

Performance Enhancement in AODV with Accessibility Prediction

Habib-ur Rehman, Lars Wolf

Institut für Betriebssysteme und Rechnerverbund Technische Universität Braunschweig Germany

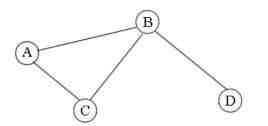
LOCAN 2007, 8th October

The Problem

× In MANETs

- Limited resources of all kind
- Ever changing topology
 - Cause route errors, require new route discoveries
 - Major cause of MAC and routing overhead

Protocols for Ad hoc networks should


- Effectively use resources
- Try to maximize the benefits
- Routing protocols should try to maximize the utility of routing operations without causing unnecessary overhead...... Learn more in the same price

- Nodes have opportunity to collect information about the relative accessibility and mobility
- ***** Possible in almost all ad hoc routing protocols
- **×** Future routing operations could be enhanced

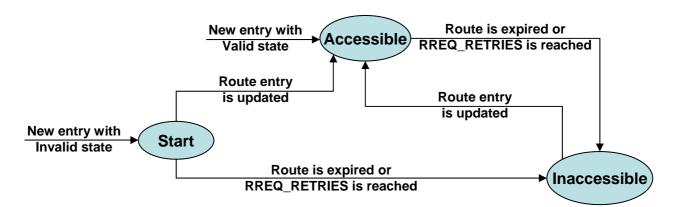
E

Accessible pairs at Step **4** (A,B), (A,C), (A,B**), (A,E**), (**B**,D), (B,D), (B,B**), (C,D)**, (C,E), (D,E)

Node pairs which can observe relative mobility

(A,E), (B,E), (C,D), (C,E), (D,E)

Particularly in AODV


- Repeated RREQs are discarded
 - After performing all resource hungry steps
 - Routing information about sender/originator can be updated
- RREQ_RETRIES is reached
 - Destination might be unreachable
- No new RREQ after PATH_DISCOVERY_TIME
 - Route between source and destination might be successfully established

× In AODV-AP

- A new field "Accessible" is added to each routing table entry
 - Depicts the predicted accessibility information
 - Possible values
 - Start = No information
 - Accessible = A valid route to node exists or would be possible
 - Inaccessible = A valid route to node would not be possible
- Routing entries will never be deleted

× Cost

- No extra messaging
- Additional computation due to "Accessibility" field-negligible
- Computation cost of using repeated RREQs-negligible
- Routing table entries are never deleted
 - Size of routing table
 - Might not be a problem in a reasonable size network

Wrong accessibility prediction

- Depends on the use

Modified route discovery method

- No route discovery for "Inaccessible" nodes
- Reduces overhead
- Wrong prediction
 - Considering an "Inaccessible" node "Accessible"
 - Behaves like usual AODV
 - Considering an "Accessible" node "Inaccessible"
 - Limited connectivity

× Mobility as a route cost metric

Relatively stationary nodes: good candidates to be included in a route

Simulation based comparison

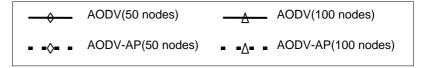
- AODV vs. AODV-AP with modified route discovery
- ▶ NS-2 (2.28) with AODVUU
- Simulation parameters
 - Simulation run length: 1800 seconds
 - CBR sources generating UDP traffic
 - Data packet size: 512 Bytes
 - Mobility (Random way point) scenarios and Data traffic scenarios are generated with CMU's utilities using following parameters

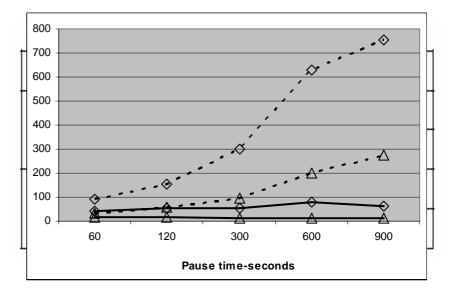
Number	Number of Connections	Area of	Pause Time	Maximum	Data Packet Rate
of Nodes	attempted	Topology (m ²)	(seconds)	Speed of nodes	(packets/second)
50	20, 40	1500 x 300	60, 120, 300,	5, 10, 15 and	1, 2, 5, 10
100	25, 50, 75	2200 x 600	600 and 900	20 m/sec	1, 2, 5, 10

Table 1. Simulation space

Simulation targets

- MAC overhead
- Routing overhead
- Packet delivery ratio
- Connection Success Ratio
 - To observe the effect on connectivity
- Effective Throughput
- Normalized Effective Throughput
 - Effective Throughput normalized with respect to MAC and routing overhead
 - To observe how effectively the network resources are used




