
Towards Low-Latency Byzantine Agreement
Protocols Using RDMA

Signe Rüsch
TU Braunschweig, Germany

ruesch@ibr.cs.tu-bs.de

Ines Messadi
TU Braunschweig, Germany

messadi@ibr.cs.tu-bs.de

Rüdiger Kapitza
TU Braunschweig, Germany

rrkapitz@ibr.cs.tu-bs.de

Abstract—Byzantine fault tolerance (BFT) protocols can miti-
gate attacks and errors and are increasingly investigated as con-
sensus protocols in blockchains. However, they are traditionally
considered costly in terms of message complexity and latency due
to the required multiple rounds of message exchanges. With the
availability of Remote Direct Memory Access (RDMA) in data
centers, message exchange latency can be reduced compared to
TCP, as RDMA enables kernel bypassing and thereby avoids
intermediate data copying. Retaining the performance benefits
for RDMA during its integration, however, is non-trivial and
error-prone. While the use of RDMA has previously been
explored for key/value stores, databases and distributed file
systems, agreement protocols especially for BFT have so far been
neglected. We investigate the usage of RDMA in the Reptor BFT
protocol for low-latency agreement and show first steps towards
an RDMA-enabled consensus protocol. For this, we present
RUBIN, a framework offering similar functionality to the Java
NIO selector, which can handle multiple network connections
efficiently with a single thread and is employed in several BFT
protocol implementations such as BFT-SMART and UpRight.

Index Terms—Byzantine Fault Tolerance, Remote Direct Mem-
ory Access, Blockchain Consensus

I. INTRODUCTION

In recent years, the popularity of cryptocurrencies has

increased immensely, the most prominent examples being

Bitcoin and Ethereum. They operate on a blockchain, i. e. a

chain of blocks containing ordered transactions. These blocks

are linked together as each block includes the cryptographic

hash of the previous one. This prevents manipulation as any

changes of the hash would be immediately noticed. However,

most blockchain platforms are still severely limited with regard

to throughput, i. e. the number of processed transactions per

second (tps): in Bitcoin, the maximum throughput is 7tps and

the latency, i. e. the time until a transaction is processed (also

called “confirmation time”), is one hour. This is influenced by

the employed consensus protocol: Bitcoin uses Proof-of-Work

(PoW), in which miners try to create a block where the block’s

hash is below a certain threshold. As all other miners race to

solve this cryptographic puzzle while only one block is finally

accepted, this leads to a large amount of wasted computational

power. Additionally, the energy consumed during this compu-

tation is estimated to be higher than that of the Republic of

Ireland [1].

Acknowledgments: The authors thank the anonymous reviewers for their
valuable feedback. This research was supported by the German Research
Council (DFG) under grant no. KA 3171/1-2.

As a countermeasure, some blockchains employ different

consensus protocols. One class are Proof-of-Stake (PoS) proto-

cols, where the user’s economic stake in the network influences

the decision whether she can propose the next block. The

other prominent class of consensus protocols are Byzantine

agreement protocols, in which a group of replicas tries to reach

a consensus on the execution order and result of client requests

although a subset of these replicas may behave arbitrarily

faulty or maliciously. However, in a group of 3f + 1 replicas

where a majority of nodes behaves correctly, the agreement

scheme can tolerate up to f faulty nodes. BFT protocols are

especially well-suited for permissioned blockchains, where all

participants are known, their number is relatively stable, and

access to the blockchain is regulated. They are often used

e. g. for Supply Chain Management (SCM). Tendermint [2]

is one example of a permissioned blockchain that employs

a BFT protocol. Some recent approaches also employ BFT

protocols in permissionless blockchains, e. g. Algorand [3] and

HoneyBadgerBFT [4]. BFT protocols offer several advantages

compared to PoW: they guarantee consensus finality, i. e.

a block that has been appended to the chain cannot be

invalidated due to forks, and offer higher throughput and lower

latency [5].

