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Key-value Stores in the Cloud

Key-value stores are core of large-scale services
→ Low latency & high request rate are key

When outsourced to the cloud
User data is exposed to malicious attacks

→ Concerns about privacy & integrity

Key-value store

readApplication
code

Query Operations

cache misses
primary database

Improvements with trusted execution environments
such as Intel Software Guard Extensions (Intel SGX)
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Research vs. Industry

Industry
Redis, Memcached..

→ Lack of basic security guarantees, e.g plaintext
key-value items

Research
Concerto [Arasu et al., SIGMOD’17], ShieldStore [Kim et al., Eurosys’19]

→ Secure but intensive computations

How to reduce the overhead of intensive computations?
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Intel SGX Model

Extension of the x86 instruction set
Applications have secure compartments
→ Enclave
Code & data reside in Enclave Page Cache (EPC)
Confidentiality and integrity protected
Restriction of systems calls and I/O operations CPU

Operating System

Application

DRAM

Hardware

Enclave

EPC

SGX-based key-value stores
Library OS solutions: Graphene-SGX [Tsai et al., ATC’17], ..
Tailored solutions: ShieldStore [Kim et al., Eurosys’19], SPEICHER [Bailleu et al., FAST’19]
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Intel SGX Architectural Limitations

1. Limited EPC memory

Overhead up to × 1000 (SCONE [Arnautov et al., OSDI’16])

→ Cannot protect the full state using the EPC memory

2. System call restriction & enclave transitions
→ Performance loss

3. DMA directly into the enclave are not allowed
→ Large copy overhead

Data copy and encryption inside the enclave for each operation
Extensive server-side computation→ CPU bottlenecks
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Data Center Technology: RDMA

Often employed in data centers

Zero-copy & kernel bypassing communication

Applications register memory with RDMA NIC

→ 1-3 µs latency and 10-200 Gb/sec bandwidth 1

BUF

NICCPU

BUF

NIC CPU

MemoryMemory

1https://www.mellanox.com/files/doc-2020/pb-connectx-6-en-card.pdf
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Contribution

HERD[SIGCOMM '14]

RDMA

Pilaf[ATC'13]

FARM[NSDI'14]

TEE/SGX

Concerto[SIGMOD'17]

SPEICHER[FAST'19]

ShieldStore[Eurosys'19]

Precursor

What do we gain from combining both technologies?
How to combine them efficiently?
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The Cost of Cryptographic Operations

Comparison
A server-encryption approach
RDMA bandwidth

Experimental setup
Intel Xeon E3-2176G
(6 cores, 12 hyperthreading)
40 Gbit/s link
One-side RDMA WRITE using Perftest

→ 36% less throughput
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Our approach: Client-side encryption to alleviate CPU bottlenecks
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Precursor Approach

Client

Encrypted payload

SGX enclave

Server

Control data Control data

Encrypted payload

Reduces server-side cryptographic load
↪→ Scalability: offloading cryptographic operations to the client-side

Mitigates SGX constraints
↪→ Copy overhead: payload data never enters the enclave

Integrity preserved using one time per-operation key
↪→ Security: Forward secrecy and rollback attacks detection

Use of data center network technology
→ Performance: High bandwidth and low latency
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Experimental Setup

Questions
How does Precursor compare to existing SGX-based key value stores?
What is the impact of offloading on the performance?

Workload: Yahoo! Cloud Serving Benchmark (YCSB) [Cooper et al., SoCC’10]

Server
Intel Xeon E-2176G CPU (3.70 GHz, 6 cores, 12 hyper-threads)

Client: 6 × machines
Link: 40 Gbps RoCE NIC
Comparison:

Shieldstore [Kim et al., Eurosys’19]

Precursor variant using server-encryption
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Evaluation
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Precursor scales with
the number of increasing

clients

Precursor has 5.9-8.5 ×
higher throughput than
ShieldStore

Precursor has 29%-40%
higher throughput than
server-encryption scheme

Average of 25 µs latency

2021-12-08 I. Messadi, TU Braunschweig, Germany Precursor, Middleware 2021 Page 11



Precursor Take-Home Message

Precursor: A Fast and Secure Key-Value Store

Properties
Intel SGX to protect security-sensitive data
RDMA to achieve high-performance with low-latency
Client-side computation

Lessons learned
Optimizing for leveraging RDMA improves the performance
Optimizing for CPU utilization is key for key-value stores

→ Paper: more results and technical details
Server

E(Koperation, Value) MAC

RDMA Write
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Precursor Detailed Design
Server

E(Koperation, Value) MAC

RDMA Write

Enclave

P KeyoperationKey

oidOperation Identifier (oid) Key Koperation
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      Payload Encyption
Ptr Key Koperation

1 Payload encryption and transport encryption separately

2 RDMA one-sided write in pre-allocated buffer in the server memory

3 Security metadata in the enclave while payload remains untrusted

4 The enclave stores the hash table with the security metadata and the
pointers to the respective payload data
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Precursor Guarantees

Server

E(Koperation, Value) MAC

RDMA Write

Enclave

P KeyoperationKey

oidOperation Identifier (oid) Key Koperation
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HashTable
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Key
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Client

      Payload Encyption
Ptr Key Koperation

One-time keys for the payload is robust and preserves forward secrecy
MAC verification ensures integrity and rollback attacks detection
No re-encyptions once a client is excluded from accessing the service
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Evaluation: Throughput

16 64 128 512 1024 4096 16384
0

200

400

600

800

1,000

1,200 1,126 1,155
1,197 1,182 1,171

921

231

726
778 768 781

743

476

112121 115 118 114 111 97 77

Value Size (bytes)

T
h
ro

u
g
h
p
u
t
(K

o
p
/
s)

Precursor Precursor server-encryption ShieldStore

16 64 128 512 1024 4096 16384
0

200

400

600

721 714 706 697 708

614

87

593
561 568 552 531

408

8094 99 96 89 79
48

22

Value Size (byte)

T
h
ro

u
g
h
p
u
t
(K

o
p
/
s)

Precursor Precursor server-encryption ShieldStore

Question: what is the impact
of varying value sizes?

→ server encryption
decreases the throughput
with an average of 49% for a
read-only and 27% for a
update-mostly workload
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Evaluation: Tail Latency
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Question: how does the tail
latency perform?

→ Precursor has lower get()
tail latencies
→ Latency steady until 95% at
a 8 µs
→ EPC impact is apparent from
95%
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Evaluation: Latency Analysis

Question: what is the network impact vs. security protection technique?
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→ Precursor has faster server processing that keeps steady with
increasing payload size
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Conclusion

Challenge: How to leverage SGX for securing key-value stores and how
to secure applications that utilize RDMA?

Precursor: a key-value store with strong confidentiality & integrity
Lowers the server-load to benefit from RDMA
Reduces the copy overhead and keeps a small TCB
Achieves high throughput than existing SGX-based key-value stores

Questions?
messadi@ibr.cs.tu-bs.de
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