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ABSTRACT ACM Reference Format:

As offered by the Intel Software Guard Extensions (SGX), trusted
execution enables confidentiality and integrity for off-site deployed
services. Thereby, securing key-value stores has received particular
attention, as they are a building block for many complex applica-
tions to speed-up request processing. Initially, the developers’ main
design challenge has been to address the performance barriers of
SGX. Besides, we identified the integration of a SGX-secured key-
value store with recent network technologies, especially Remote
Direct Memory Access (RDMA), as an essential emerging require-
ment. RDMA allows fast direct access to remote memory at high
bandwidth. As SGX-protected memory cannot be directly accessed
over the network, a fast exchange between the main and trusted
memory must be enabled. More importantly, SGX-protected ser-
vices can be expected to be CPU-bound as a result of the vast
number of cryptographic operations required to transfer and store
data securely.

In this paper, we present PRECURSOR, a new key-value store
design that utilizes trusted execution to offer confidentiality and
integrity while relying on RDMA for low latency and high band-
width communication. PRECURsOR offloads cryptographic opera-
tions to the client-side where possible to prevent a server-side CPU
bottleneck and reduces data movement in and out of the trusted
execution environment to the bare minimum. Our evaluation shows
that PRECURSOR achieves up to 6-8.5 times higher throughput when
compared against similar SGX-secured key-value store approaches.
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« Security and privacy — Trusted computing; Systems secu-
rity.
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1 INTRODUCTION

Outsourcing of services to remote infrastructures as provided by
cloud computing has revolutionized the IT landscape. As a barrier to
this trend, the loss of control over code and data has been a constant
concern. With the widespread availability of trusted execution, as
offered by SGX [26, 34], cloud users can retain control over their
data and code as even administrative personnel and privileged soft-
ware cannot access or undetectably modify a protected execution
context. Accordingly, a great variety of services and applications
have been secured using SGX [8, 13, 50]. A popular class of investi-
gated applications has been key-values stores, as they build a core
entity of many complex application deployments [6, 9, 15, 31, 55].
While generic approaches have been proposed to execute legacy bi-
naries inside a trusted execution context [8, 46, 59], tailored variants
have been devised as SGX imposes some hardware-based limita-
tions that need to be addressed for providing a fast and scalable
solution [6, 9, 31, 55]. First, there is the transition time between
normal mode and trusted execution — which can be as costly as
approximately 13,100 cycles [63]. Second, memory usage inside the
trusted execution context can be an issue. If the active working
set of all trusted execution contexts on a machine is larger than 93
MiB (more recently 188 MiB [1]), a custom software-based mem-
ory paging process is necessary. However, it severely degrades the
performance [8, 13, 63]. In addition to these two barriers, we iden-
tified a third challenge. Data centers more and more utilize RDMA,
as it enables high bandwidth at low latency [22]. Paired with a
high line rate of up to 200 Gbit/s [2], key-value stores are vastly
accelerated [27, 28, 36]. While they show great performance, all
were implemented under the assumption of a fully trusted environ-
ment. At first glance, it seems natural to combine the use of RDMA
and trusted execution in data centers to gain low-latency and high
bandwidth for trusted services. However, two main obstacles can
be identified.
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First, the memory of a trusted execution context is not accessible
from a remote location. Thus, data cannot be directly transferred
from a client machine into an SGX-secured key-value store via
RDMA.

Second, services running under the protection of trusted exe-
cution typically require heavy use of cryptographic operations. In
particular, clients and the server need a secure exchange path. Stor-
ing data usually involves a custom server-side encryption scheme
to circumvent costly software-based paging, as mentioned earlier
[6,9, 15, 31, 55]. Combined with the vast available bandwidth, the
employed cryptographic operations eventually make services like
key-value stores CPU-bound.

In this paper, we present PRECURSOR, a key-value store that
combines the use of RDMA for fast communication and SGX for
increased security. PRECURSOR focuses on the offloading of server-
side encryption to the client-side. In particular, payload data is
pre-encrypted on the client-side using one-time keys to enable
the direct storing of encrypted data in the untrusted memory of
PRECURSOR. Overall this reduces cryptographic operations on the
server-side. Additionally, PRECURSOR features a design that avoids
costly context switches where possible.

The remainder of this paper is organised around PRECURSOR’s
motivation and contributions:

§2 introduces the main technologies behind PRECURSOR, discusses
the threat model, and states the identified problem;

§3 describes PRECURSOR’s design, explaining the critical design
choice around shifting computation to clients, combining SGX
and RDMA while mitigating the hardware limitations related to
both technologies;

§4 gives details on how we implemented PRECURSOR;

§5 evaluates PRECURSOR’s design in terms of throughput and latency.
Using the YCSB benchmark [18], we can show that PRECURSOR
outperforms competitors like SHIELDSTORE [31] with 6-8.5 times
higher throughput for different workloads.

2 BACKGROUND AND MOTIVATION

In the following, we first explain how SGX secures execution in
an untrusted environment. Second, we detail the essentials regard-
ing RDMA that allow remote systems to communicate with sub-
microsecond latencies. Finally, we outline the challenges that arise
when combining the two technologies.

2.1 Intel Software Guard Extensions

Over the past few years, trusted execution support became preva-
lent on commodity platforms. Recent initiatives such as the Confi-
dential Computing Consortium concentrate on propelling trusted
execution to provide customers with proof of data integrity and
confidentiality [19]. Indeed, a trusted execution environment (TEE)
isolates security-sensitive code and data from an untrusted sur-
rounding. Examples for implementations of trusted execution are
ARM TrustZone [4], AMD SME/SEV [20, 25], and Intel SGX [5].
In this paper, we focus in particular on SGX because of its far-
reaching protection goals and its emerging availability in cloud
environments,! as compared to other trusted platforms.

!https://azure.microsoft.com/en-us/solutions/confidential- compute/
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SGX enclaves. In late 2015, Intel released processors extended
with a set of instructions, which create and control TEEs called
SGX enclaves. Enclaves are isolated regions of the virtual address
space protected from any untrusted entities and privileged soft-
ware, including Direct Memory Access (DMA). For SGX-capable
processors, the isolated code and data reside in an encrypted region
of the physical memory known as the enclave page cache (EPC),
typically limited to a size of 128 MiB. Yet, an application can only
use ~93 MiB, whereas the rest is reserved for security metadata [63].
Latest CPUs generations, i.e., Intel Ice Lake, have doubled this size
to 256 MiB of EPC memory. In this case, ~188 MiB can be directly
utilized for hosting enclaves.

