

ROLO-WILHELMINA Braunschweig

TECHNISCHE UNIVERSITÄT

Analysis of Inconsistent Routing Components in Reactive Routing Protocols

Habib-ur Rehman, Lars Wolf

Institut für Betriebssysteme und Rechnerverbund Technische Universität Braunschweig

WMAN 2009, 5th March, Kassel

Outline

Introduction

How to Improve Reactive Routing? The Problem: Use of Prior-to-demand Collected Routing Data??

Analysis of AODV Objectives and Nature of Analysis AODV-TTL AODV-RS Simulation Setup/Results

Conclusions

How to Improve Reactive Routing?

- Reactive Routing
 - On-demand operations
 - High Response Time
 - Connection set up/recovery
- Typical Approach
 - <u>Use prior-to-demand collected routing data</u>
 - Share more-than-demanded routing data
 - route request/reply packets carry additional data
 - Collect more-than-required routing data
 - overhear the routing packets for others
 - Use in route interruptions or subsequent route discoveries

Use of Prior-to-demand Collected Routing Data

- Examples
 - DSR maintains alternate routes by overhearing routing packets
 - · AODV uses previously known hop-count in new route discoveries
 - Overhearing: a common practice among multiple path protocols
 - For example: AOMDV, AODV-BR
- An Inconsistent Approach
 - No proactive mechanism to refresh stored routing data
 - Due to ever changing topology future and fortune of such acts
 - · Totally dependent on network and topology conditions
 - Unpredictable and volatile behavior/effects/benefits

This Paper

- Analyze: use of prior-to-demand collected routing data
 - Understand the effect on
 - Protocol operations
 - Protocol/Network performance
- Approach
 - Analyze the deviation in the behavior of a reactive routing protocol after
 - · Increasing the use of previously collected routing data
 - · Decreasing the use of previously collected routing data

Analysis

- Standard AODV vs. two modified versions
 - AODV-TTL
 - · less dependent on previously collected routing data
 - more reactive
 - AODV-RS
 - · shares more routing data for subsequent use
 - subsequent actions: less reactive
 - Compared performance metrics
 - MAC overhead
 - Routing overhead
 - Data packet delivery ratio
 - Route discovery time

AODV-TTI


- Expanding ring search during the route discovery
 - TTL field determines how many hops a RREO will travel
- In AODV: in case of an existing entry
 - TTL = last known hop count + TTL INCREMENT > TTL START
- In AODV-TTL ٠
 - TTL = TTL START
 - Route recovery or route discoveries: completely on-demand

AODV-RS

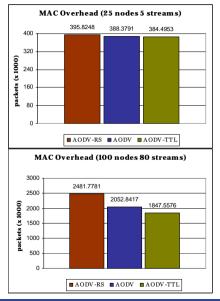
- Routing messages carry the information on two nodes only
 - The originator and the previous hop
- Route Sharing
 - Include all the nodes along the path into a RREQ/RREP message
 - In AODV-RS
 - · every intermediate node appends its previous hop
 - shares ample amount of prior-to-demand routing data
 - effect the subsequent actions

Learning during route discovery

Simulations

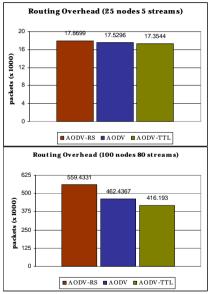
- **OPNET** Modeler •
 - manet station node model
 - Random way point mobility
- Simulation scenarios
 - Varying network size and data streams
 - Varying mobility parameters

Simulation Scenarios				Pau	Simulation settings for Pause Time, Node Speed and Packet Rate			
Nodes	Area	Data Streams	Active Nodes	Variation of	Pause Time (seconds)	Node Speed (m/sec.)	Data Packet Rate (packets/second)	
	800 m	5	8		0, 30, 60, 300, 900, 1800	1	(pueneus) second)	
25	X 800 m	20	20	Pause Time			4	
	2000 m	20	30	Node Speed	0	1, 2, 5, 10, 25	4	
100	X 500 m	80	85	Packet Rate	0	1	1, 2, 5, 10, 20	