Generally, protocols assuming a fail-stop approach are often

simpler to integrate, as BFT protocols still introduce a higher

complexity compared to their crash-tolerant counterparts. BFT

also requires more messages to be exchanged, which limits

scalability especially if more than the minimal number of

faults are to be tolerated. Reducing BFT’s high latency there-

fore motivates the increased deployment of these protocols in

blockchains. One cause of high latency in network communi-

cation is the behavior of TCP on which most distributed sys-

tems still rely. The CPU load distribution of a standard TCP/IP

connection shows that more than 50 % of all CPU cycles are

spent on intermediate data copying in the local host [6]. With

the recent advances in computer networks, RDMA becomes

an available solution with a comparable cost to Ethernet. In

RDMA communication, data is placed directly in the remote

memory of the communication partner in a zero-copy manner,

i. e. without intermediate copying as in TCP. It is already

often employed in data centers, where large delays are induced

by data copying during traditional TCP communication. This

makes RDMA-enabled interconnects a compelling solution to

alleviate the cost of message exchanges in BFT systems. For

146

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

2325-6664/18/$31.00 ©2018 IEEE
DOI 10.1109/DSN-W.2018.00054

permissioned blockchain settings, the BFT replicas responsible

for consensus can be placed inside a data center without

compromising the concept of the blockchain. Few researchers

have explored RDMA technology with consensus algorithms

so far [7]–[9]; however, all assume a fail-stop model. To our

knowledge, no contribution assumed a Byzantine fault model.
In this paper, we present RUBIN, an RDMA-based com-

munication framework modeled after the Java NIO selector,

and show first steps to integrate it into Reptor, a scalable

BFT framework [10]. RUBIN aims to allow Java-based BFT

frameworks to take advantage of RDMA counterparts without

the need to rewrite the communication stack, thereby providing

direct asynchronous communication and kernel bypassing. It

offers an abstraction of the Java NIO socket channel and

selector, which is used to efficiently handle multiple network

connections with a single thread. The Java NIO channel and

selector are employed in recent BFT protocol implementations

such as BFT-SMART for client communication and UpRight

as well as Reptor for replica communication [10]–[12]. RUBIN

can therefore be integrated into other protocol implementations

with only limited effort. Due to the higher level of abstraction

compared to the RDMA Verbs, it is possible to profit from

the performance gain of RDMA without completely changing

the communication stack of the application. However, it is not

trivial to achieve this performance gain as RDMA performance

can easily decrease to that of TCP with ill-advised configu-

ration. Lastly, we have to consider security aspects specific

to BFT, e. g. it should not be possible for a faulty replica to

compromise the safety and liveness properties of the protocol.
The paper is structured as follows: Section II gives an

overview over BFT and RDMA communication; we present

the design (Section III) and implementation (Section IV) of

RUBIN as well as optimizations to the RDMA communication;

Section V presents the evaluation results; Section VI gives an

overview over related work, and Section VII concludes this

paper.

II. BACKGROUND

In this section, we give an overview over RDMA technology

(Section II-A) and Byzantine fault tolerance (Section II-B) as

well as the Reptor protocol (Section II-C).

A. Remote Direct Memory Access
It has been shown that TCP/IP network stack processing

consumes a significant amount of system resources when

data is transmitted [13]. During TCP communication, two

copy operations are performed: first, the CPU copies data

from the user space buffer into a temporary socket buffer,

then the data is placed into a TCP segment and pushed to

the network controller through a DMA copy. To avoid this

overhead of intermediate data copies and OS context switches,

RDMA has been proposed to overcome the limitations of

traditional networks. RDMA is a hardware-based protocol

offloading technology enabling direct data movement between

the memory of remote machines without the involvement of

the operating system, and thereby manages to achieve high

throughput and low latency for high messaging rates. RDMA

uses the operating system only to establish a channel between

two hosts, then allows applications to exchange messages

without any kernel support in a zero-copy manner, i. e. with

direct data transfer from virtual memory. RDMA supports

asynchronous operations and is message oriented.

RDMA operates on queue pairs (QPs): when communica-

tion is initiated, each side must create a queue pair of send

and receive queues for holding data transfer requests, so-called

work requests (WRs). These WRs provide information about

the data to be sent (send request) or received (receive requests).

Upon the completion of an RDMA operation, an event is added

to a completion queue (CQ) to notify the application about

this. An RDMA application is required to register memory

regions with the RDMA-enabled NIC (RNIC) prior to any

networking operation to specify access to these regions.

There are two main modes of RDMA communication that

we investigate for their suitability: one-sided and two-sided

operations. In one-sided operations, the RDMA Read/Write, an

application can access the remote memory directly without any

involvement of the remote CPU. Thus, only one side is actively

engaged in the communication process, while the remote side

is not aware that any access operation is performed on its

memory. This mode is well-suited for smaller messages, but

generally requires more communication rounds than the two-

sided operations. There, in the so-called RDMA Send/Receive,

both partners must actively participate in the transfer and

do not know the remote virtual memory location directly.