SGX hardware limitations. Despite its far-reaching protection,
SGX has some limitations. If enclaves consume more memory than
the actual EPC size, the operating system evicts EPC pages to the
untrusted main memory, which incurs an overhead, roughly es-
timated to be 20K CPU cycles until the enclave execution can be
continued [8]. Enclave transitions also introduce a substantial over-
head compared to a regular application flow. Because invoking all
kinds of system calls is prevented, the SGX SDK comprises special
calls to the untrusted region. These are commonly known as ocalls,
for a call gate to the untrusted environment, and ecalls to enter an
enclave. For each defined function, the SDK marshals data between
unprotected memory and the enclave. However, these transitional
calls imply an overhead of 13K CPU cycles, for context switching,
security checks, and TLB flushing [63]. When the data is persis-
tently saved to the disk, SGX provides trusted time and monotonic
counters to detect state rollback attacks and forking. In this regard,
previous works propose different prevention techniques, which can
be integrated into our design [9, 11].

2.2 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a technology that al-
lows direct data exchange between networked machines, without
interrupting remote CPUs.

With this, RDMA applications achieve noticeable networked
performance increase and CPU load reduction, which is indeed
meaningful for latency-sensitive services [29, 30, 33, 37]. Latest
RDMA NICs have 200 Gbps of bandwidth, reach 2us round-trip
latency, and can process millions of messages per second [2].
RDMA’s programming model works as follows: with each opera-
tion, the application starts with preparing buffers and gives access
to a particular memory region; the operating system tags the region
with an identifier and registers it with the NIC. As long as a process
(remote or local) acquires the right permissions (read/write) and
memory regions identifiers, it can access these regions. Following
this, it can perform two modes of operations, which gives the de-
veloper the flexibility to select the most convenient method. The
CPU bypassing mode, usually called one-sided, can be a remote
read/write or atomic operation. The second mode, two-sided, called
send/receive operation, resembles socket programming.

RDMA endpoints communicate by posting operations to asyn-
chronous queue pairs. A send/receive queue to store requests and
a completion queue to optionally notify about the I/O’s final status
operations. A work request represents a buffer location from where
the NIC places data (DMA write) or reads (DMA read). A typical
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in-memory key-value store benefits the most from one-sided primi-
tives [29, 37, 57, 62], which is why we choose them for PRECURSOR.

2.3 Threat Model

Cloud environments are prone to security breaches and unautho-
rized disclosures [17, 42]. Indeed, the cloud is vulnerable to threats
from a rogue administrator that might conduct illegal activities
or even external attackers. We assume such adversaries can tam-
per with the PRECURSOR server state in memory. To detect in-
tegrity violations and maintain confidentiality, we rely on Intel
SGX enclaves and standard cryptographic operations. In principle,
we trust the implementation of these mechanisms. Side-channel
attacks [32, 51, 61, 65] that disrupt Intel SGX services are not pre-
vented, but a defense technique, e.g., ASLR, can be applied to SGX
applications including PRECURSOR [12, 39, 52, 53]. We assume clients
to be part of a secure and trusted environment in the cloud domain,
i.e, they are also guarded by SGX or another TEE technology as
in previous works (e.g., NeXUS) [21]. Availability threats such as
crashing an SGX application are not of interest, as the hosting
OS can stop enclave execution arbitrarily and at any time. The
same applies to RDMA — denial of service attacks [43, 48, 54] are
considered out of scope.

2.4 Problem Statement

Most early works that seek to ensure security properties—integrity,
authenticity, and confidentiality—of clients’ data processed at a
remote data center relied heavily on cryptographic approaches (e.g.,
homomorphic encryption). These techniques introduce high compu-
tational complexity, which leads to a substantial overhead [45, 68].
With the ubiquity of hardware TEEs, current research uncovers
more efficient ways of securing applications state.

When using TEEs, the straightforward idea is to put the entire
application state into the trusted environment. With SGX, this
incurs some complexity and additional efforts; enclave restrictions
(i.e., due to prohibited system calls) obligate developers to rethink
their systems’ architecture. The alternative is running unmodified
applications on top of a library operating system or similar system
layers inside the TEEs [8, 10, 46, 59].

Although this clears out the dilemma of redesigning systems, the
library OS approach approach has two downsides. First, it results
in a sizeable trusted computing base (TCB), which increases the
likelihood an attacker can exploit an enclave. Also, a large TCB risks
moderate performance due to SGX restrictions, especially when
we consider the capacity limit of the EPC [31]. Second, this encap-
sulation cannot be conveniently applied to applications utilizing
RDMA because SGX prevents DMA access to enclave memory.

For better performance, SGX-tailored systems have been pro-
posed. These systems tend to place encrypted data in the untrusted
memory, while enclaves mainly serve to preserve integrity. Fol-
lowing this design path, key-value stores like SHIELDSTORE [31]
and EnclaveCache [15] but also the coordination service Secure-
Keeper [13] apply the following steps. First, transport encryption
methods encrypt the data for transit protection between the client
and a TEE on the server-side. Next, received requests get entirely
copied inside the enclave. There, the payload gets decrypted, and
its integrity is validated. To address the limited EPC, and avoid
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the performance penalty of overstepping the limit, the payload is
re-encrypted and copied again to the untrusted memory.

However, this additional encryption step for storing the data
outside of the enclave is costly. In general, such schemes use secure
authenticated encryption methods, e.g., AES-GCM, to protect con-
fidentiality, authenticity, and integrity of transport communication
and data storage.

We conventionally denote this design as a server encryption
scheme, because the server actively preserves and verifies payload
integrity.

