all or multiple nodes. (iii) Denial of service:
a faulty node may broadcast a large number of requests to
deteriorate performance. To avoid this, ZUGCHAIN limits the
number of open requests a node can send in parallel and other
correct nodes drop any further received requests. The limit is
calculated based on the bus frequency. (iv) Faulty broadcasts:
during broadcasting (In. 24), a faulty ZUGCHAIN node might
send the request only to a subset of replicas, e.g., in the
worst case omitting the primary. To avoid a false suspicion of a
correct primary, backups forward the request (In 32). (v) Faulty
suspicion: a faulty node may suspect any primary. This is not
problematic, since BFT protocols only change the primary after
it has been suspected by at least f + 1 nodes.

Faulty Primary. Additional to the above, a faulty ZUGCHAIN
primary may omit or delay proposing requests or incorrectly
filter duplicates. Message omission is detected and will trigger
suspicion and a view change. Delay of proposing messages may
cause soft timeouts to trigger leading to additional broadcasts
and load on the system, but no incorrect behavior. On repeated
occurrence, this could also be detected and may result in
a view change. Finally, incorrect filtering and proposal of
duplicates is detected by the check of the log upon DECIDE
(In. 17), leading to a view change. In practice, if a duplicate
whose original request is not available in the sliding window
of checkpoints is proposed, we record this duplicate. This can
lead to temporary performance degradation; however, it does
not violate the correctness of the log and this duplication can
be detected in post-operational analysis.

Blockchain Application. The signals have been parsed at
reception into a format compatible with JRU analysis tools.
Once a certain threshold of ordered requests has been reached,
the replicas deterministically bundle and hash them and store
the created block on disk.

Checkpointing. BFT checkpointing is used to garbage collect
consensus messages of ordered requests. Replicas exchange
application snapshots in signed checkpoint messages, creating
a stable checkpoint once 2f 4+ 1 messages have been received.
As we want to prevent any modification of blocks, especially
after crashes when only one replica remains intact, we generate
frequent checkpoints. A block is created after sufficient requests
have been ordered, and for every block a checkpoint including
this block and all its requests is created. A replica’s signed
checkpoint message thus confirms that it created this block.
We also leverage checkpoints in §III-D for secure data export.

Multiple Input Sources. While so far we have only discussed
nodes to be connected to a single bus, they may also be
connected to multiple input sources, which can potentially be
(partially) synchronous. ZUGCHAIN supports this: nodes have
one request queue per connected link from which requests are
processed, thus logging all messages from all input sources.

@read(last_sn)

stable checkpoint,
oc last_sn+1 |
blocKeur sn

Data Center A

@verify

@sign(delete(curr_sn))

B sync
5 l:ﬂ X
[delete(curr_sn)]p @ @@
@[ack]zugcr\am Node] T

Fig. 4: Overview of the export protocol. Any data center can
start the export. Signatures of id are denoted by [];q.

Zug
Chain

until
curr_sn|

[delete(curr_sn)]a
[delete(curr_sn)lg
[delete(curr_sn)]c

N

D. Secure Data Center Export for Blockchain Data

Newer JRU data is of higher interest, and older data can be
discarded in case of memory shortage without losing current
information. However, as we use a blockchain, we need the
complete chain to verify its integrity. We therefore need to

extract data before memory shortages or data losses occur.

ZUGCHAIN can export blocks to one or more private data
centers provided by the railway companies, who already store
JRU traces. Any data center can request newly created blocks
from the replicas, which are then synchronized between and
verified by all data centers. This export allows us to collect
the blockchain state and prevent it from growing indefinitely.

The train is connected to the data centers via LTE or Wi-Fi.