This mode behaves similarly to TCP and offers reliable

communication. However, unlike in one-sided primitives, each

send request must have a matching receive request specifying

where to receive data on the remote side before the operation

can be initiated. Therefore, it is important to allocate enough

receive requests to handle all incoming send requests. Each

communication partner has only partial knowledge of this

information required to complete the communication.

B. Byzantine Fault Tolerance

Byzantine agreement schemes, where a group of possibly

faulty replicas tries to reach a consensus on the execution

order and result of client requests, are considered a promising

alternative to PoW mining in blockchains. Typical BFT sys-

tems consist of two stages: agreement and execution. In the

agreement stage, replicas exchange asynchronous messages in

order to reach agreement on a specific value, e. g. the order

of client requests. This stage typically starts with the leader

proposing a request sequence number to other replicas. Next,

the replicas coordinate through broadcasting messages in order

to validate that the leader has provided them with the same

number, and reach a consensus on the total order of requests.

For BFT systems, reaching consensus typically requires a

majority quorum of 3f+1 nodes. This takes multiple rounds of

communication, which is especially costly for a large number

of replicas as most protocols require broadcasting steps [3],

[14], [15]. Thus, reaching consensus entails a large network

traffic and performance overhead. In the execution stage, the

replicated service uses the ordered requests provided by the

147

agreement stage as input, executes the client operations, and

finally sends a reply to the clients.

The agreement stage is often considered the bottleneck of

a BFT system due to the cost of the message exchanges,

especially when employing the traditional TCP/IP program-

ming model. To counteract this, requests in BFT protocols

are often batched, or hashes are transmitted instead of full

messages. We propose to leverage the advantages of RDMA

as a novel networking technology which is already deployed

in data centers and therefore well-suited for utilization in BFT

protocols.

C. Reptor
Behl et al. [10] presented a new parallelization scheme

allowing BFT systems to fully exploit improving hardware

trends such as modern multi-core processors. Splitting BFT

protocols into several functional modules for multi-threaded

execution still limits performance by the slowest of these

modules. In the proposed Consensus-Oriented Paralleliza-

tion (COP) scheme, the protocol is not divided according to

specific tasks such as agreement and message authentication,

but instead multiple protocol instances are parallelized while

the total order of requests is still maintained. This enables their

prototype Reptor, which uses PBFT [14], to scale with the

number of available cores and reach unprecedented through-

puts.

III. DESIGN

Our work aims to enable the Reptor framework to take

advantage of RDMA without fundamentally changing the de-

sign of the framework’s communication stack. RDMA enables

low-latency communication for applications by reducing the

number of intermediate data copies, thereby alleviating the

network overhead as well as taking advantage of the offered

bandwidth. Also, by modeling the components of the RDMA

communication after traditional socket connections, this eases

the cost of redesigning the Reptor framework as well as other,

suitable frameworks. We develop the RUBIN framework which

recreates the behavior of the non-blocking Java NIO with a

selector tailored for the RDMA communication model. This

provides an abstraction of the RDMA queue-based program-

ming model, thus enabling direct asynchronous communica-

tion between replicas. The Java NIO selector enables efficient

handling of multiple network connections using only a single

thread, and is used in several BFT protocol implementations

either for replica [10], [12] or client communication [11].

As the majority of BFT messages are typically exchanged

between replicas, this is what we aim to enhance using RDMA.

In this section, we first explain our decision to use two-

sided RDMA Send/Receive semantics (Section III-A) and

describe the components of our implementation as well as

their interaction (Section III-B), before evaluating the security

of our framework (Section III-C).

A. The Choice of RDMA Semantics
The RDMA Send/Receive semantics are better suited for

replica communication, as it (i) ensures that both sides can

Fig. 1: Components of RUBIN based on Java NIO

operate independently, and (ii) does not require participants to

know the address of the remote memory to exchange data. This

means that an application can post, i. e. send, a request without

specifying the remote address as the receiver decides in which

buffer to place the data. This is similar to the behavior of Java

NIO sockets. Read/Write semantics, however, often entail a

read/write race resulting in corrupted data [16] or failed retries

because of the required coordination with increasing number

of hosts [17]. They are therefore not suitable for our needs,

as we assume a high number of replicas to participate in BFT

protocols employed in blockchains.