5000
O3 12 threads decrypt/encrypt b
R
V=V 6 threads decrypt/encrypt PR v
40001 == 40Gb iperf bandwith R o
*
*
'o o N
@ .
a . b
= 3000 R
= .
> * I
=y ’ b
[=) .
3 2000 A o
c ’ hvg
[ .
.
L4
1000 R ¥
Lot
.
-
pn s ’
91'—‘ m o o m m a a a a a a
© I < © © (\l 4 ¥4 ¥4 ¥4 < ¥4
- ® © o »v 5 - o« < o © o

Buffer size in Bytes

Figure 1: Throughput comparison of essential crypto-
graphic operations needed for the server-side computation
with the raw bandwidth of RDMA for 40 Gbit.

Figure 1 emphasizes this problem by approximating the neces-

sary cryptographic operations of a key-value store that features
a server encryption scheme. The method is as follows: within the
enclave, a buffer—with variable size from 16 byte rising to 32 KiB—
gets decrypted and then encrypted again. This behavior resembles
how the encrypted transport payload gets decrypted for verifi-
cation, and then encrypted again for storage as implemented by
SHIELDSTORE [31], EnclaveCache [15] and SecureKeeper [13].
We used a machine that has an Intel Xeon E3-1230 v5 CPU, equipped
with 6 cores (12 hyper-threads) and the hardware accelerated func-
tions AES-GCM of the SGX software development kit (SDK) version
2.9. We compare this measurement to the RDMA bandwidth limit
of one-sided WRITEs using Mellanox Perftest [35] for a 40 Gbit/s
link. We measured the cryptographic operations multi-threaded
with 6 and 12 threads to reach the maximum throughput of the ma-
chine, with each thread assigned to a core and with hyper-threading
enabled.

As can be seen for small packets (up to 1KiB), the cryptographic
operations cause 36% less throughput than the raw RDMA band-
width. In a modern data center, speeds of 100 Gbit/s are already
available and up to 200 Gbit/s have been announced [38]. Also, it
has to be considered that the measured cryptographic operations
are only a part of the performed processing. E.g., data might have
to be additionally copied, and in the case of a design utilizing a
Merkle tree, cryptographic hashes have to be computed frequently.
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As a consequence of this result, we aim to reduce the cost of crypto-
graphic computations, which are inherent to the server encryption
scheme.

3 DESIGN OF PRECURSOR
3.1 Objectives

We propose a design for a key-value store that aims to benefit from
the high bandwidth offered by network technologies such as RDMA.
We specify here the properties that the PRECURSOR design aims to
satisfy, as well as the issues that we want to overcome:

R1 Security and privacy. A key-value store meant to run in the
cloud must ensure the confidentiality and integrity of customers’
data. Besides, PRECURSOR adds little code to the enclave’s TCB
compared to library OS solutions to reduce exploitable vulnera-
bilities.

R2 Mitigating SGX constraints. Due to the restricted EPC, we design
PRECURSOR to mitigate the paging overhead by keeping a small
memory footprint (§5.4). Furthermore, costly enclave transitions
should be avoided where possible.

R3  Reduce server-side cryptographic load. PRECURSOR targets to min-
imize server-side CPU demand caused by cryptographic opera-
tions by offloading them to the clients.

R4 Use of data center network technology. While previous SGX-
secured key-value store implementations go through additional
network processing in the traditional network stack, we aim
to efficiently combine trusted execution and novel data center
network support via RDMA.

3.2 PRECURSOR in a Nutshell

PRECURSOR ensures confidentiality and integrity through standard
cryptographic algorithms and a server TEE instance but redis-
tributes a critical share of the demanded computational workload.
For the currently predominant server encryption scheme, we found
out that cryptographic operations on the server-side can be a bot-
tleneck, especially if high bandwidth technology such as RDMA is
used (Section 2.4). In the proposed design, each client takes over
more responsibility for its generated workload and the overall load
is better distributed.

Server
Client SGX enclave

Controldata | —p————— | | Control data II
Encrypted payload ——————
|
[N I
Encrypted payload I

Figure 2: Basic approach of split transfer between control
data and payload.

As highlighted in Figure 2, the core principle of PRECURSOR is to
split each request to the key-value store in two parts: the control
data and the encrypted payload data. The control data is securely
transferred using a transport encryption scheme. The secure end-
point of this connection is inside the enclave of the key-value store,
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preventing the untrusted world from learning sensitive information
about the request. The payload data is separately encrypted and
transferred. It never enters the enclave but is only placed in the
untrusted memory of the server.

Starting with a put ()-operation, the payload data, in our case
the value, is encrypted on the client-side using a freshly generated
one-time key. This cryptographic key is appended to the control
data, and sent directly to the enclave with transport encryption.
This approach has two advantages: It saves on transport encrypted
payload that otherwise has to be transferred to the enclave and
decrypted there. It eliminates re-encryption costs on the server-side
as the payload data is already encrypted with a one-time key and
does not enter the enclave.

In the case of a get()-operation, the actual request is sent as
control data over the transport encrypted connection. The server-
side provides an answer by sending the necessary control data
over the encrypted connection, including the one-time key. The
encrypted payload data stored in untrusted memory is transferred
to the client as-is. Using both segments, the client can validate the
freshness and integrity of the data.

In summary, the design of PRECURSOR features the following
two main benefits:

e The main share of the data that is managed by a key-value
store is only encrypted (put()) and decrypted (get()) by
the client side.

e Payload data never enters the sever side enclave, which pre-
vents costly copy steps in and out of the TEE.

3.3 Critical Design Choices

Reducing SGX related overhead. Current SGX-secured key-value
stores generate control information for preserving the integrity of
the managed data on the server side and inside the TEE to enable
the storing of as much data as possible outside the enclave. This
follows the clear idea that the EPC is scarce and that the paging
process is costly in terms of performance. Some systems even keep
a part of the data inside the TEE for caching reasons, which might
even increase the risk of paging. For PRECURSOR, we decided to
keep the payload data out of the TEE at all times. In particular, this
avoids copying payload data in/out the enclave and the need to
support any form of in-enclave caching for performance reasons.

Clients as Precursors and omitting cryptographic key man-
agement. In a server encryption scheme (§2.4), the server-side pro-
tects a unique key in its trusted context to encrypt the full pay-
load. This also allows multi-tenancy and traditional access control
schemes inside the server-side TEE.