Evaluation

Simulation Results

- AODV-AP has higher contribution of data traffic
- Connection Success Ratio
 - Slightly less than AODV for 50 nodes
 - Higher than AODV for 100 nodes : AODV more vulnerable to congestion
- Normalized Throughput
 - More than double w.r.t.
 MAC overhead
 - 10-20 times higher w.r.t routing overhead

Nocoalized Jih Suggesut (MAC)

× AODV-AP

- Enables the nodes to predict relative accessibility of other nodes
- With almost negligible cost
- Modified route discovery method uses network resources more economically and effectively

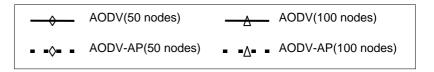
× In future

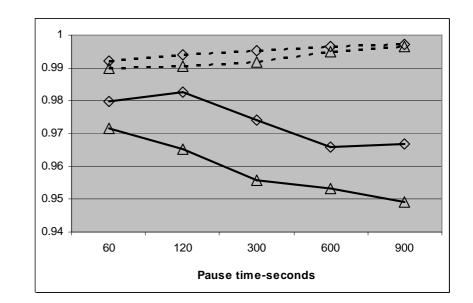
- Could be more successful at layer 2 as in 802.11s
- Relative mobility prediction and use it as route cost metric
- Analyze other routing protocols like DSR, OLSR

Thank you for you attention

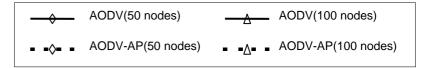
Any Questions

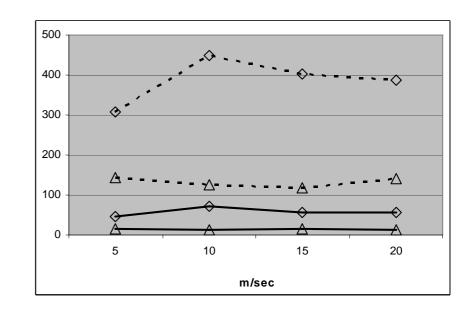
rehman@ibr.cs.tu-bs.de


Institut für Betriebssysteme und Rechnerverbund Technische Universität Braunschweig Germany

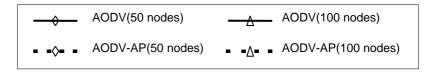

LOCAN 2007, 8th October

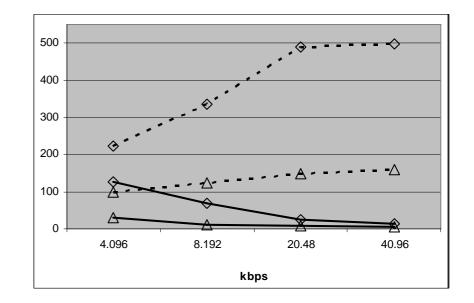
- Simulation Results vs.
 Pause Time (rest)
 - MAC overhead
 - Reduced to 25%
 - Routing overhead
 - Reduced to 1%
 - Packet delivery ratio
 Always above 99%



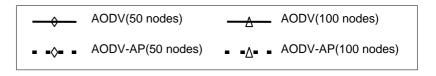


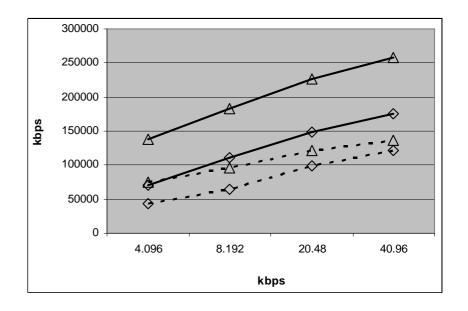
- Simulation Results
 vs. average node speed
 - MAC overhead
 - Routing overhead
 - Packet delivery ratio
 - Connection Success Ratio
 - Normalized Throughput
 - w.r.t. MAC overhead
 - w.r.t routing overhead


No significant change with node speed



Simulation Results
 vs. offered data load


- MAC overhead
- Routing overhead
- Packet delivery ratio
- Connection Success Ratio
- Normalized Throughput
 - w.r.t. MAC overhead
 - w.r.t routing overhead



Simulation Results
 Throughput

- Vs. Pause time
- Vs. Average node speed
- Vs. Offered data load

Evaluation

× Simulation parameters

- SMP machine with 2 Intel Xeon 3.2 GHz processors
- 2 GB RAM
- Linux 2.6.12.1

× NS-2

- Lucent WaveLAN DSSS radio interface at 2Mbps
- Omni-directional antenna with unity gain
- Radio propagation model uses Friss-space attenuation at near distances and Tow ray Ground at far distances