Live-Streaming in Delay Tolerant Networks

Johannes Morgenroth, Tobias P6gel and Lars Wolf

Institute of Operating Systems and Computer Networks
Technische Universitat Braunschweig
Braunschweig, Germany

[morgenroth, poegel, wolfl@ibr.cs.tu-bs.de

ABSTRACT

Streaming of audiovisual media contents such as video or
music using mobile devices and wireless networks leads to
new challenges because these network connections are typi-
cally not very reliable. In this demo, we show streaming of
live video using a Delay Tolerant Network (DTN) approach.
This allows the integration of multiple connections which
leads to a higher availability and enables a video transmis-
sion without loss in the data stream.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks|: Network
Architecture and Design—=Store and forward networks

General Terms

Experimentation, Reliability

Keywords
Streaming, DTN, Delay Tolerant Communication, IBR-DTN

1. INTRODUCTION

Audiovisual media are very popular and drivers for many
innovations in the Internet. Several of such systems are
based on a download model, but there exist also a huge num-
ber of various (live) video and music streaming offerings with
a high variety of topics such as sports, news, trailers and
radio. All these can be used on different mobile devices, ter-
minals or the car entertainment system. This also provides
the chance for new functionalities like a personalized radio
streaming on a mobile device. Especially in wireless net-
works like IEEE 802.11x or cellular networks, the mobility
of the users or vehicles leads to communication interruptions
and, thus, streaming aborts due to insufficient connectivity.
For such environments, DTNs are particularly well suited
because they operate by using a store-and-forward approach
and need no direct end-to-end connection in the communi-
cation path. In case of a disconnection, the data-bundles
are stored and forwarded as soon as a new link is available
again. Furthermore, multiple DTN-nodes can be involved
to forward the video stream which can improve the stability
further. In case that the network connection is interrupted,
the video will be suspended. Later it can be continued at

Copyright is held by the author/owner(s).
CHANTS’11, September 23, 2011, Las Vegas, Nevada, USA.
ACM 978-1-4503-0870-0/11/09.

the last break point without any missing parts once any link
comes up again.

In our demo we show a scenario where a video is cap-
tured by a camera and streamed over multiple nodes in a
DTN. To increases the reliability in this setup, two network
links are provided. At the destination node, the stream is
received and displayed with a delay which depends on the
local video buffer size. Only if all the links are unavailable,
the video is interrupted for the time without network con-
nections. The video stream is resumed without any gaps as
soon as a connection is available again.

2. RELATED WORK

The DTN architecture was first presented in [2] and can be
used in many different scenarios with communication disrup-
tions and high delays. A particularly suitable example for
the usage of DTNs is the vehicular communication realm. [3]
describes a V2V and V2I communication by using the DTN
approach and realizes a multi-hop system to increase the
coverage. In [1], the usage of DTNs in the public transport
systems area is discussed; there, a communication between
the vehicles of the operator and multimedia panels mounted
on the stops is enabled. The set-up can also be used for the
transmission of multimedia content, e.g. advertisements or
movie trailers, to the vehicles and stops.

Guo et al. present in [4] another architecture which allows
a video live-streaming between vehicles or between vehicles
and a stationary video server over some infrastructure com-
ponents. They also use a DTN-like store-and-forward mech-
anism. The focus of their work is on the distribution and
transmission of video streams. In our demo, we take the ad-
vantages of DTNs and can also resume video streams after
a long disruption.

3. DEMONSTRATION

In the demonstration set-up we present an uncommon use-
case of a DTN. The delayed and disrupted forwarding of
bundles in a permanent partitioned network is the worst
enemy of any continuous data streaming. However, we want
to demonstrate that streaming a large amount of video data
can work in a DTN, too.

3.1 Showcase

The set-up consists of four nodes. One is the sender of
video data and encapsulates grabbed video data into stream-
ing chunks using the application described in section 3.3.
As shown in figure 1, the sender is connected with two other
DTN nodes and these are connected with the receiving node.

Sender

Camera

Figure 1: Set-up of our live-streaming demo

By using the epidemic routing protocol, the data chunks
are forwarded from the sender to both neighboring nodes
and in the next iteration to the receiver. Thus, we have
a redundant path between sender and receiver. If one path
fails, the streaming data can still be delivered to the receiver
using the other path. If both paths are interrupted, the
streaming will stuck until the connection is available again.