To circumvent costly encryption on the server-side that can
result in a bottleneck when combined with the high bandwidth
of RDMA, PRECURSOR encrypts the payload on the client-side; the
server then only needs to ensure the integrity of the data from
a security point of view. A possible design choice to address the
proposed approach is to provide a single key for encrypting all
clients’ data. It seems efficient as the generation of one-time keys
could be avoided and the keys could be excluded from put() and
get () requests. However, we refrained from this shortcut. Indeed, it
would put every client into the position to access all the data while
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Figure 3: PRECURSOR system architecture. The figure shows the idea of clients precursors and the server-side state

being authorized to use the service and even afterwards, unless
all payload data is re-encrypted with a fresh key that needs to be
shared with all clients still having access to the service. Accordingly,
for PRECURSOR, we decided to use an encryption key per key-value
pair. It allows multi-tenancy and traditional access control schemes
on top of PRECURSOR as clients only learn about data and one-
time keys submitted to the key-value store themselves or explicitly
passed to them by the service. Finally, for the encrypted payload
data transfer, one does not have to implement additional measures
to prevent traffic analysis as a different encryption key is used for
each key-value pair.

Integration of RDMA primitives with SGX. The low-level APIs
of RDMA enforce a clear memory management strategy and es-
tablish an application-level flow-control policy. Authorized clients
have direct write access to the server memory with the exception
of the TEE. As an essential pre-requisite, clients must not over-
write each others’ data or their own data unless it has already been
processed by the server.

The server-side can be subdivided into two parts the trusted
and the untrusted environment. Client request processing and data
exchange are split over both parts, making buffer management
and flow control challenging. To achieve high performance on the
RDMA side and avoid the costly SGX context switches between
trusted and untrusted execution, we tightly combine one-sided
RDMA primitives and avoid synchronous operations for SGX. The
core design choice is to use a separate ring buffer for incoming
and outgoing requests per client. Inside the TEE, a worker thread
updates these buffers.

3.4 PRECURSOR Protocol Overview

Following the established design principles, we illustrate the general
architecture in Figure 3. (1) It presents the state of a client that first
completes a payload encryption procedure and then a transport
encryption to protect against network intruders. @ RDMA permits
to directly write requests to a pre-allocated circular buffer in the
untrusted memory, which then gets divided on the server side into
two segments.

(3) The segment containing the security metadata goes into the
enclave, while the payload remains in the untrusted region. (4) The
enclave hosts a hash table that stores the correspondent security-
metadata and pointers that link to the respective payload data.

3.5 Security and Encryption Notions

We introduce the cryptographic notions that we use to achieve
integrity, confidentiality, and authenticity. To authenticate clients,
we rely on message authentication codes (MACs) as they efficiently
protect a message’s integrity and authenticity.

We write auth-encrypt (K, M) to represent authenticated encryp-
tion of a message M with a cryptographic key K, respectively
auth-decrypt (K, M) indicates authenticated decryption. We use
two variants of cryptographic keys:

® Kession, a symmetric key shared between the client and the
TEE on the server side to enable transport encryption.

® Koperation, @ unique one-time key generated, and updated
with each put ()-operation by the client. It is used to encrypt
the payload data and allows clients to decrypt and validate
the replies.

3.6 Connection State and Preconditions

Once a client connects to a PRECURSOR key-value store instance, it
first performs remote attestation to verify a genuine, trusted execu-
tion capable CPU runs an enclave that hosts the expected binary
on the remote side. Inte]l SGX provides the necessary remote attes-
tation mechanisms to gain such a cryptographic proof that certifies
the enclave’s initial code and data and the expected hardware [5].
During this process, a shared secret key can be established that is
further used for transport encryption between the client and the
PRECURSOR instance. Furthermore, to bootstrap the RDMA commu-
nication, the server shares a registered buffer memory window via
its address and the associated memory identifier with the client.

3.7 Client Requests

After establishing a connection, the client now has the authorization
to write its requests into the server memory and can compute
the available space in its pre-allocated buffer on the server-side.
For each operation, the client assigns a unique sequence number
oid which is authenticated along with the message so that the
PRECURSOR server detects potential replay attacks (Algorithm 1,
line 5).

PRECURSOR provides standard key-value store functionalities
extended with security-metadata as the client is carrying out the
cryptographic computations for the payload data.

Add data. For a put() request, the client first encrypts the value

using Koperation. and generates a MAC over its ciphertext (Algo-
rithm 1, line 2-4), which corresponds to the payload data that is later



Middleware ’21, December 6-10, 2021, Québec city, QC, Canada

transferred to the server. Following this, it prepares the control data
that is authenticated and consists of oid and key item Koperation
(Algorithm 1, line 7-8). A newly generated initialization vector (IV)
is necessary to prevent an eavesdropper from attempting a block
replay and is excluded from the listing for brevity.

Algorithm 1: Secure put() client-side
State:
Operation identifier: oid;
Encryption key: Koperation;
Session key: Ksession;

Encrypted value: *v;
ptr: pointer to the untrusted item;

1 Function Send_request (v, key):

2 Koperation < KeyGen(); //generate key

3 Ve E(Koperation, v);

4 mac < MAC(Koperation)*V) ;

5 oid=oid +1;

6 control_data « (Koperation, key, oid);

7 buf « auth — encrypt(Ksession, control_data);
8 request < (buf, mac, *v) ;

9 send request to the server ;

10 return;

Algorithm 2: Secure put() server-side

1 upon receiving request do

2 (buf, payload_data) « request;

3 control_data « auth — encrypt(Ksession,buf);
4 (Koperation, key, oid) < control_data;

5 if oid = C;.oid then

Cj.oid « oid +1;

o

7 ptr « store_to_untrusted (payload_data);
8 putintoHashtable(key, Koperation, ptr);
9 else

10 L // Error handling

11 end event

When a message is received, the payload data remains in the
untrusted memory, and only the control data is copied into the
enclave. Thereby, the control data preserves the confidentiality and
integrity of the payload data. The server decrypts the control data
using the Kgession to verify the authenticity of the message and
the client (Algorithm 2, line 2).