B. Components of RUBIN

The RUBIN framework consists of a set of components

shown in Figure 1 inspired by Java NIO that were adapted

for the RDMA queue pair model. These components are

the RDMA channels, the RDMA selector, and the RDMA

selection keys. An RDMA channel represents an RDMA

connection. The abstraction behaves similar to a non-blocking

NIO socket channel, which offers read() and write() methods,

and includes all necessary RDMA resources such as QPs and

WRs. When an RDMA channel is created, the list of buffers

that the application will use for send and receive operations is

also allocated and registered for RDMA communication. This

abstraction is flexible because the number of WRs as well

as the size of buffers can be independently specified, thereby

allowing for the versatility needed by BFT protocols. Note that

every created channel is associated with a unique connection

identifier.

The RDMA selector is the key component in RUBIN. It

checks without blocking if an RDMA channel is ready for re-

trieving an I/O event. For example, if we are interested to know

whether there is an incoming connection, the selector will re-

ceive a notification when an event of type OP CONNECT has

been added to the event channel. Afterwards, the selector will

check if this event belongs to the channel through comparing

the event ID with the channel ID and eventually returns the

number of ready channels. This enables processing numerous

RDMA channels in a single thread, similar to the Java NIO

selector.

The RDMA selection key is the result of an RDMA channel

registration with the selector and has a unique ID characteriz-

ing the connection. When an RDMA channel is registered, the

type of events in which the channel is interested is specified.

A selection key has four possible interests for a channel

based on RDMA connection and completion notifications: an

interest in incoming connections (OP CONNECT), in con-

148

Fig. 2: An overview of the RDMA selector

nection establishments (OP ACCEPT), in received messages

(OP RECEIVE), and in sending messages (OP SEND). The

selection key is then added to the list of connections that

the selector checks when the select() function is invoked. In

addition to the interest tag, a selection key has a ready tag that

is updated when an I/O event occurred in the related channel.

Figure 2 shows the process of how these components

interact in order to provide asynchronous communication.

1) The same blocking call for transmission and connection
events

The Java NIO selector checks the readiness of both trans-

mission and connection I/O on the same blocking call. RUBIN

therefore includes a hybrid event queue containing copies of

both the event channel elements and the completion queue

elements. When an event is added to these channels, a copy

of it will be added to the hybrid event queue of the RUBIN

selector, notifying it about this new I/O operation.

2) An event-based mechanism replacing epoll
The Java NIO selector internally relies on epoll to check

the readiness of the channels [18]. In RUBIN, an event manager

is associated with the selector to keep track of the events added

to the queue and to notify the selector. As shown in Figure 2,

four phases are performed for a send or receive operation:

1 Accepted RDMA channels start by registering to the

selector and specifying which event they are interested in.

2 The result is a set of selection keys, defining the

relationship between the selector and the RDMA channel and

holding the interest set. A selection key is a way to track the

interest of the user and can be updated. Note that a registered

channel is referred to as selectable channel.
3 An invocation of a select() will start an indefinitely

blocking call while there is no incoming I/O event.

4 When an event occurred, a copy of it is added to the

hybrid event queue. Afterwards, the event manager notifies the

selector about this new incoming event.

5 The selector checks whether the corresponding RDMA

channel is interested in it. This is done by comparing the IDs

and the type of the event, i. e. connection or transmission type.

When the correct channel is found, its selection key’s ready

set is updated.

C. Security Analysis
Even though RDMA has its own protection mechanisms

such as Protection Domains and access permissions on the

memory area, the appealing protocol flexibilities have been

proven to bring security issues [19]. However, most of these

issues are design specific and only relevant for one-sided

communication. In a remote Read/Write design, a client might

try to read data while a second host is writing into the same

buffer which results in corrupted data for the host attempting

to read. A second security concern is related to the buffer

identifier, the Steering Tag (STag), which will be sent to a host

aiming to directly access a remote buffer. An adversary might

get access to a buffer with STag enabled access, which allows

her to conduct a Man-in-the-Middle attack. She can now read

or modify the contents of this buffer or even invalidate the

STag which prevents access of legitimate applications. Prior

work [20]–[22] suggests solutions such as extended memory

protection mechanisms or devising a mechanism according to

the chosen design limitations.

