Delay-Tolerant Networking in Restricted Networks

Johannes Morgenroth, Tobias Pdgel, Robert Heitz and Lars Wolf

Institute of Operating Systems and Computer Networks
Technische Universitat Braunschweig
Braunschweig, Germany

[morgenroth, poegel, heitz, wolfj@ibr.cs.tu-bs.de

ABSTRACT

For security reasons, many companies usually allow only
strictly regulated communication, specific system configu-
rations and predetermined software components. Therefore,
often only communication over the HTTP protocol is pos-
sible, which operates by using a request-response approach.
In this paper we present the design and evaluation of a con-
vergence layer for our DTN implementation IBR-DTN using
HTTP as underlying protocol. On the remote side we use a
web server and a database for the connection management.
Through the usage of long-polling we realize a bidirectional
communication. In the evaluation, we show the results of
bandwidth and latency measurements.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks

General Terms

Performance, Measurement

Keywords

DTN, Delay Tolerant Communication, HTTP, IBR-DTN,
Convergence Layer, DT-HTTP

1. INTRODUCTION

DTNs (RFC 4838) are a promising approach for appli-
cation scenarios where delays and disruption in the com-
munication can appear. The vehicular communication is
a good example where a wide range of heterogeneous net-
works are available and used where such challenges can oc-
cur. For many application scenarios, the need for communi-
cation with a backend inside a company is necessary. Back-
ends are usually powerful and versatile servers to make a
wide variety of services or data available.

DTNs use a special Bundle Protocol (RFC 5050) for the
communication between DTN nodes. This can be set on top

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHANTS’11, September 23, 2011, Las Vegas, Nevada, USA.

Copyright 2011 ACM 978-1-4503-0870-0/11/09 ...$10.00.

of various transport protocols by using special convergence
layers. Due to company security policies in accordance with
ISO/IEC 27000 et seq. standards, only specific communica-
tion paths over insular ports and protocols are permitted. In
addition, other security mechanisms such as cookies or sin-
gle sign-on may be necessary. As a result, the backends are
often reached only by using the Hyper Text Transfer Proto-
col (HTTP). HTTP is based on the request-response prin-
ciple and is not designed for bidirectional communication.
Since a HTTP connection is the only possible communica-
tion channel in such a scenario, the bundle protocol must be
encapsulated into HTTP to allow communication between
DTN nodes. Long-polling allows to realize a bidirectional
communication using HTTP.

The paper is organized as follows. In the next section, an
overview of related work is given. Section 3 describes our
architecture and the following section 4 the implementation.
Afterwards, section 5 shows evaluation results. In section 6,
we give our conclusions and a brief outlook on future work.

2. RELATED WORK

Vehicular communication in challenged networks and the
access to the Internet were already considered in several
projects like [2]. In these cases, they used multiple gate-
ways along a road to serve Internet-access to vehicles. This
approach results in short-time connections and high disrup-
tion rates.

The idea to transport DTN data over HTTP has been
mentioned previously in [5]. In this draft, the HTTP pro-
tocol has been adapted with several non-standard headers
to add some specific DTN meta-data, e.g. source and desti-
nation endpoint identifier or the content length. Therefore,
some features such as extension blocks are not supported.
Moreover, no strict differentiation between client and server
is made so that each node can initiate and push/request
specific bundles to other HTTP-capable DTN nodes. But
in many networks, the network address translation (NAT)
mechanism is used, thus a connection must be initiated by
the client-side only.

Another area of research is the usage of the Bundle Proto-
col to transport HTTP-requests and -responses. [3] present
an approach for a conversion of the different message types
and the required components. With the limitation of the
HTTP protocol in some parts of the network, additional
gateways for the conversion between HTTP and Bundle Pro-
tocol are always necessary. In contrast to our approach, the
architecture allows a communication without an end-to-end
connection by using multiple DTN nodes.

3. ARCHITECTURE

This section presents our architecture for the integration
of DTN nodes inside restricted networks where communica-
tion is only possible using the HTTP protocol. This is the
case if the server is protected by a firewall that blocks all
non-HTTP traffic. Thus, it is impossible to connect to it
by using a TCP connection with a binary protocol like the
bundle protocol. Another challenge are cellular and wireless
local area networks, which are often equipped with a NAT
mechanism. As a result, clients can not be reached directly
from outside; instead they have to initiate each connection.
Therefore, in our architecture the client will establish the
connection to the server using HTTP.

The architecture is subdivided into two main components
as depicted in figure 1. Due to the limitations of HTTP and
the request-response principles, a server-client architecture
is essential. On the server-side, a module is required to offer
the necessary DTN functionality and a HTTP convergence
layer to encapsulate DTN bundles into HT'TP. Additionally,
a database is needed to store meta-data of stored bundles.
In the following we name this component server, because it
do not initiates any connection and just wait for incoming
HTTP connections from DTN clients. The client is suited
with an additional HTTP convergence layer and performs
GET and PUT calls to the server.