To detect replay attacks, it keeps an array indexed by a client
identifier, where each entry holds the most recent oid operation
and compares it with the new oid (Algorithm 2, line 4-5). If an
attacker tries to send a message with the same number, the server
detects it and discards the request.

Upon reception, a new entry is added, or an existing one is
updated in the hash table (Algorithm 2, line 8). The entry consists
of the key item and a value pair composed of the Koperation and an
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associated pointer ptr to the payload data stored in the untrusted
memory. If the key already exists, the server updates the entries
in its memory: Koperation, the encrypted value and its MAC to
support revocation.

Query data. When a client invokes get() to query a value, the
PRECURSOR server sends the untrusted payload data, and the trusted
control data to the client. In doing so, PRECURSOR shifts requests
verification to the client. The PRECURSOR server’s task is thus re-
duced. It fetches the corresponding entry in the hash table using
the request key item, encrypts it for transport via the client-specific
Ksession, binds it to the payload data then sends it to the client.
To verify the integrity of the data, clients re-compute the received
MAC over the encrypted value using the secret Koperation and
compare both the newly computed MAC and the received one. Us-
ing the unique Koperation that originate from the enclave, clients
can verify data integrity and detect state manipulation.

3.8 Client Management and Parallelism

To limit enclave transitions, PRECURSOR runs a collection of threads
equal to the number of CPU cores: trusted threads in the enclave
and worker threads in the untrusted region.

A trusted thread has sequential tasks. It detects new client re-
quests by polling a subset of circular buffers, then verifies transport
confidentiality and integrity, and finally handles the request. Pe-
riodically, these threads update clients about the newly available
buffer slots using one-sided writes.

When handling clients’ requests, the proposed splitting approach
demands slot allocation in the untrusted region for storing the
payload data. Instead of performing frequent ocalls to allocate space
from within the enclave, PRECURSOR pre-allocates a memory pool
and issues an ocall only when needed, i.e., to add extra space and
reduce enclave transitions.

Eventually, the trusted threads write request replies into an
untrusted queue. The worker threads send these messages using
RDMA.

3.9 Security Discussion

We discuss the security properties of PRECURSOR according to our
threat model (§2.3).

PRECURSOR guarantees. PRECURSOR ensures the confidentiality
and integrity of exchanged and stored data via established cryp-
tographic operations. The use of one-time keys for the payload is
robust and preserves forward secrecy. There is no need for pre-
deploying keys or re-encryption once a client has been excluded
from accessing the service.

During put () and get () operations, the client might have learned
a number of one-time keys, but this knowledge cannot be exploited
for uncovering additional information from the key-value store
as each time a value is updated, a new one-time key is used. Nev-
ertheless, if an excluded client would have unrestricted access to
the network, she can change get () responses for her known keys.
With access to the server’s untrusted memory, she could in princi-
ple, modify values that were previously accessed by the excluded
client. If such a scenario needs to be prevented, the MAC included
in the payload data needs to be stored inside the enclave and has to
be added to the transport encryption. This way, the former client
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cannot replace payload information as this would be detected via
the securely handled MAC.

PRECURSOR provides integrity with MAC verification and en-
sures rollback attack detection at the communication-level; thus, a
malicious adversary cannot re-insert previous key-value items as
each operation is appended with an increasing sequence number
checked in the enclave. The clients’ authenticity is securely checked
in the enclave; the cloud provider cannot mimic or impersonate a
client. However, as mentioned, the attacker can identify encrypted
values in the network traffic; thus, she can examine and deduce
patterns from similar transmitted requests and replies.

A different scenario is an attacker who targets the client; how-
ever, we assume that client-side operations and data are protected,
for example, via an SGX enclave.

RDMA specific attacks. PRECURSOR is exposed to the security
consequences of RDMA protocols such as the denial of service and
side-channel attacks. RDMA memory keys that allow an entity to
write or read a remote machine’s memory are predictable and not
secured. While this pre-exchange of keys can be encrypted, if an
adversary guesses this critical information, she can issue read or
write requests, which negatively impacts PRECURSOR performance;
or overwrite the untrusted memory data. Also, an attacker might
open many connections to PRECURSOR, reaching the RNIC cache
limit and thereby preventing further connections by other clients.
Rothenberger et al. [48] propose mitigations to these attacks using
existing hardware counters in RNICs, and other defense techniques
which can be implemented on top of PRECURSOR. Similar issues
occur with rogue clients. Clients could deviate from the flow control
and overwrite their request before being read by the server or write
to an incorrect point in the buffer, producing garbage data [54].
PRECURSOR can revoke access to corrupted clients using RDMA
queue pair states transition [44]. Finally, Tsai et al. [60] trace major
side-channel attacks in RNICs that allow a client to learn other
client’s accesses to a remote server. However, as mentioned in
our threat assumptions, protecting against denial of service, side-
channel attacks, and availability is beyond this paper’s scope.

4 IMPLEMENTATION

We implemented PRECURSOR in C, with about 5000 lines of code
(LOC), where the enclave comprises 580 LOC. It uses the Intel SGX
SDK 2.9 for Linux.

It exposes three ecalls that i.) initialize the hash table, ii.) start
polling the circular buffer, and iii.) add a new client. For RDMA APIs,
we use the core user-space libibverbs library. For the internal
hash table in the enclave, we used the state of the art Robin hood
hash table which resolves conflicts using open addressing [14]. This
choice is driven by the fact that it provides a compromise between
speed and memory usage. Unlike a chaining strategy, it does not
require linked lists or extra pointers which slows down the hash
table lookups. Besides, it is not influenced by TLB misses making it
more suitable for in-enclave insertions [40].

Security functions. Client in-memory encryption is implemented
using the crypto primitives from the Libsodium library?. It encrypts
the value using the Salsa20 stream cipher, which generates a 256-bit

Zhttps://download.libsodium.org/doc/
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secret key.

Then, we generate a CMAC hash over the encrypted value using
sgx_rijndael128_cmac_msg from the Intel SGX SDK library. To
verify clients’ identity and transport encryption, packets are pro-
tected with an authenticated encryption, AES128 in GCM mode.
In addition to the cryptographic metadata, a request includes an
opcode, a start_sign and an end_sign operand to detect the start
and end of a request.