As wireless connection bandwidth is limited, we minimize the
transmitted data. Instead of requesting blocks from multiple
nodes, we leverage the BFT checkpointing. Each block gets
included in a checkpoint, and a stable checkpoint with its
2f 4 1 replica signatures proves that the corresponding block
is included in the blockchain. As stable checkpoints are not
part of the active application state anymore, we can circumvent
the consensus and directly query the replicas. Faulty nodes may
manipulate or lie about their logged data; thus leveraging stable
checkpoints ensures correctness while exporting from individual
replicas. We query additional replicas for their checkpoints to
ensure that recent blocks are actually exported, and resources
can be freed. The export protocol guarantees that (i) only
blocks logged by correct nodes are exported; (ii) all blocks
up to the most recent stable checkpoint are exported; and (iii)

exported blocks get deleted from the nodes to save resources.

With this multi-data center export protocol we satisfy R4.

Message Flow. We have two operations: read to extract blocks
from the on-board nodes, and delete to confirm a successful

export so that replicas can safely delete the transmitted blocks.

All ZUGCHAIN nodes are equipped with a public-private key
pair, with which they sign ordering, checkpoint, and view
change messages, allowing verification of checkpoints. Each
data center also has a key pair, of which the public key is
known to the ZUGCHAIN nodes and vice versa.

The communication steps, shown in Fig. 4, are as follows:
(D The data center asks the BFT replicas for the latest block
in a read broadcast which includes the index of the last
successfully exported block (last_sn). (2) Each replica sends
its latest stable checkpoint, while one randomly determined
replica also sends the full blocks (last_sn to curr_sn). As
these read messages bypass the consensus and are therefore

unordered, i.e., can be received at different times, replicas can
send different checkpoints. This requires the data centers to
determine the latest one with the highest checkpoint sequence
number to maximize the number of exported blocks. (3) Once
the checkpoints of 2f + 1 replicas and the full blocks from
one replica have been received, they are synchronized with
the data centers of the other companies. We wait for 2f + 1
answers to ensure reception of recent checkpoints: while in
principle even one valid stable checkpoint would be sufficient,
this checkpoint could be outdated and therefore leave more
data on the train than necessary. With 2 f + 1 replies, even if
f slow nodes with outdated checkpoints as well as f faulty
nodes are included, at least one node will reply with a recent
checkpoint, for which we can issue the delete. @ Using the
replicas’ public keys, all data centers validate the signatures of
the latest checkpoint, and validate the received blocks up to the
included block. If any blocks are missing between last_sn and
the block included in the latest checkpoint, these can be queried
directly from the replicas in a second round of communication.
(5) After the blocks’ reception and verification, the data centers
each sign a delete message, which includes the index and hash
of the block in the latest stable checkpoint. The deletes are
broadcast to the replicas. (6) Replicas now verify that at least a
certain, configurable number of data centers have sent a signed
delete and remove the blocks up to this index, keeping the
last exported block to serve as the first block for the pruned
blockchain. (7) Finally, they send a signed acknowledgement
to the data centers to confirm the delete.

Discussion. Several error scenarios can occur: (i) A delete
arrives on a replica before the corresponding block has been
created: The replica checks whether it has created the block
included in the delete; if not, it delays the delete until block and
checkpoint have both been created to ensure correctness. This
could be avoided by ordering delete messages via the consensus
protocol. However, export and agreement are intentionally
decoupled as required for JRUs, where export strictly should
not delay or influence agreement. (ii) Transferring a checkpoint
to another replica: The replica receives the checkpoint and
blocks between this and the last stable checkpoint. It then has
to check the blockchain integrity and whether the most recent
block and the open requests match the received checkpoint
digest. As the blockchain on the replicas is pruned after an
export and verification therefore cannot start at the genesis
block, the transferred state must include the signed deletes
that verify the base of the blockchain on the replicas. (iii) Not
enough deletes received: a delete is marked as incorrect if
the replica does not receive a sufficient number of matching
signed deletes from the data centers. The replica then does
not execute the operation. (iv) A data center is delayed and
missing already exported blocks: In this case, blocks can either
be exported again if they are still available on the replicas,
or synchronized from other data centers. (v) A replica misses
one or multiple deletes and does not free memory. Before any
data is overwritten due to memory exhaustion, replicas can
agree to remove the data of a certain number of blocks and

Multifunction Vehicle Bus (MVB)

HEH]

(a) Schematic overview.

