

A Multihop IEEE 802.11 MAC Protocol for Wireless Ad hoc Networks

Habib-ur Rehman, Lars Wolf

Institute of Operating Systems and Computer Networks (IBR)
Technische Universität Braunschweig, Germany

SAHNS 2009 @ ICDCS 2009, Montreal 26th June, 2009

Outline

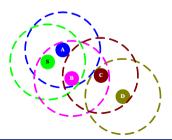
Multihop Connectivity in Wireless Ad hoc Networks

Approaches: @ Layer-2 or @ Layer-3

@ Layer-2: Motivation & Objectives

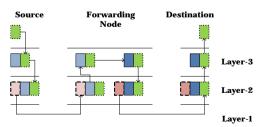
Multihop IEEE 802.11 MAC Protocol

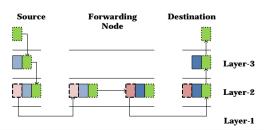
Protocol Architecture


Performance Analysis


Conclusions

Multihop Connectivity in Wireless Ad hoc Networks


- Nodes can not communicate beyond their radio range
 - Multiple-hops away nodes can not communicate
- Multihop Connectivity
 - Nodes forward messages for each other
 - Can communicate with every other node in the network
 - Beyond their radio range


Multihop Connectivity Approaches: @ Layer-3

- Routing: forwarding performed at Layer-3
 - Based on Layer-3 (IP) addresses
 - A very common/popular approach
 - · Extensively researched
 - Adaptation of routing in wired networks
 - AODV, DSR, OLSR, TORA etc.

Multihop Connectivity Approaches: @ Layer-2

- Relaying
 - Forwarding performed at Layer-2
 - · Based on MAC addresses
 - Not a widely used/researched approach
 - For example: Bluetooth, HiperLAN/1

Multihop 802.11 MAC Architecture

ysis Conclusions

Motivation for Relaying

- Layer-2 support is inevitable in routing
 - For example: AODV, DSR, ABR, SSA etc. have
 - Link layer feedback, beacon frames etc.
 - In order to reduce response time or overhead
 - Signal strength, neighbor connectivity etc. are available at Layer-2
- Collision Avoidance MAC Protocols
 - Control messages (RTS/CTS/ACK) used quite often
 - Can help in topology learning, no special messages required

Habib-ur Rehman IBR, TU Braunschweig 6/22

Why IEEE 802.11 MAC?

- Most widely used wireless MAC in consumer scenarios
- Collision Avoidance MAC
- Four address fields in MAC frame header
 - End-to-end addressing requires at least three address fields
- Fragmentation/Reassembly Option
- Frame sequence numbers

Size (octets)	2	2	6	6	6	2	6	2	0-2304	4
	Frame Control	Duration / ID	Address 1	Address 2	Address 3	Sequence Control	Address 4	QoS Control	Frame Body	FCS

→ MAC Header → Habib-ur Rehman IBR, TU Braunschweig 7/2.

Related Work

- Different suggestions to introduce relaying in 802.11 networks
 - · As an additional scheme
 - Complex approaches, require major modifications
 - Proactive approaches
 - Have limitations
 - Examples:
 - IEEE 802.11 Ad hoc bridge
 - A Bridging Method for Mobile Ad hoc Networks
 - DCMA: Data Driven Cut-through Multiple Access
 - LUNAR: Lightweight Underlay Network Ad-hoc Routing Protocol

The Multihop IEEE 802.11 MAC

- Provide relaying service at MAC layer in ad hoc mode
- No routing protocol at Layer-3
- Reactive approach
- A simple extension of existing MAC protocol
- No dependency on previously stored topology information
- No route discovery
 - Exploits MAC address resolution by ARP

Protocol Architecture (1)

- Forwarding Table (FWT)
 - Destination MAC address, Next hop MAC address, Used bit
 - No route cost, a fresh route is always preferred

Size (bits)	48	48	1
	Destination MAC Address	Next hop MAC Address	Used

- End-to-End Addressing: four address fields
 - Address 1: Recipient (RA)
 - Address 2: Transmitter (TA)
 - Address 3: Destination (DA)
 - Address 4: Source (SA)

Size (octets)	2	2	6	6	6	2	6	2	0-2304	4
	Frame Control		Address 1 RA	Address 2 TA	Address 3 DA	Sequence Control	Address 4 SA	QoS Control	Frame Body	FCS
	MAC Hooden									

Habib-ur Rehman IBR, TU Braunschweig 10/2

Protocol Architecture (2)

- Learning
 - Learning topology, FWT maintenance
 - Entries for SA/TA are updated whenever a frame is received
 - · SA information in old frames is not used
- Forwarding
 - Originating/forwarding frames
 - · Unicast if FWT has an entry for the destination, else broadcast
- Repair
 - Route error and loop detection/correction
 - Maintain FWT & broadcast the frame