The enclave hosts security metadata that consists of a 256-bit
secret key, 1B o0id, 4B client identifier that is stored in the hash table.
This implies that the in-enclave data is kept small to prevent EPC
paging. To allow concurrent accesses, the internal enclave hash
table is read-write locked with a completely in-enclave mechanism.
The server uses a single ocall function (called periodically to limit
frequent transitions) to enlarge the pre-allocated untrusted list that
stores the payload data.

RDMA optimizations. We use existing RDMA optimizations that
already proved to improve throughput and latency [29]. Waiting
for completion events with each send request adds extra overhead.
Selective signaling is an optimization that reduces this overhead. It
allows pushing a single completion after a batch of requests. The
rest of the operations do not get an explicit notification.

The second feature that we use is inline. It allows copying small
messages into the work request to send instead of the adapter re-
trieving it via a DMA read. It reduces the latency for small payloads
(up to 912 B in our setup machines). We refer the reader to Kalia et
al’s design guidelines for a detailed explanation [29, 30].

5 EVALUATION

To evaluate the system performance of PRECURSOR, we present an
experimental comparison against the SGX-secured SHIELDSTORE [31]
in terms of throughput, latency, and EPC working set analysis. The
evaluation sets out to answer the following three questions:

e How does PRECURSOR compare to an existing SGX-guarded key-
value store in terms of throughput and latency for various work-
loads and payload sizes? (§5.2 and §5.3)

o How does the offloading of cryptographic operations to the client
improve the server-side performance?(§5.3)

e What is the impact of EPC paging on PRECURSOR? (§5.4 and §5.3)

5.1 Experimental Settings

Testbed. In all our experiments, we use one server machine and

several client machines as follows:

e Server machine: Intel Xeon E-2176G CPU (3.70 GHz, 6 cores, 12
hyper-threads) equipped with 32 GB of memory and a 40 Gbps
Mellanox ConnectX-3 RoCE NIC.

e Client machines: five identical machines with an Intel Xeon E3-
1230 CPU (3.40 GHz, 4 cores, 8 hyper-threads), 32 GB of memory,
connected with a 10Gbps ConnectX-3 RoCE NIC. The sixth ma-
chine has an AMD EPYC 7281 16-Core Processor, 128 GB memory
and a 40 Gbps RDMA NIC, which runs half of the number of
clients.

For all experiments, we use the same software stack: Ubuntu 18.04

with Linux 4.15.0-62, Mellanox OFED 4.2 driver, SGX driver and
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SDK version 2.9 [3]. We also apply the Intel microcode updates to
mitigate the Foreshadow and Meltdown attacks.

Baseline Systems. We use SHIELDSTORE as a baseline system as it
is a recently published key-value store that was especially designed
for throughput and addresses the aforementioned EPC limitation.
SHIELDSTORE clients and server interact through socket-based prim-
itives. In a nutshell, it holds the encrypted key-value entries in the
unprotected memory, each chained to a MAC entry. The entries
create a Merkle tree to guarantee integrity-protection. The top of
the tree corresponds to the hashes over a bucket list of MACs. In
sum, SHIELDSTORE provides an adequate state-of-the-art baseline
as it corresponds to a server-side computation scheme. It is also
currently also the only open-sourced SGX-tailored key-value store
we are aware of.

Since SHIELDSTORE does not feature the use of RDMA, we created
a second baseline. We compare the proposed PRECURSOR client-
encryption with a PRECURSOR server-encryption variant. Clients
and the server rely on RDMA primitives. However, the full payload
is transported encrypted and copied into the enclave, where its
integrity and authenticity are checked. Next, we re-encrypt the
payload and store it in the untrusted memory. In this case, the
server handles the cryptographic verification and computation, i.e.,
we do not offload the encryption and integrity verification to the
clients.

We use the YCSB benchmark [18] to evaluate both PRECURSOR
and SHIELDSTORE. We concentrate on the uniform YCSB workload,
where all items are equally likely to be accessed. We explore the
effect of varying workloads (read-write ratio), value sizes, and client
numbers.

5.2 Throughput Measurement

In all throughput experiments, we load 600k entries during the
warmup phase and take an average of 8 repetitions which provides
stable results.

We distribute 50 clients over the six machines and run the bench-
mark for 4 minutes to reach a constant throughput. When the
performance is stabilized, we measure the server-side throughput.
We run SHIELDSTORE and both variants of PRECURSOR with 12
server threads to reach the maximum throughput.
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Figure 4: Throughput comparison varying workloads with
50 clients.
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Effect of varying workloads. To have a complete view of both
system performance, we use the following workloads:

o Update-heavy workload, 50% read (50% update), corresponds to
YCSB workload A.

o Update-mostly workload, 5% read (95% update).

o Read-mostly workload, 95% read (5% update), corresponds to
YCSB workload B.

o Read-only workload, 100% read, corresponds to YCSB workload
C.

Figure 4 shows the throughput comparison between SHIELDSTORE,
PRECURSOR, and PRECURSOR server-encryption. The experiment
uses a fixed value of 32B for a comparison with real-world work-
loads as in MemC3 [23]. With read-heavy workloads (read-only and
read-mostly), PRECURSOR performs 8.5X better than SHIELDSTORE.
With a decreased read ratio, PRECURSOR performs 6.9% better than
SHIELDSTORE for mixed ratio workload, and 5.9x better for an
update-mostly workload. The overhead of SHIELDSTORE is due to
TCP networking and the increased cryptographic verification. Be-
sides, we can see that the traditional server encryption approach
reduces the throughput compared to client encryption. Indeed, PRE-
CURSOR client-encryption increases the throughput by up to 40%
than its server-encryption variant with read-heavy workloads. With
update-heavy workloads, it achieves up to 29% more throughput.

When the value is smaller than the size of the control data (~
56B), one could as an alternative store the value directly inside the
trusted memory. This saves CPU cycles at the client-side and omits
the need to read from the untrusted memory. We consider this
as a future extension, where the key-value store switches to this
optimization for small values. Nevertheless, Yang et als analysis of
in-memory caches at Twitter [67] shows that 50% of the values are
bigger than 230B and 35% of the clusters are write-heavy workloads.
Thus, we vary value sizes from 16 B to 16 KiB.