(b) Hardware setup.
Fig. 5: Overview of the ZUGCHAIN testbed.

only store their headers. The joint agreement is stored on the
blockchain to signal that this was not due to faulty behavior.
As the hashes are still available for verification, this allows
the replica to preserve the blockchain integrity. However, the
replicas’ signed acknowledgement ((7)) allows early detection
of this, allowing maintenance personnel to intervene in time.
We can further assume nodes to have sufficient memory to
store multiple days of logged data, similar to the JRU.

IV. IMPLEMENTATION

We implement ZUGCHAIN in Rust, combining high per-
formance with memory safety and efficiency for resource-
constraint devices. Rust prevents undefined behavior (e. g., out-
of-bounds memory accesses or use-after-free bugs), thereby
eliminating a whole class of possible BFT faults. ZUGCHAIN
is written for Rust v1.44.0, and blockchain data is exchanged
in Protobuf format. Our framework uses ring’s asymmetric
cryptography for authenticity; specifically, we use Ed25519
signatures on all messages. It includes a full implementation of
ZUGCHAIN and PBFT comprising the ordering, checkpointing,
and view change subprotocols. While we use PBFT as a well-
established protocol with thoroughly investigated correctness,
ZUGCHAIN can support other primary-based BFT protocols
as well. Our PBFT implementation exposes the SUSPECT and
NEWPRIMARY interfaces. The export functionality is realized
by extending the replicated application, and the data center
side is also implemented in Rust.

In order to access the bus, our framework contains a connec-
tor to the underlying bus, in our prototype the MVB. It has read-
only access to the MVB, using a specialized, proprietary C++
library to access the train communication network provided
by Siemens Mobility (cf. §V-A). The data type and cycle time
of the signals can be dynamically discovered from the bus
configuration file, which allows for flexible and extensible
handling of received bus signals. The code is available at
https://github.com/ibr-ds/zugchain.

V. EVALUATION
A. Testbed Setup

We built a testbed with state-of-the-art train hardware,
shown in Fig. 5. It contains four M-COM RT V1 QW, which
are equipped with a Freescale Quad-Core i.MX 6 Cortex-
A9 (ARMv7a) CPU@800MHz, 2GB of RAM, and three

—— ZUGCHAIN —e— Baseline
S

X 8 IS
= 6 12 6
5 5
oA 1 4
8 5 9
g’ £
(] 0'**7— (] 0
Z 108 il
w0 & (/JGO
E | E
§> S §>40
£10% ¢ £ 20
< S o}
4101% = gl ! !

%

R}

> O ap v) AP IR © D v
U N N) ol 9% pbv b&q N }ib

Bus Cycle [ms] Payload Size [B;/te]
Fig. 6: Network utilization and latency for typical bus cycles

(left) and payload sizes (right). Latency (left) in log scale.

100 Mbit/s Ethernet links plus an MVB link. They run a custom
Yocto Linux with kernel v3.10.17. A signal generator for JRU
test systems (DDC) generates ATP data. A Siemens mRec-
s42 JRU is included in the setup as well. The components
are connected to an MVB, with a SIBAS-KLIP AS318MVB
as MVB master. Each component is equipped with a node
supervisor database (NSDB) file, specifying which signals are
written or read by it. The M-COMs are connected via Ethernet
for the consensus communication. An LTE router connects to
an AWS VM (t2.xlarge) for the data export.

The MVB is a well-established bus system [14], and
ZUGCHAIN can easily be adapted to other bus systems, e. g.,
ProfiNet. We show that our approach is non-reactive, i.e.,
transmitted signals are logged as is without further computation.
This testbed is thus comparable to a train setup with an MVB
and M-COMs and allows us to closely simulate a real train
environment. We have also deployed our system on an ICE
TD train to verify ZUGCHAIN’s feasibility.