As we use two-sided operations, this alleviates most security

issues. An application does not need to expose its buffers to

the connected remote nodes, but instead decides independently

where the data will be placed. Now, if an attacker has com-

promised the memory keys, the affected BFT replica cannot

operate reliably as it might not possess consistent data and will

therefore be considered faulty, which can be tolerated by the

protocol. Additional integrity protection mechanisms such as

HMACs are employed in Reptor to detect invalid messages.

IV. IMPLEMENTATION

RUBIN is based on the OpenFabrics Enterprise Distribution

(OFED) 4.0-2 by Mellanox, which offers an implementation

of the RDMA Verbs interface allowing user-space processes

to leverage the RNIC functionalities.

We use the jVerbs [23] library DiSNI1 developed by IBM for

support of RDMA communication. DiSNI offers two interfaces

for RDMA programming: the low-level Verbs interface and

an endpoints interface, which is an abstraction of the native

Verbs functions similar to the regular socket functions. In our

implementation, the endpoints interface is used as it resembles

the non-blocking socket API and is therefore more suitable for

recreating the behavior of the Java NIO channel. DiSNI was

extended to support the non-blocking Java NIO features. The

Reptor prototype is written in Java and implements the PBFT

algorithm. We integrated RUBIN into Reptor, where it replaces

the Java NIO selector and socket channel, and implemented

several optimizations to the RDMA communication proposed

by prior work [6].

These optimizations concern the requests as well as the

buffer and completion event handling. A pool of buffers for

send and receive requests are pre-registered and can be reused

as needed. To reduce the overhead of posting, the requests are

posted in batches of the maximum number of requests sup-

ported by the device. With selective signaling, no notification

about the completion has to be created. Such a notification

is only necessary after a certain number of messages, thus

reducing the overhead for the RUBIN selector. Copying data

from the application buffer to the buffer of the send request or

1DiSNI library. https://github.com/zrlio/disni

149

1 10 100

200

400

600

800

Payload (KB)

L
a
te
n
cy

(μ
s)

TCP

RDMA Send/Recv

RDMA Read/Write

RDMA Channel

(a) Latency

1 10 100
0

5

10

Payload (KB)R
eq
u
es
ts

p
er

se
co
n
d
(k
rp
s) TCP

RDMA Send/Recv

RDMA Read/Write

RDMA Channel

(b) Throughput

Fig. 3: Measurements for the RDMA Channel

vice versa adds significant overhead for large messages, where

buffer registration would be more performant. We therefore

register the application’s send buffer directly for RDMA

communication, while data is still copied into a separate buffer

on the receiver side. Here, we are limited by the type of buffers

used in the DiSNI library and the Reptor prototype, as they are

incompatible. We plan to adopt several optimizations in future

versions of this work: Depending on the size of the messages,

it is best to either copy the data into the request buffers

(for messages ≤256Bytes) or register the application buffer

directly for RDMA communication for larger messages. We

therefore intend to remove any buffer copy from the RDMA

communication except for small messages. The select() call

of RUBIN is less performant than that of the highly optimized

Java NIO selector. We intend to improve this by implementing

this functionality in native code. Sending messages as inline
provides better latency, as the RDMA device does not need to

perform additional read operations to get the payload. This is

especially beneficial for small messages.

V. EVALUATION

In this section, we present the results of our performance

evaluation. We conducted the measurements on two machines

with 4-core Xeon v2 CPUs and 16GB of memory running

Ubuntu 16.04. Each machine is equipped with an RDMA-

capable Mellanox Connect MT27520 network card working

with RDMA over Converged Ethernet (RoCE), which enables

RDMA communication over Ethernet. The machines are con-

nected with a 10Gbps, full-duplex link and use the OFED

4.0-2 RNIC drivers.

First, we present a micro-benchmark implementing a sim-

ple client-server echo application between two machines in

Figure 3. We compare the throughput (Figure 3b) and the

latency (Figure 3a) of TCP, RDMA Read/Write, and RDMA

Send/Receive with our implementation of an RDMA channel

including the optimizations as presented in Section IV. All

20 40 60 80 100

102

103

Payload (KB)

L
a
te
n
cy

(μ
s)

Rubin TCP

(a) Latency

20 40 60 80 100

104

105

Payload (KB)

R
eq
u
es
ts

p
er

se
co
n
d Rubin TCP

(b) Throughput

Fig. 4: Measurements for the RUBIN and Java NIO selector

measurements show the average of five runs where client and

server each exchange 1000 messages. We consider message

sizes between 1KB and 100KB: BFT protocols exchange

mostly small messages of several kilobytes, only rarely are

larger messages necessary, e. g. for HTTP and IMAP use cases

as presented in [24].