Inconsistent Reactive Routing Components

Extras

Results: MAC Overhead

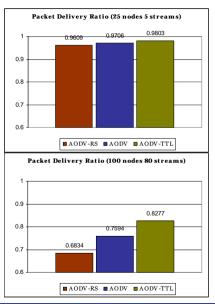

- AODV-RS
 - 2-20 % higher
- AODV-TTL
 - 1-11 % less

Results: Routing Overhead

- AODV-RS
 - 2-20 % higher
- AODV-TTL
 - 1-11 % less
- Quite similar to MAC overhead
 - In reactive routing protocols, Routing traffic dictates the overhead

Results: Overhead

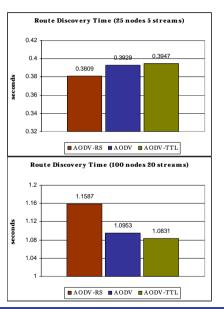
- Why the packet overhead is high in AODV-RS?
 - Higher initial value of TTL
 - Less controlled flooding
 - Higher contribution of RREP messages
 - · More nodes are able to respond during route discovery


			Perc	Percentage of RREQ and RREP packets				
					AODV-RS	AODV		
				25 nodes 5 stream	81.73	82.42		
Initial value of the TTL field			RREQ	25 nodes 20 streams	77.69	80.53		
				100 nodes 20 streams	75.89	78.10		
	AODV-RS	AODV		100 nodes 80 streams	72.69	77.84		
25 nodes 5 stream	1.69	1.21		25 nodes 5 stream	13.66	13.53		
25 nodes 20 streams	2.27	1.52	RREP	25 nodes 20 streams	18.32	17.10		
100 nodes 20 streams	3.03	1.81	RREP	100 nodes 20 streams	21.73	18.59		
100 nodes 80 streams	4.77	2.56		100 nodes 80 streams	25.34	19.29		

Inconsistent Reactive Routing Components

Results: Packet Delivery

- Data Packet Delivery Ratio
 - AODV-RS
 - 1-10 % less
 - AODV-TTL
 - 1-8 % higher
 - Higher overhead
 - causes more saturation
 - results in less throughput



Extras

Results: Route Discovery

- Route Discovery Time
 - Inconclusive
 - 802.11 is a contention-based MAC
 - AODV-RS
 - 3 % less in (25 nodes 5 streams) scenario
 - 2-6 % higher in others
 - RREP requires RTS/CTS exchange
 - AODV-TTL
 - 1 % less in (100 nodes 20 streams) scenario
 - 0.5-3 % higher in others
 - Requires more expansion steps of ring search

Conclusions

- More prior-to-demand routing data present in the network
 - Less RREQs but more RREPs
 - AODV loses the benefit of expanding ring search
 - suffers due to higher TTL
 - More overhead
 - AODV-RS > AODV > AODV-TTL
 - Less packet delivery ratio
 - · Mainly due to higher overhead, contention
 - Route discovery time
 - · unpredictable in contention based scenarios

Conclusions

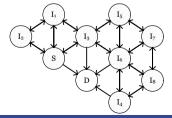
- Expanding ring search without exceptions •
 - Less overhead
 - Higher route discovery time
- Sharing more routing data: Not a good approach
 - Higher overhead
 - Collecting more routing data might work in some cases

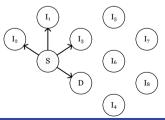
technische universität C**AROLO-WILHELMINA** 2u braunschweig

Introduction	Analysis	AODV-TTL	AODV-RS	Simulations	Results	Conclusions	Extras
--------------	----------	----------	---------	-------------	---------	-------------	--------

Thank you very much for your attention

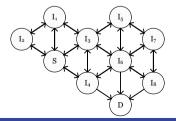
Questions/Comments/Suggestions

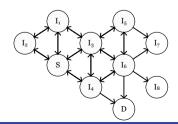

Why AODV?