Evaluation Setup. We compare ZUGCHAIN’s communication
layer with PBFT and traditional client handling (“baseline”),
where each node runs a client and replica process and every
client reads bus data and forwards it to the primary as a BFT
request. Identical requests are thus ordered up to four times.
We measure latency and network, CPU, and memory utilization
on the primary from request reception to finalized commit stage
in the testbed, and report averages over five runs each with a
duration of 5 minutes. The block size is 10 requests. Varying
bus cycles and payload size of the MVB requires changes
to the proprietary NSDB, which is only available to railway
companies. We instead simulate receiving messages over the
bus, and verify our simulation with available MVB data.

B. Performance Evaluation

Network Utilization and Latency. Fig. 6 shows the network
utilization and latency of ZUGCHAIN and the baseline for bus
cycles from 32 ms, the MVB’s minimum, up to 256 ms for a
payload size of 1 kB, as well as for payload sizes from 32 Bytes
up to 8 kB for a fixed bus cycle of 64 ms. The baseline’s network
utilization of the 100 Mbit/s links in the testbed is 4x that
of ZUGCHAIN, as each request is ordered four times. The
latency of the baseline is 1.1-4.9x that of ZUGCHAIN, as

https://github.com/ibr-ds/zugchain

—— ZUGCHAIN —— Baseline

400
§300* N
5200 N
&
(.3100’BE B
o Lo j t
EQO 7@207 =
= 2 15| |
2 >
g 1o B E 10W
g e s [
= ol | | | | | = L | !
PSP L I R R
NN RN

Bus Cycle [ms] Payload Size [Byte]
Fig. 7: CPU and memory usage of ZUGCHAIN and baseline
for typical bus cycles (left) and payload sizes (right).

o Baseline « ZUGCHAIN

1,250
£1,000 |- - :
= ‘timeout: .
S 750 |- > View §
£ 500 change §
5 250 : e g o
=) bsenscad i et NI
=500 0 500 1,000 1,500 2,000

Relative Time [ms]

Fig. 8: Request latency during view changes.

more consensus messages have to be transmitted. Especially
for a short bus cycle of 32 ms, we report up to 828 x higher
latencies. Here the baseline cannot keep up with the number
of messages and requests are dropped. For evaluating different
payload sizes, we keep the bus cycle fixed to the commonly
used value of 64 ms. ZUGCHAIN’s latency increases by 37 %,
while the baseline’s latency is 1.6-2.5x that of ZUGCHAIN. We
therefore require less bandwidth and achieve lower, more stable
latencies than the baseline. Our testbed can send messages of
up to 1kB over an MVB with a bus cycle of 128 ms. The
results are consistent with the simulation.

Resource Usage. Fig. 7 shows memory and CPU usage, where
400% CPU utilization means all four cores are working
at capacity. ZUGCHAIN’s CPU usage is 25-31 % of the
baseline’s for different bus cycles and 24-26 % for increasing
payload sizes. The baseline’s memory usage is 1.7-1.8 x that of
ZUGCHAIN for different bus cycles and 1.6-1.7x for increasing
payloads. At short bus cycles, the baseline requires up to 6.3x
more memory than ZUGCHAIN. With a maximum usage of
15 % of all available CPU resources, ZUGCHAIN is thus better
suited for shared, resource-constraint commodity hardware.

View Change. Fig. 8 shows the request latency after a view
change due to a faulty primary, occurring at relative time O.
The baseline’s view change timeout is 500 ms, for ZUGCHAIN
the hard and soft timeouts are each 250ms for a total of
500ms. The bus cycle is set to 64 ms. The replica starts the
timer(s) once it discovers the fault; after it has expired, the view
change is performed, which in the case of ZUGCHAIN takes
530ms and for the baseline 507 ms. We have a checkpoint
size of 10 requests, and consider the worst case with a
maximum number of requests not yet included in a block (9
requests). After the view change, within 210 ms (ZUGCHAIN)

10

#blocks | 500 1.000 2.000 4.000 8.000 16.000
read 49s 9.8s 19.7s 42s 81s 162.2s
delete 0.14s 039s 4.7s 9.5s 1245 153s
verify 0.02s 0.04s 0.07s 0.15s 0.29s 0.58s

TABLE II: Latency of read, delete, and verify during export.