Effect of varying value sizes.

We focus on a read-only and update-mostly workload where we
can see the difference between read and write operations. Figure 5
illustrates the results of this experiment. For an update-mostly work-
load, we observe that PRECURSOR can perform up to 721k operations,
while SHIELDSTORE reaches a maximum of 99k.

Indeed, in a put() operation, the SHIELDSTORE server copies
the full request into the enclave. Next, it computes a MAC over
the entry. As SHIELDSTORE relies on a Merkle tree approach, it is
necessary to update the root hash, which requires reading all MACs
in a bucket and update the hash.

For a read-only workload, we observe that PRECURSOR can per-
form up to one million operations, while SHIELDSTORE reaches a
maximum of 121k operations. Although SHIELDSTORE is optimized
and cleverly uses a Merkle tree design, the system needs to decrypt
all entries in a bucket, search for the corresponding key, then verify
its integrity. For this, it reads the bucket MAC lists, recomputes a
hash over it, then compares it with the root tree. This overhead is
unavoidable due to the design of SHIELDSTORE and becomes even
more apparent with bigger payload sizes. However, in the case of
PRECURSOR, the number of decrypted bytes remains constant as the
payload is pre-encrypted on the client-side. The PRECURSOR server
only copies the control data, decrypts it once, and it remains in the
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Figure 5: Average throughput comparison of PRECURSOR
against SHIELDSTORE with various value sizes, for a read-
only workload and an update-mostly workload with 50
clients.

enclave, while the encrypted value never enters the enclave. Hence,
PRECURSOR performs less copy steps while clients can still verify
the integrity of the data.

The PRECURSOR server encryption variant shows the expected
overhead and results. Following the traditional approach for ver-
ifying integrity decreases throughput with an average of 49% for
bigger request sizes (4Kib and 16Kib), and an average of 34% for
smaller request sizes in case of a read-only workload. In case of
an update-mostly workload, the throughput decreases by 27% on
average.

Effect of increasing clients numbers. We simulated in this ex-
periment a larger number of clients to evaluate PRECURSOR’s scal-
ability. We used the six client machines, splitting the number of
clients processes for both systems. This experiment uses 32B values.
Figure 6 shows the results for a read-only workload. PRECURSOR
delivers its maximum throughput at 55 clients; with more clients,
the throughput starts to decrease. The decline is due to the resource
contention and cache misses in the RNIC [16]. Another possible
limit is the necessary polling in the enclave. With more client pro-
cesses, this might incur much CPU overhead.

As SHIELDSTORE and PRECURSOR use different networking tech-
nologies, we investigate in the following section, the latency of
the full systems as well as separating networking from server-side
processing.
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while varying the number of clients for a read-only work-
load.

5.3 Latency Analysis and Tail Latency

We now look at the tail latencies of a get () operation for a read-
only workload (99th percentile), which is an important metric in
datacenters. Figure 7 shows the Cumulative Distribution Function
(CDF) of latency for requests with 32B, 512B and 1024B value for 1
million requests. PRECURSOR has lower get () tail latencies. This
can be explained by the usage of RDMA for communication, as well
as offloading computations to clients as compared to state-of-the-
art SGX-based key-value stores. We can see from the results that
PRECURSOR latency remains steady until 95% (~ 8us) , with a 99th
percentile at 21pus. Besides, we see that with bigger values, PRECUR-
SOR tail-latency remains good and does not increase. SHIELDSTORE
seemed to have more outliers due to scheduling, kernel processing
and TCP buffering. Indeed, using TCP and interrupts adds latency
to network requests. We then loaded 3 million entries that would
make PRECURSOR trigger EPC paging because it exceeded the upper
EPC limit. Till 90th percentile, PRECURSOR latency is still 77% lower
than SHIELDSTORE, starting from 95% percentile the EPC impact
becomes more apparent. SHIELDSTORE is not affected by the EPC
paging in this case because of its Merkle Tree-based design.

To further understand the performance differences between both
designs and show the impact of different networking technologies
and security protection techniques, we break down the get () la-
tency in Figure 8. This experiment analyzes the average time spent
performing get () requests, splitting networking and server-side.
We vary the value size since it changes the amount of data that has
to en-/decrypted for each request. The goal is to separate the time
that is spent in the network processing and transmission and the
time in the server while processing requests. It is especially to see
the benefit of our design regardless of using RDMA. The results
show that the server processing of SHIELDSTORE is 1.34X slower
than PRECURSOR, due to the decryption/encryption of the full pay-
load, the copy between the enclave and untrusted memory and the
server-side integrity verification. When increasing the buffer size,
the in-enclave latency of the PRECURSOR server remains the same,
while for SHIELDSTORE it keeps increasing, 2.15X higher for large
sizes.
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The different mechanisms we used in the paper all contribute
to the good performance of PRECURSOR. Using the right network-
ing technology reduces the latency of the service by 26X and im-
proves the server responsiveness time compared to a traditional
technology. Avoiding data copy where possible, limiting the en/de-
cryption improves the server latency compared to a traditional
server-encryption scheme.

5.4 EPC State Analysis

Our design principle keeps the enclave’s data sufficiently small to fit

into the EPC by splitting the workload and maintaining a minimal

data set in the enclave. This approach defers EPC paging and does

not suffer from a tradeoff between computation and EPC overhead.
SHIELDSTORE’s limitations results from the overhead of the Merkle

tree verification steps for each request, which increases with a
reduced number of MAC hashes cached in the enclave. SHIELDSTORE
design needs to reduce the number of MAC hashes in the enclave
to sidestep the EPC paging. Thus, we show here the EPC analysis
for PRECURSOR and SHIELDSTORE. To give an idea of how the EPC
increases, we measure the enclave’s working set size using the sgx-
perf tool [64]. sgx-perf is a performance analysis tool for sgx-based
applications. It traces which parts of the enclave are used and gets
information about the working set including the number of pages
and the size. We use a fixed value size of 32B and increase the
number of insert() operations.
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Table 1 shows the result of running the tool on both systems with
a various number of inserts. At start time, SHIELDSTORE allocates
the full data structure with a statically fixed number of in-enclave
hashes, and thus, its initial working set is 17,392 pages (=67.9 MiB).
PRECURSOR only initializes a subset of the hash table in the enclave,
which increases within a threshold and only needs 52 pages (~
0.2 MiB).