3.1 Protocol

Basically, HT'TP is a request-response protocol. In this
case, it is used to encapsulate a bidirectional communication
between a public server and a client. As with websockets [1],
we use a mechanism called long-polling to set-up an HTTP
connection for bidirectional communication, but place value
on less complexity for the required implementation. In fact
we use a plain HTTP call, but the response is delayed as
long as the server has no data to transmit. Furthermore, the
connection stays open until it is interrupted or a predefined
timeout has elapsed.

A GET request to a server is started with the common
HTTP header and a URL containing the peer endpoint iden-
tifiers (EID) of the requesting node as parameter. The lat-
ter is required for the routing module of the server, which
has to choose the bundles to transfer. The server responds
with the code 7”200 OK”, sets the content type to multi-
part/mixed and the transfer-encoding to chunked. Now, the
downstream connection is established and ready to transfer
bundles to the client. In front of each bundle, a chunked
header is placed. It includes the size of the following bun-
dle and control flags for the HTTP connection. The bundle
itself is binary encoded as defined in the bundle protocol
specification RFC 5050.

Since it is not possible to send multiple HTTP requests

Apache Tomcat ‘/GET IBR-DTN
Message
Routingg z Sl
2 c
o) - o
n @) =
Filesystem o g API e O
= = 2
| g
Database (a] Router
F~puT

Figure 1: Software architecture

in one connection asynchronously, a second connection is re-
quired to push bundles from the client to the server. Those
bundles are encapsulated into a standard HTTP PUT mes-
sage which is acknowledged by the server in return. Accord-
ing to the previously defined PUT request, such a message
contains the peer EID encoded as a parameter in the re-
quest URL.

3.2 Client

The client is designed as an additional module in a DTN
daemon and shown in the simplified architecture (figure 1).
Once the daemon is up, it tries to connect to a HTTP server.
On a successful established connection, a GET request is sent
to the server to poll awaiting bundles for this node. If there
are bundles available for the client, it receives them as a
continuous stream of data, decode them on-the-fly and pass
them to the internal processing of the daemon.

If the client has bundles to send, another HT'TP connec-
tion is initiated. Each bundle will be encapsulated into an
HTTP PUT request with the binary encoded bundle in the
payload. Thereby, it is possible to transfer all extensions
made to the original bundle to the receiving client without
being aware of them. Finally, the server acknowledges the
received bundle and closes the connection.

3.3 Server

The server consists of the servlet, a database, the rout-
ing module and a filesystem to store the binary bundles in
files. The tasks are to receive bundles from clients, store
and forward them to other clients if they are connected. In
addition, it has to consider priorities during the delivery
process (Message Routing) and delete expired bundles. If a
client provides a bundle to store, the received data is saved
into files on the disk. These files are parsed to extract the
meta-data of the bundle, which will be stored together with
a reference to the file containing the stored bundle in the
database.

An incoming HTTP GET call contains an identifier of the
connecting host encoded into the request URL. This identi-
fier is needed to determine bundles to transfer. Once the
connection has been set-up, the thread calls the routing
module to request a bundle to transfer. The routing module
orders the bundles according to their priority and remaining
lifetime before it returns an available bundle. If there is no
bundle to be transferred, the thread goes into a wait state
and stays there until the network connection is disrupted or
another thread notifies it about new available bundles.

4. IMPLEMENTATION

Due to security policies, software components and systems
are typically predetermined. For the provision of various ser-
vices over HTTP, web servers typically exist and can be ac-
cessed from outside. In addition, these also have the advan-
tage that they are designed for a potentially large number of
connections. Therefore, we decided to use the flexible and
scalable Apache Tomcat on the server side in conjunction
with a PostgreSQL database which is used for the manage-
ment of the incoming and outgoing DTN bundles. The en-
capsulation of the Bundle Protocol within HTTP is realized
with a developed servlet for Tomcat and is called DT-HTTP.
To extract the meta-data of a received binary encoded bun-
dle, a tool was written using the libraries provided by IBR-
DTN. This tool reads the standard input, parses the data

and returns the meta-data of the bundle, which is processed
in subsequent.

On the client side, we use our DTN implementation IBR-
DTN [4] with an adapted and extended convergence layer
which uses the HTTP protocol and does GET and PUT calls
to the server. These are realized with the cURL library,
which already supports many features relating to various
security mechanisms (like SSL and cookies for single-sign-
on) and allows an easy adaptation to different requirements
and environments.