—— ZUGCHAIN —e— Primary Delay 250ms —— Fake Data 25%
—+— Fake Data 75% —— Fake Data 100%

&)

%

z 0
E 3]
S)
2 &%&é
(%}
Z
i 1=
X102 ;fmli\
= | 15 \
Clot b 8 St -
E = T T
D> O D % © Y > o P o o
LIRS LG RIS SR S

Bus Cycle [ms] Bus Cycle [ms]

Fig. 9: Effects of Byzantine behavior for bus cycles (log scale).

and 824 ms (baseline), the latency has reached previous levels
of 14ms (ZUGCHAIN) and 25 ms (baseline), respectively. We
see that while the baseline’s view change finishes slightly faster,
ZUGCHAIN stabilizes more quickly as it has less messages
to process. The view change timeout in ZUGCHAIN can be
shortened further depending on the requirements of the JRU.
We do not optimize for throughput as we have a fixed number
of messages per second, and ZUGCHAIN can order the most
message-intensive setting available in our testbed without
performance degradation (cf. Fig. 6). Instead, we aim for
low latency to ensure efficient recording of logging messages.
With our quickly stabilizing view change, we can use more
aggressive timeouts and accept more frequent view changes
compared to the baseline, to ensure fast recovery.

Data Center Export. The export consists of reading check-
points from 2f + 1 replicas as well as the complete blocks
from one replica, their verification by the data center, and their
deletion. Tab. II shows the average latencies over 5 runs of these
steps for the export of 500 to 16,000 blocks to the AWS VM.
At a bus cycle of 64 ms, this corresponds to the data collected
during operation of 5 minutes to 3 hours. The connection is via
LTE at approx. 8.5 Mbit/s. The majority of the latency (80-96 %)
is spent waiting for 2f + 1 replies, especially the full blocks
from one replica; here, the network communication until all
replies have been received is the bottleneck. Verification takes
0.2-0.3 % of the total time, deletion 3-19 %. With a duration
of approx. 3 minutes after 3 hours of operation, exporting data
continuously or during train stops is feasible [26].

Byzantine Behavior. ZUGCHAIN nodes may deviate against
(i) the BFT protocol, (ii) the export, or (iii) the communication
layer. (i) Faults against the BFT protocol are similar to other
BFT systems and, if done by the primary, will typically result
in a view change (cf. Fig. 8). (ii) The export is done only
periodically and allows little room for misbehavior since
multiple nodes are queried. At worst, a faulty node denying
to respond can delay the export until another node is queried.

(iii) The worst case attacks against the communication layer are
the addition of corrupted messages and the delay of preprepares
by the primary to deteriorate performance; these attacks are
evaluated below to show their influence on the system. Other
attacks such as omitting or corrupting ordering messages by
the primary leads to forwarding and potential view changes,
duplicate ordering messages are easily filtered on all nodes, and
reordering is not critical. Bus messages omitted by the primary
are forwarded, and duplicates are again filtered, as in normal
case operation. Both forwarding and filtering is included in the
handling of fabricated requests and shown in the experiment.

Fig. 9 shows the results of these Byzantine behaviors: a
faulty backup node adds a fabricated request for 25 %, 75 %,
and 100 % of all bus cycles. The injection of fabricated requests
leads to an increase in CPU load by 20 %/68 %/92 %, memory
usage by 0.7 %/1.6 %/294 %, and latency by 22 %/60 %/277 %,
compared to normal operation. However, due to the rate limiting
on open requests per replica (cf. §III-C), we can efficiently
limit congestion. Requests are still ordered within performance
bounds of the JRU, while allowing benign replicas e.g., to
propose delayed or uniquely received messages.