The measurements show that RDMA Read/Write entails

the lowest latency with ≈46 % less compared to RDMA

Send/Receive and 53–79 % compared to TCP. This is due

to RDMA Read/Write having one-sided operations, meaning

that only the client writes messages to the server without

waiting for a response. This semantic, however, does not

offer the required security as RDMA Send/Receive does. The

RDMA channel, however, enables both client and server to

coordinate the message exchanges while still maintaining a

latency 33–43 % lower than that of TCP. The positive effect

of the selective signaling is especially noticeable for messages

smaller than 16KB where the latency decreases by up to

30 % compared to Send/Receive; for larger messages, the

performance degradation due to the buffer copy for receiving

messages becomes obvious. The throughput behaves accord-

ingly: RDMA Read/Write achieves the highest throughput

by 53–79 % more compared to TCP, while the throughput

of the RDMA channel is up to 30 % higher than RDMA

Send/Receive for messages smaller than 16KB. The RDMA

channel is 33–43 % more performant than TCP.

We also evaluate the performance of the RUBIN selector

compared to the Java NIO selector with an echo server using

the Reptor communication stack running locally on one of the

machines. For both protocols, the window size and batching

was set to 30 and 10 messages, respectively. The results can be

seen in Figure 4. It shows comparable throughput and latency

for TCP and RDMA. The latency of RUBIN for messages of

1KB is 19 % lower than that of TCP; for large messages of

100KB, it is 20 % lower. For message sizes from 20KB to

150

80KB, RUBIN’s latency increases up to 20 %. The throughput

of RDMA is higher than that of TCP with values between

25 % for message sizes of 100KB and 38 % for 20KB. The

performance degradation of RDMA due to the buffer copy on

the receiver is again noticeable. We plan several additional

optimizations to further exploit RDMA capabilities especially

focusing on the performance for large message sizes and

optimizing the throughput of RUBIN by removing any buffer

copy steps during communication.

VI. RELATED WORK

RDMA has gained recognition because of the high per-

formance it can achieve. It has already been explored for

key/value stores [25], databases [26], and distributed file

systems [27], [28], but has received limited attention so far

in connection with consensus protocols. Three approaches

for RDMA-enabled crash-tolerant consensus protocols have

been proposed. DARE [7], an RDMA-tailored replicated state

machine protocol, aims to optimize for low latency in replica

communication. The protocol uses one-sided primitives and

replicates state machine updates through RDMA Read/Write

operations. APUS [8] combines RDMA with Paxos and fo-

cuses on scalability regarding concurrent connections. Dere-

cho [9] is a C++ library offering replicated crash fault-

tolerant services, also aiming for RDMA communication in

data centers. However, these protocols consider only fail-stop

failures; to our knowledge, there is no previous work that as-

sumed Byzantine faults. We present first steps towards RDMA

communication in BFT protocols. JSOR [29] also models its

RDMA endpoints after the Java socket interface, but offers a

higher level of abstraction. However, this comparability layer

limits the performance gain of using RDMA as it still includes

intermediate buffer copies. Instead, we propose a level of

abstraction between that offered by JSOR and that of RDMA’s

native endpoints, which currently allows us to partially profit

from RDMA’s zero-copy features while simultaneously allow-

ing easy integration into existing frameworks.

VII. CONCLUSION

Current BFT protocols still induce a high latency due to the

required multiple rounds of message exchanges, even when the

replicas are placed inside a data center, as TCP/IP includes

several intermediate data copy steps. This latency hinders

their adoption as consensus protocols in blockchain platforms.

In the BFT protocols that are deployed in blockchains, the

number of participants will presumably be higher than in

traditional deployment scenarios, thereby leading to a further

increase in latency for inter-replica communication. This can

be avoided by using RDMA, which offers kernel bypassing

and zero-copy operations. We presented RUBIN, a framework

to leverage RDMA interconnect features for BFT protocols

such as Reptor. It does not require a redesign of the existing

BFT communication stack as it is modeled after the behavior

of the Java NIO selector.

In our future work, we plan to investigate how several

optimizations using additional RDMA features impact the

performance of RUBIN, remove any additional buffer copy

steps, and to extensively evaluate the fully replicated system.