In general, these results suggest that PRECURSOR keeps a small
enclave memory footprint with an increasing number of keys. Ac-
cording to our results, even with paging, PRECURSOR outperforms
SHIELDSTORE, which has the trade-off of decreasing the hashes in
the enclave to limit EPC paging or increasing them to limit the
number of mac verification steps.

0 keys/init 1 key 100,000 keys

52 pages 65 pages 2981 pages
PRECURSOR (0 9 \MiB) (025 MiB)  (11.6 MiB)
SureLpSTore 17392 pages 17586 pages 17594 pages

(67.9 MiB) (68.6 MiB) (68.7 MiB)

Table 1: EPC size with various key inserts

6 RELATED WORK

We are not aware of prior work which investigated the use of RDMA
for an SGX-secured key-value store. Still there has been a set of
related works that focused on dedicated aspects also addressed by
PRECURSOR. First, we discuss general performance relevant aspects
of SGX that influenced the design of PRECURSOR. Second, we ana-
lyze key-value stores secured via trusted execution, in particular
SGX. Finally, related work considering key-value stores utilizing
RDMA is outlined.
Mitigating limitations of SGX. As detailed in the introduction,
so far two main performance issues have been identified when
securing complex applications via SGX: memory usage beyond the
limit of the EPC and excessive switching between trusted and un-
trusted execution mode. Overstepping the EPC boundary can be
addressed by explicit outsourcing of data to the untrusted environ-
ment or more transparent approaches such as user-level paging.
The first case has been implemented for example in Secure-
Keeper [13] but is also performed by most of all data-intensive
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SGX-guarded systems [9, 31, 49]. The second case has been pro-
posed through smart pointers in Eleos [41]. STANlite [49] performs
efficient user-level paging whenever a database workload requires
more space than the in-memory state size. PRECURSOR aims to
avoid the transfer of all data into the TEE in the first place, thereby
avoiding additional custom memory management. Avoiding perfor-
mance degradation due to frequent transitions between the trusted
and untrusted side has first been proposed by SCONE [8] and later
explored in more detail by Weisse et al. [66] as well as integrated
into the SGX SDK by Tian et al. [58]. PRECURSOR embraces this
approach and combines it with the use of RDMA to retain as much
performance benefits of this communication technology as possible.

Secure data stores using Intel SGX. With the advent of SGX,
the first impulse was to make its use transparent. Solutions such
as Haven [10], SCONE [8] and Graphene [59] proposed to lever-
age the hardware protection of Intel SGX without the need to re-
architecture applications, by placing systems support (e.g., a library
OS) and the application binary in the enclave. All three solutions
are susceptible to the issue of overstepping the EPC limit. While
convenient, it turns out that tailored solutions offer better perfor-
mance [15, 31]. Tailored approaches on protecting key-value stores
in the cloud either utilize Merkle trees or tailor specialized data
structures relying on a server-side encryption scheme. In both cases,
the aim is to limit the active enclave state to the EPC size if possible.
Key-value stores such as EnclaveCache [15] and ShieldStore [31]
ensure integrity and confidentiality through server-side verifica-
tion and rely on the large untrusted memory for storing encrypted
data to sidestep EPC swapping overhead. ShieldStore uses a Merkle
tree approach for integrity protection of data hosted in the un-
trusted memory. EnclaveCache uses multiple enclaves to isolate
data among tenants. SPEICHER [9] is an LSM-based key-value store
that stores the list of keys inside the enclave while maintaining
the values in the unprotected memory. For these streams of re-
search, CPU usage can be a limiting factor and they might not take
full advantage of the available bandwidth at least when combined
with novel communication technology such as RDMA. Sinha et.al
proposes a trustworthy proxy that guarantees integrity using a
Merkle tree structure. So far, Merkle tree approaches are considered
to be computationally intensive and prone to concurrency bottle-
necks [7]. Concerto [7] records a hash of the untrusted memory
write and reads for integrity verification but does not address the
performance-related limitations of SGX. EnclaveDB [47] and STAN-
lite [49] are SGX-enabled databases that offer security with low
overhead and a small TCB. None of the discussed systems focus
on client-side encryption of the payload data or aims to avoid the
transit of all data via the TEE such as proposed by PRECURSOR.

Accelerated key-value stores using RDMA. RDMA has been
explored to scale up various distributed key-value stores [22, 29,
36, 56]. Achieving high-performance implies an RDMA-tailored
design, due to its programming model and low-level details [24, 30].
Proposed designs tend to rely on the one-sided primitive because it
bypasses remote side CPUs. Still, these systems always assumed a
fully trusted environment. Pilaf [36] and FARM [22] rely on one-
sided reads from the server memory, which requires multiple round
trips to fetch the actual result. Our implementation shares similari-
ties with HERD [29], a key-value store that uses one-sided writes
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to deliver requests, with a defined server-side polling threads. How-
ever, we use a different in-memory data structure design as well as
RDMA over a reliable connection.

The STANlite [49] database utilizes RDMA and as such com-
bines to a certain extend trusted execution and RDMA. However,
it is unlikely that STANIite takes fully advantage of the available
bandwidth because it implements a server-side encryption scheme.
With PRECURSOR, besides avoiding the transfer of all data into the
enclave, a tighter integration of the two technologies is achieved.

7 CONCLUSION

Intel SGX promises strong confidentiality and integrity guarantees
for cloud-based environments. However, its current architectural
limitations lead to a dilemma between security and performance. In
particular, the service state is often encrypted inside the enclave to
store it outside the trusted execution environment because the EPC
memory is scarce, and overstepping it results in a costly memory
paging process. In this paper, we designed PRECURSOR, a secure
key-value service that mitigates SGX limitations while maintaining
security guarantees and achieves good performance. It outsources
necessary data encryption to the client-side to lower the server load
and thus benefits from the RDMA’s high bandwidth. Our results
show that the PRECURSOR approach achieves high throughput and
outperforms an existing state-of-the-art key-value store.
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