Fig. 9 also shows a faulty primary delaying preprepares by
250 ms, triggering soft but not hard timeouts, but proposing
it before a view change is triggered. This can stall ordering
progress until other nodes get a soft timeout and forward the
request. Accordingly, the latency increases with this delay,
while network utilization decreases. Forwarding and soft

timeouts are negligible regarding network and CPU utilization.

This shows the importance of the soft timeout, which allows
to limit the effect of such misbehavior to stay within system
requirements. Due to space limitations, experiments for payload
sizes are omitted, though their effect is identical to that in Fig. 6
and Fig. 7.

Comparison to JRU Requirements. A data recorder has
to prevent data from being deleted, changed, or overwritten,
and has to ensure data integrity. We fulfill this, as we detect
deletions or modifications and correct logs are available on
multiple nodes. It also has to offer data extraction: to prevent
data loss, we frequently export blocks; and to ensure data
integrity after e. g., power loss, we persist the blockchain on
disk. Data is required to be stored within 500 ms after arrival
considering 10 events per second. With a bus cycle of 64 ms,
we process 15.6 events per second, where we incur a latency of
approximately 14 ms. Writing blocks to disk in our testbed is
an additional 5.03 ms for payload sizes of 8 kB and thus well
below the threshold. We therefore fulfill the JRU requirements
and show that ZUGCHAIN satisfies R/ and R2.

Train Deployment. We deployed ZUGCHAIN on an ICE TD.
Due to regulatory constraints, the setup differs from our testbed,
e. g., regarding hardware, MVB connection, and number of
signals. We were able to verify during several test drives that
ZUGCHAIN’s agreement and export work robustly and well
within timing requirements. We plan to publish the data of the
test drives at https://railchain.berlin/.

11

VI. RELATED WORK

Comparing ZUGCHAIN and PBFT. ZUGCHAIN presents a
communication layer on top of a primary-based BFT protocol.
It is tailored to the bus: multiple nodes receive data, and
overhead is reduced by ordering identical data only once. In
PBFT, clients either send their requests to the primary or
broadcast them to all replicas [27]. Duplication is avoided only
on complete requests including client ids and sequence numbers,
not on payloads. Using traditional PBFT in combination with a
bus results in high overhead. We provide an export of distributed
replica storage to external infrastructure, which PBFT misses.

Communication Models in BFT. The Wormhole model [28]
proposes a hybrid system model combining synchronous and
asynchronous communication. In ZUGCHAIN, replicas have
partially synchronous links while input to the nodes is received
synchronously. Echtle et al. [29] show a BFT protocol running
over multiple bus systems that can handle non-cooperating
Byzantine faults. Our system does not perform agreement via
the bus and instead reads the logging input from it.

Causality in BFT. Causality guarantees that requests’ order
of execution is the same as that of their submission [30].
Current approaches have high computational overhead [31] or
use specialized hardware [30], which is not feasible on shared
train hardware. For ZUGCHAIN and JRUs, causality of logged
data is established during analysis after export.

Blockchain in Railway Systems. Kuperberg et al. [32], [33]
evaluate smart contracts to decentralize railway operations.
Blockchains in railways have been investigated to reduce
train delay [34], for WSN node identity authentication [35],
and for improving digital ticketing [36]. Surveys [37], [38]
focus on digital ticketing, supply chain management, and data
distribution. Qur system is the first to our knowledge to use
blockchains in operational railway aspects.

Event Logging. Braband et al. [7] present a mathematical
analysis showing the reliability of distributed JRUs. This
theoretical work presents no design and builds the empirical
basis for our fault assumptions. Hartong et al. [3] secure
JRU data using multi-party secret sharing. Blockchain event
recorders have been proposed for autonomous vehicles [39]-
[43], robots [44], and IoT [45]. They either use BFT amongst
multiple vehicles [39], [41], [42], develop new consensus
approaches [40], or rely on complex blockchains [43], [45].
ZUGCHAIN considers agreement of juridical data contained in
one train and leverages a lightweight blockchain infrastructure.
Regarding restricted storage, Wang et al. [45] present a
hierarchical blockchain including an export utilizing a round
of BFT. Our export is independent of agreement to reduce
overhead and avoid interfering with the logging.