REFERENCES

[1] A. Hern. (2018) Bitcoin’s energy usage is huge – we can’t afford to
ignore it. [Online]. Available: https://goo.gl/z8MNSM

[2] J. Kwon. (2014) Tendermint: Consensus without mining. [Online].
Available: https://tendermint.com/static/docs/tendermint.pdf

[3] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in SOSP ’17,
2017.

[4] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The Honey Badger
of BFT Protocols,” in CCS ’16, 2016.

[5] M. Vukolić, “The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication,” in IFIP WG 11.4 International Workshop, iNetSec
2015, 2015.

[6] P. W. Frey and G. Alonso, “Minimizing the Hidden Cost of RDMA,”
in ICDCS ’09, 2009.

[7] M. Poke and T. Hoefler, “DARE: High-Performance State Machine
Replication on RDMA Networks,” in HPDC ’15, 2015.

[8] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui, “APUS: Fast and Scalable
Paxos on RDMA,” in SoCC ’17, 2017.

[9] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song, E. Tremel,
S. Zink, K. Birman, and R. van Renesse, “Building Smart Memories
and Cloud Services with Derecho,” 2017.

[10] J. Behl, T. Distler, and R. Kapitza, “Consensus-Oriented Parallelization:
How to Earn Your First Million,” in Middleware ’15, 2015.

[11] A. Bessani, J. a. Sousa, and E. Alchieri, “State Machine Replication for
the Masses with BFT-SMaRt,” Tech. Rep., 2013. [Online]. Available:
http://repositorio.ul.pt/bitstream/10451/14170/1/TR-2013-07.pdf

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche, “UpRight Cluster Services,” ser. SOSP ’09, 2009.

[13] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz,
and S. K. Reinhardt, “Performance Analysis of System Overheads in
TCP/IP Workloads,” in PACT ’05, 2005.

[14] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in OSDI
’99, 1999.

[15] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Trans. Comput. Syst., 2010.

[16] C. Mitchell, Y. Geng, and J. Li, “Using One-sided RDMA Reads to Build
a Fast, CPU-efficient Key-value Store,” in USENIX ATC’13, 2013.

[17] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu, “RFP: When RPC is
Faster Than Server-Bypass with RDMA,” in EuroSys ’17, 2017.

[18] Oracle. Enhancements in Java I/O. [Online]. Available: https:
//goo.gl/sfZyQ7

[19] J. Pinkerton and E. Deleganes, “Direct Data Placement Protocol
(DDP)/Remote Direct Memory Access Protocol (RDMAP) Security,”
Internet Requests for Comments, RFC 5042, 2007.

[20] B. Li, P. Zhang, Z. Huo, and D. Meng, “Early Experiences with Write-
Write Design of NFS over RDMA,” in NAS ’09, 2009.

[21] M. Lee, E. J. Kim, and M. Yousif, “Security Enhancement in InfiniBand
Architecture,” in IPDPS ’05, 2005.

[22] R. Noronha, L. Chai, T. Talpey, and D. K. Panda, “Designing NFS with
RDMA for Security, Performance and Scalability,” in ICPP ’07, 2007.

[23] P. Stuedi, B. Metzler, and A. Trivedi, “jVerbs: Ultra-low Latency for
Data Center Applications,” in SOCC ’13, 2013.

[24] B. Li, N. Weichbrodt, J. Behl, P.-L. Aublin, T. Distler, and R. Kapitza,
“Troxy: Transparent access to byzantine fault-tolerant systems,” in DSN
’18, 2018, accepted for Publication.

[25] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “FaRM: Fast
Remote Memory,” in NSDI ’14, 2014.

[26] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian, “The
End of Slow Networks: It’s Time for a Redesign,” Proceedings of the
VLDB Endowment, 2016.

[27] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda, “High Performance RDMA-
based Design of HDFS over InfiniBand,” in SC ’12, 2012.

[28] M. Tatineni, X. Lu, D. Choi, A. Majumdar, and D. K. D. Panda,
“Experiences and Benefits of Running RDMA Hadoop and Spark on
SDSC Comet,” in XSEDE ’16, 2016.

[29] S. Thirugnanapandi, S. Kodali, N. Richards, T. Ellison, X. Meng,
and I. Poddar. (2014) Transparent network acceleration for Java-based
workloads in the cloud. [Online]. Available: https://goo.gl/P5Gtj3

151