S. EVALUATION

To prove the correctness and the performance of the im-
plementation we did tests and measurements with regard to
latency and throughput with the HTTP convergence layer.
The servlet was deployed on a Tomcat 6, the current stable
release of an open-source application server. As platform, a
Linux environment was used to run the Tomcat and a Post-
greSQL 8.3 database. All machines were connected by a fast
Ethernet switch; thus the maximum reachable throughput
is limited to 100 Mbit/s. All tests were done in a wired net-
work to avoid inaccuracy and disturbances as expected in
wireless networks.

5.1 Latency

In this case, we want to measure the latency of trans-
mitted bundles and set-up two scenarios based on the three
machines described above. The first scenario tests the client
to server latency. With dtnping, a command line tool of
IBR-DTN, a bundle is sent to the server, which is reflected
by a build-in mechanism and sent back to the client. As sec-
ond scenario we tested forwarding of bundles from client to
another, using the server as intermediate node. Both tests
are repeated 1000 times and dtnping measures the round-
trip time (RTT) of each transmission.

700 — T — T T
client <-> server ——+—
600 - client <-> server <-> client ---x--% -
500 s
400 -

300
200
100

O 1 1 1 1 1 1
10 100 1000 10000 100000 1000000

bundle payload size (byte)

round trip time (ms)

Figure 2: Average RTT and standard deviation

The result of both scenarios are shown in figure 2. For
both scenarios the RTT does not seem to be influenced by
the payload size if it is lower than or equal to 100kb. This
suggest that the processing delay is more significant in those
cases than the transmission delay. In this test, the pass with
the very low payload size of 10 bytes got some outliers up to
213.35 ms, which raises the average value to the same level
as with 10 kbytes. We assume here a race condition between
the thread receiving the bundle and the thread sending the
answer. This procedure is stable but rarely leads to a higher
delay.

To investigate the correlation of delay and payload size,
we took a single transmission of the delay test with an RTT

near the average of all transmissions within the same pay-
load size and traced it down with wireshark. We found out,
that the significant part of the whole delay is the result of
the server processing. In case of forwarding bundles to an-
other client the server needs ~ 60 ms to process the received
bundle. Furthermore, the delay is &~ 115 ms if the server has
to process the bundle to generates an echo, since this is a
more complex operation than just forwarding.

5.2 Throughput

Next we measured the maximum throughput. To do this,
1000 bundles with a defined payload size are created by host!
and forwarded to the server. Then, host2 is connected and
receives the bundles from the server. The test has been re-
peated with six different payload sizes and we measured the
maximum reachable throughput at 90.4 Mbit/s with iperf
as reference. During the test, the whole network traffic was
logged by wireshark to get the achieved throughput, band-
width usage and protocol overhead.

The result of max. 72.9Mbit/s as downstream perfor-
mance, the upstream is quite poor with max. 23.5 Mbit/s.
This is due to the high processing delay of the server for this
manner. To get more details about this delay, we profiled
the Tomcat servlet with the Netbeans Java Profiler. For
each bundle the server receives, a new database connection
is established. This delay slows down the whole process.
Another reason for the high delay is the processing of the
incoming bundle at the servlet. Each received bundle is
stored as a file on the disk. Then, the servlet parses the
bundle data to extract the meta-data, which is stored in the
database afterwards. This store and parse mechanism delays
the receiving procedure compared to the sending procedure,
which only copies files into the HTTP stream.

6. CONCLUSIONS

In this paper we presented the design and implementa-
tion of an HT'TP convergence layer by using the long-polling
mechanism. This allows a communication between a DTN
node and various web services. The present analysis already
shows satisfactory results, taking into account the limita-
tions caused by the HTTP protocol.

7. REFERENCES

[1] 1. Fette and A. Barth. The WebSocket protocol.
Internet-Draft draft-abarth-thewebsocketprotocol-01,
Internet Engineering Task Force, Jan. 2011. Work in
progress.

[2] J. Ott and D. Kutscher. Why Seamless? Towards
Exploiting WLAN-Based Intermittent Connectivity on
the Road. In in Proceedings of the TERENA
Networking Conference, TNC 2004, 2004.

[3] L. Peltola. Enabling DTN-based Web Access: The
Server Side. Master’s thesis, Helsinky University of
Technology, April 2008.

[4] S. Schildt, J. Morgenroth, W.-B. Péttner, and L. Wolf.
IBR-DTN: A lightweight, modular and highly portable
Bundle Protocol implementation. FElectronic
Communications of the EASST, 37:1-11, Jan 2011.

[5] L. Wood and P. Holliday. Using HTTP for delivery in
Delay/Disruption-Tolerant Networks. Internet-Draft
draft-wood-dtnrg-http-dtn-delivery-07, Internet
Engineering Task Force, May 2011. Work in progress.