VII. CONCLUSION

We presented ZUGCHAIN, a blockchain-based train event
logger. It contains a BFT communication layer tailored for
the bus, and offers secure block export. It utilizes on-board
hardware, superseding the JRU’s special-purpose device, thus
furthering digitalization in railway systems.

https://railchain.berlin/

[1]
[2]

[10]

[11]

(12]

[13]
[14]

[15]
[16]
[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]

REFERENCES

IEC, “IEC 62625-1:2013,” 2013.

“IEEE Standard for Rail Transit Vehicle Event Recorders - Redline,”
IEEE Std 1482.1-2013 - Redline, 2014.

M. Hartong, R. Goel, and D. Wijesekera, “Protection and Recovery of
Railroad Event Recorder Data,” in IFIP Digital Forensics, 2008.
Damiano Scordamaglia, “European Parliamentary Research Service —
Digitalization in Railway Transport,” 2019.

A. Berrios Villalba, “How to Speed Up Digitization in the Railway
[Viewpoint],” IEEE Electrification Magazine, 2020.

DB, NS, OBB, SNCF, SBB. (2020) OCORA-40-001-Beta - System
Architecture - Beta Release. [Online]. Available: https://github.com/
OCORA-Public/Publication

J. Braband and H. Schibe, “The Reliability of Distributed Juridical
Recording,” Signalling & Datacommunication, 2021.

K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona, “The
Real Byzantine Generals,” in IEEE Digital Avionics Systems Conference,
2004.

H. Chen and C. Qian, “Research on Functional Safety of Multifunction
Vehicle Bus in Rail Transit,” in JEEE ICAIIS, 2020.

M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in
0SDI’99.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger Fabric: a Distributed Operating System for Permissioned
Blockchains,” in EuroSys’1S.

D. Ludicke and A. Lehner, “Train Communication Networks and
Prospects,” IEEE Communications Magazine, 2019.

IEC, “IEC 61375-3-1:2012,” 2012.

H. Kirrmann and P. A. Zuber, “The IEC/IEEE Train Communication
Network,” IEEE Micro, 2001.

G. A. zur Bonsen, “The Multifunction Vehicle Bus,” in WFCS’95.

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meikle-
john, and G. Danezis, “SoK: Consensus in the Age of Blockchains,” in
AFT’19.

M. Vukoli¢, “The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication,” in iNetSec’15.

J. Sousa, A. Bessani, and M. Vukoli¢, “A Byzantine Fault-Tolerant
Ordering Service for the Hyperledger Fabric Blockchain Platform,” in
DSN’18.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The Honey Badger
of BFT Protocols,” in CCS’16.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in SOSP’17.

P. Li, G. Wang, X. Chen, and W. Xu, “Gosig: Scalable Byzantine
Consensus on Adversarial Wide Area Network for Blockchains,” in
SoCC’20.

M. Wahl, “Survey of Railway Embedded Network Solutions: Towards
the Use of Industrial Ethernet Technologies,” Synthese INRETS, 2010.
IEC, “IEC 61375-2-5:2014,” 2014.

12

[25]
[26]

[27]
(28]
[29]

[30]

[31]
[32]
[33]

(34]

[35]

[36]

(37]

(38]

[40]

[41]

[42]

[43]

[44]

[45]

—, “IEC 62279:2015,” 2015.

D. Li, W. Daamen, and R. M. Goverde, “Estimation of Train Dwell
Time at Short Stops Based on Track Occupation Event Data: A Study at
a Dutch Railway Station,” Journal of Advanced Transportation, 2016.
M. Castro and B. Liskov, “Proactive Recovery in a Byzantine Fault-
Tolerant System,” in OSDI’00.