- Popular and well reputed
- A very simple protocol
- Based on fundamental reactive principles
 - Route discovery
 - purely reactive
 - except the TTL adjustment
 - expanding ring search: a good approach to control flooding
- Presence of prior-to-demand routing data
 - Works the same in most of the reactive protocols

- Route Discovery
 - Floods RREQ, unicast RREP
 - Expanding ring search approach
 - start TTL with TTL_START
 - step by TTL_INCREMENT on every failed attempt
 - until reaches NET_DIAMETER
 - in case of an existing entry, start TTL with HOP_COUNT+TTL_INCREMENT
 - only RREQ_RETRIES attempts at TTL=NET_DIAMETER
- Route Interruption
 - Informs using RERR
 - Performs local repair or source initiates a new route discovery

Effect of the Initial Value of TTL Field


- When destination is closer than the previously known hop count
 - The destination was previously two hops away
 - The shaded nodes are those which have transmitted a RREQ packet
 - Left: the initial value of the TTL field is (2 + TTL_INCREMENT = 4)
 - Right: The initial value of the TTL field is TTL_START i.e. 1



Effect of the Initial Value of TTL Field

- When destination is at the same distance as the previously known hop count
 - The destination was previously two hops away
 - The shaded nodes are those which have transmitted a RREQ packet
 - Left: the initial value of the TTL field is (2 + TTL_INCREMENT = 4)
 - Right: The initial value of the TTL field is TTL_START i.e. 1
 - Requires another phase with expanded ring TTL+=TTL_INCREMENT=3

Simulation Parameters

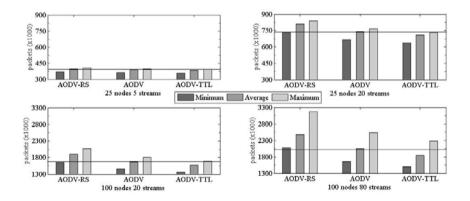
- OPNET Modelere with wireless suite
- SMP machine with 2 Intel Xeon 3.0 GHz processor
- 2 GB RAM
- Microsoft Windows Server 2003
- Simulation run duration: 1800 seconds
- 1024 Bytes per packet
- Every combination of settings repeated with 5 different seeds
- Random waypoint mobility traces are first evaluated to avoid
 - Density wave
 - Speed decay

Simulation Parameters

- Node coverage ≈ 250m (radius)
 - Transmit power = 0.04 watt
 - Packet Reception-Power Threshold = 73 dBm

Simulation Environment						
Network Size	Geographical Area	Node Density (per sq. km)	Network Diameter (nodes)	Neighbor Count		
25 nodes	800 m X 800 m	39.06	4.52	7.67		
100 nodes	2000 m X 500 m	100	8.25	19.63		

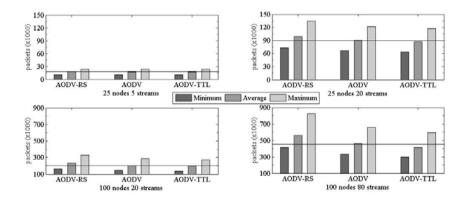
Simulation Parameters


AODV settings

AODV Parameters				
Parameter	Value			
RREQ_RETRIES	3			
ACTIVE_ROUTE_TIMEOUT	3 seconds			
HELLO_INTERVAL	1 second			
ALLOWED_HELLO_LOSS	2			
NET_DIAMETER	20			
NODE_TRAVERSAL_TIME	0.04 second			
TIMEOUT_BUFFER	2			
TTL_START	1			
TTL_INCREMENT	2			
TTL_THRESHOLD	7			
DELETE_PERIOD	15 seconds			
LOCAL_ADD_TTL	2			

Main

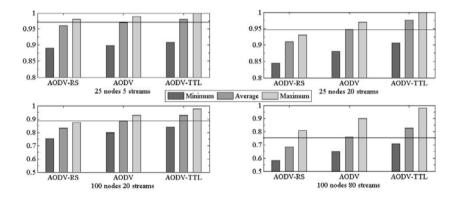
MAC Overhead



imulation Parameters

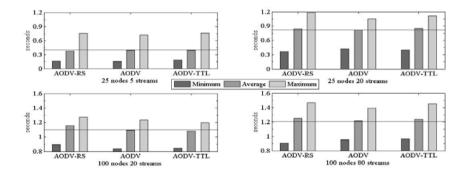
Results

Main


Routing Overhead

Main

Data Packet Delivery Ratio



Results

Main

Route Discovery Time