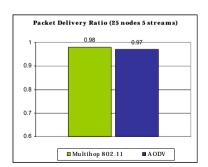
Habib-ur Rehman IBR, TU Braunschweig 11/22

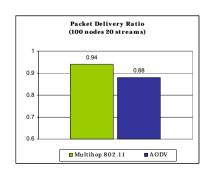
Performance Analysis (1)

- Comparison with AODV
 - Is multihop 802.11 MAC a feasible idea?
- Performance metrics
 - Packet Delivery Ratio: Success in data delivery
 - MAC overhead: Cost incurred
 - · Throughput: Amount of data delivered
 - End-to-end delay of data packets
 - Normalized Throughput: Cost efficiency of delivered data

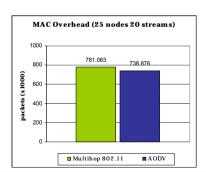
Performance Analysis (2)

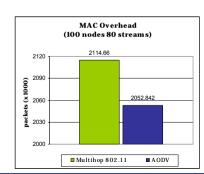
- OPNET Modeler
 - · manet station node model
 - · Random way point mobility
- · Simulation scenarios with varying
 - Network size
 - Data streams
 - Mobility parameters


Mobility Parameters						
Variation of	Pause Time (seconds)	Node Speed (m/sec.)	Data Packet Rate (packets/second)			
Pause Time	0, 30, 60, 300, 900, 1800	1	4			
Node Speed	0	1, 2, 5, 10, 25	4			
Packet Rate	0	1	1, 2, 5, 10, 20			


Network Parameters						
Nodes	Area	Data Streams	Active Nodes			
25	800 m	5	8			
	X 800 m	20	20			
100	2000 m	2000 m 20				
	500 m	80	85			

Simulation Results (1)

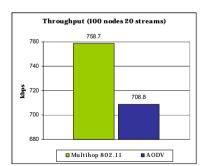

- Better packet delivery ratio
 - Up to 6% high
 - Immediate and local recovery (broadcast)
 - AODV requires a new route discovery (at point of failure or source)

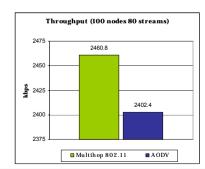


Simulation Results (2)

- Higher MAC overhead
 - Up to 10% high
- Undelivered packets ??
 - Lost while traveling
 - Lost at the source: never transmitted

Habib-ur Rehman IBR, TU Braunschweig 15/2

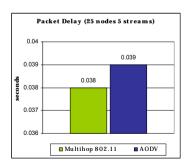

Simulation Results (3)

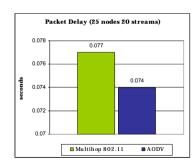

- AODV: up to 48% of undelivered packets are not transmitted
 - The effect of connection failure goes back to the data source
- Multihop 802.11: up to 38% only
 - Heuristic approach does not overload data sources

Packets left at the source / Undelivered packets					
	AODV	Multihop 802.11			
25 nodes 5 streams	0.047	0.022			
25 nodes 20 streams	0.153	0.069			
100 nodes 20 streams	0.288	0.081			
100 nodes 80 streams	0.476	0.378			

Simulation Results (4)

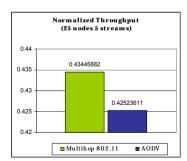
- Higher Throughput
 - · A linear relation of packet delivery ratio

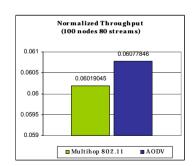



Habib-ur Rehman IBR, TU Braunschweig 17/2

Simulation Results (5)

- End-to-end packet delay
 - High-Low
 - Measured only for delivered packets
 - · Multihop MAC delivers more packets





Simulation Results (6)

- Normalized Throughput: high-low
 - Similar cost/overhead efficiency
 - Data packets delivered / MAC packets transmitted
 - AODV transmits less packets

Conclusions

- Relaying seems more suitable in wireless ad hoc networks
 - · Can provide a self-dependent and flexible solution
- Multihop IEEE 802.11 MAC protocol is feasible
 - Simpler in implementation
 - Can perform equally or even better than AODV

Future Options

- Refine the design of Multihop IEEE 802.11 MAC protocol
 - Explore the possibility of multihop channel reservation
 - Introduction of accessibility awareness
- Possibility of relaying in other wireless MACs for ad hoc or sensor networks

stroduction Multihop 802.11 MAC

Architecture

Analysis

Conclusion

Extra

Thank you very much for your attention

Questions/Comments/Suggestions