P. E. Verissimo, “Travelling through Wormholes: A New Look at
Distributed Systems Models,” SIGACT News, 2006.

K. Echtle and A. Masum, “A Multiple Bus Broadcast Protocol Resilient
to Non-Cooperative Byzantine Faults,” in FTCS’96.

C. Stathakopoulou, S. Riisch, M. Brandenburger, and M. Vukolic,
“Adding Fairness to Order: Preventing Front-Running Attacks in BFT
Protocols using TEEs,” in SRDS, 2021.

S. Duan, M. K. Reiter, and H. Zhang, “Secure Causal Atomic Broadcast,
Revisited,” in DSN, 2017.

M. Kuperberg, D. Kindler, and S. Jeschke, “Are Smart Contracts and
Blockchains Suitable for Decentralized Railway Control?” arXiv, 2019.
M. Kuperberg, “Scaling a Blockchain-based Railway Control System
Prototype for Mainline Railways: a Progress Report,” arXiv, 2021.

G. Muniandi, “Blockchain-Enabled Virtual Coupling of Automatic Train
Operation Fitted Mainline Trains for Railway Traffic Conflict Control,”

IET Intelligent Transport Systems, 2020.
L. Zhang, Y. Huang, and T. Jiang, “High-Speed Railway Environmental

Monitoring Data Identity Authentication Scheme Based on Consortium
Blockchain,” in ICBTA’19.

J. D. Preece and J. M. Easton, “Blockchain Technology as a Mechanism
for Digital Railway Ticketing,” in Big Data’19.

F. Naser, “Review: The Potential Use of Blockchain Technology in
Railway Applications — An Introduction of a Mobility and Speech
Recognition Prototype,” in Big Data’l8.

J. Preece and J. Easton, “A Review of Prospective Applications of
Blockchain Technology in the Railway Industry,” Preprint submitted to
Int. J. Railw. Technol., 2018.

C. Oham, S. S. Kanhere, R. Jurdak, and S. Jha, “A Blockchain Based
Liability Attribution Framework for Autonomous Vehicles,” arXiv, 2018.
H. Guo, E. Meamari, and C. Shen, “Blockchain-inspired Event Recording
System for Autonomous Vehicles,” in HotICN’18.

M. Cebe, E. Erdin, K. Akkaya, H. Aksu, and S. Uluagac, “Block4Forensic:
An Integrated Lightweight Blockchain Framework for Forensics Appli-
cations of Connected Vehicles,” IEEE Communications Magazine, 2018.
R. W. van der Heijden, F. Engelmann, D. Mdodinger, F. Schonig, and
F. Kargl, “Blackchain: Scalability for Resource-Constrained Accountable
Vehicle-to-X Communication,” in SERIAL’17.

C.-S. Shih, W.-Y. Hsieh, and C.-L. Kao, “Traceability for Vehicular
Network Real-Time Messaging Based on Blockchain Technology,”
JoWUA, 2019.

R. White, G. Caiazza, A. Cortesi, Y. I. Cho, and H. 1. Christensen,
“Black Block Recorder: Immutable Black Box Logging for Robots via
Blockchain,” IEEE RA-L, 2019.

G. Wang, Z. J. Shi, M. Nixon, and S. Han, “ChainSplitter: Towards
Blockchain-based Industrial IoT Architecture for Supporting Hierarchical
Storage,” Blockchain’19.

https://github.com/OCORA-Public/Publication
https://github.com/OCORA-Public/Publication

	Introduction
	Background
	Communication and Data Logging in Trains
	Selecting a Blockchain Technology for ZugChain
	Byzantine Agreement for Juridical Event Logging

	Design
	ZugChain in a Nutshell
	System Model and Fault Assumptions
	The ZugChain BFT Communication Layer
	Secure Data Center Export for Blockchain Data

	Implementation
	Evaluation
	Testbed Setup
	Performance Evaluation

	Related Work
	Conclusion
	References