Additionally, the in-network storage which is characteris-
tic for a DTN system comes into play. This allows to buffer
the streaming data as near as possible to the receiver. The
nodes within the network are equipped with a mass-storage
device and store the streaming data until the connection to
the receiver is available.

3.2 Components

The base component for this demonstration is our IBR-
DTN [5] system. This software provides a daemon and tools
to set-up a DTN on embedded hardware or standard PCs.
Besides the standard bundle protocol [6], other features like
the TCP convergence layer, IP neighbor discovery and epi-
demic routing support are important for this demo to work.

As shown in figure 1, this demonstration consists of four
DTN nodes plus one camera. The camera is a network cam-
era (LevelOne WCS-0030) and provides a constant real-time
transport protocol (RTP) video stream with high quality
video to the sender. The sender is a standard PC running
Linux and re-encapsulate the video stream into bundles us-
ing gstreamer and the streaming application introduced in
section 3.3. The nodes between sender and receiver are em-
bedded devices (Ubiquiti RouterStation Pro) with 128 MB
RAM, 680 MHz CPU clock, 16 MB Flash Memory and a
2 GB SD card which is attached to store bundles temporar-
ily. The device runs a standard OpenWRT Linux and the
IBR-DTN daemon. The receiver is a standard PC running
Linux and displays the received video using the VLC media
player.

3.3 Streaming Application

To stream data from one bundle endpoint to another, we
have to gather the data for a short time, encapsulate it into
bundles and forward them to the receiver. To compensate
for the possible re-ordering of bundles, we need a mechanism
at the receiver to arrange the bundles into the correct order.
Furthermore, the receiver needs to decide which is the next
bundle to playout or whether it has to wait for data.

The application implemented for this demo uses the API
of IBR-DTN and is now part of the IBR-DTN tools. The
program reads data from the standard input pipe and puts
a predefined amount of bytes into a single bundle. Each
bundle [6] consists of the standard primary header and a
payload block with a data chunk of the stream. Addition-

o + + +
| Block type | Proc. Flags (*) | Block length(*) |
o + + +
| Stream Sequence Number (%) |
o -——+

Figure 2: Block format of the stream-block. All
fields marked with (*) are encoded as SDNV.

ally, a stream-block is attached to the bundle and carries the
linear raising sequence number of the data chunk. The struc-
ture of the stream-block is depicted in figure 3.3. For this
experiment, it is marked with the experimental block type
number 242 and should be replicated in every fragment to
allow partial content delivery, thus the corresponding bit is
always set.

The receiver re-orders the received bundles using the se-
quence number of the stream-block and writes the payload
data as continuous stream to the standard output pipe. As
configurable option, a time-out could be specified to skip
lost bundles, if they do not arrive within a defined amount
of time. Since, there is no retransmission of lost bundles,
this is the only way to deal with this issue.

4. CONCLUSIONS

The demonstration illustrates that video streaming works
well in DTNs. Exploiting the DTN mechanisms allows stream-
ing without any losses and increases the reliability. In the
future, we will adapt this approach for dynamic stream sub-
scription and extend it to broadcast the video stream to
multiple receivers.

S. REFERENCES

[1] M. Doering, T. Pogel, and L. Wolf. Delay tolerant
communication in intelligent transportation systems. In
8th International Workshop on Intelligent
Transportation (WIT), Hamburg, Germany, 3 2011.

[2] K. Fall. A delay-tolerant network architecture for
challenged internets. In Proceedings of the 2003
conference on Applications, technologies, architectures,
and protocols for computer communications,
SIGCOMM 03, pages 27-34, New York, USA, 2003.

[3] L. Franck and F. Gil-Castineira. Using delay tolerant
networks for car2car communications. In Industrial
Electronics, 2007. ISIE 2007. IEEE International
Symposium on, pages 2573 —2578, june 2007.

[4] M. Guo, M. Ammar, and E. Zegura. V3: A
vehicle-to-vehicle live video streaming architecture. In
Pervasive Computing and Communications, 2005.
PerCom 2005. Third IEEE International Conference
on, pages 171 — 180, march 2005.

[5] S. Schildt, J. Morgenroth, W.-B. Péttner, and L. Wolf.

IBR-DTN: A lightweight, modular and highly portable

Bundle Protocol implementation. Flectronic

Commumnications of the EASST, 37:1-11, Jan 2011.

K. Scott and S. Burleigh. Bundle Protocol

Specification. RFC 5050 (Experimental), Nov. 2007.

[6

