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Abstract—High availability is no longer optional since more
and more Internet-based services provide economical or other-
wise critical offerings. Traditionally, crash faults are addressed
using state-machine replication (SMR) and critical data is selec-
tively protected by checksums. Both techniques can be efficiently
combined, however, large parts of a service remain susceptible to
transient errors such as bit-flips or more severe state corruptions.

To address this weakness and also to reduce the labouring
and non-trivial effort of identifying and selectively hardening a
complex service, we propose CrossCheck – a holistic approach.
CrossCheck extends the crash-fault protection of SMR to also
provide tolerance against arbitrary state corruptions, thereby
especially addressing multithreaded applications. This is achieved
by a fine-grained state comparison and a precise recovery mecha-
nism using fault-free replicas. The implementation utilizes aspect-
oriented programming and therefore requires only minimal
manual changes to the underlying software. In our evaluation, we
show that a multithreaded key-value store can be made resilient
to crashes and hardened against arbitrary state corruptions with
moderate overhead.

I. INTRODUCTION

High availability is a key concern of todays distributed
systems, because loss of data and system outages have
substantial economical impact and in some cases can even
endanger lives. A recent study estimates that for an average
outage the costs are about $8,000 per minute [1]. To prevent
service outages, replication approaches represent current best
practice. Although many different replication techniques exist,
they usually target to tolerate only crash faults.

However, due to shrinking structure sizes of commodity
hardware and the economical pressure to reduce the energy
consumption of modern servers their reliability decreases.
In particular, we see an increasing number of transient
errors, which cause bit flips in main memory [2], [3], [4]
or inside the CPU. For server hardware ECC-guarded memory
is used, however this only allows to tolerate single bit
flips. Chipkill-enhanced main memory [5], which increases
resilience against memory corruptions, has not entered the
mass data center market, presumably due to economical
reasons. As a consequence, distributed systems providing
critical services hosted by data center infrastructures, such
as Clouds, are susceptible to state corruptions even under
replicated deployment. As a prominent example the Amazon
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S3 outage1 can be named, where a few corrupted messages
caused an outage of large parts of the service despite massive
replication.

From a consumer point of view it is not possible to change
the hardware of a cloud infrastructure and additional hardware
mechanisms might be too expensive for a limited number of
critical services. Hence, software-based measures represent
a viable option to tolerate crashes and address silent data
corruptions. Typically, arbitrary faulty behavior in the context
of replicated distributed systems is addressed by means of
Byzantine fault tolerance (BFT) [6]. However, BFT goes be-
yond arbitrary state corruption (ASC) and addresses coordinated
malicious actions. Therefore it is not surprising that it demands
significant more resources compared to plain crash-tolerant
replication schemes. Since malicious faults such as intrusions
are not assumed in most scenarios, recent research specifically
targets to tolerate ASC caused by transient errors [7], [8], [9].
A solution presented by Correia et al. [7] is based on local
redundant execution of requests and a subsequent comparison
of the change in the application state. Another way to deal with
ASC is to employ software encoded processing as presented
by Behrens et al. [9]. Both solutions have in common that they
solve state corruptions exclusively and do not consider crashes.
However crashes are still the most common type of failure
in distributed systems. In order to build a holistic solution
these approaches need to be combined with replication across
different machines. Thereby the combined overhead would be
prohibitive to be used in practice.

In this paper we present CrossCheck, a holistic approach to
tolerate arbitrary state corruptions and crashes. Our approach
aims at request-oriented distributed systems and builds on top
of state-machine replication (SMR), an established solution for
implementing highly available services. Prominent examples
are coordination services [10], highly available data storage [11],
but also wide-area replication of databases [12]. As an extension
to SMR, we apply a fine-grained state change tracking by
generating hash values from small entities of the system state,
which are accessed in the cause of executing a request. For each
request, we aggreate all generated hash values and exchange
them between the replicas immediately before a reply gets
externalized to the client. Eventually these values are compared
by a majority voting and in case of a mismatch a recovery
mechanism is initiated. Since we collect one hash value for
each accessed entity, we are able to identify precisely the

1http://status.aws.amazon.com/s3-20080720.html



corrupted entities. This enables a tailored recovery where
only data of the corrupted entities needs to be transmitted
from fault free replicas. In conclusion a recovery can be
processed in a few milliseconds and does not significantly
impact the overall performance of the system. By enforcement
of weak determinism, CrossCheck is also capable of hardening
multi-threaded applications, which is a key technology for
systems with high throughput. We achieve this with our story-
board framework [13] which utilizes the concept of schedule
memorization [14]. For evaluation, we applied CrossCheck to
Memcached++, an object-oriented version of the well known
key-value store Memcached with an extension for SMR. Our
results show that we can tolerate crash-faults and ASC in a
SMR-system at a performance overhead below 20%.

In summary, we provide three contributions:

• We present a novel concept called CrossCheck that
exploits already available redundancy and determinism in
SMR to achieve resilience against ASC at low overhead.
CrossCheck also includes a recovery mechanism that can
repair corrupted state at object granularity. Furthermore we
identify challenges that are introduced by multi-threaded
services and provide sound solutions.

• CrossCheck requires tailored extensions for any class that
needs to be protected. We show how these extensions
can be implemented with automatic code transformation
so no manual changes to protected classes are required.
In particular we present generic solutions for tracking
state changes, validation and recovery that we have
implemented in our CrossCheck library framework.

• We have evaluated our concept based on Memcached++,
a multi-threaded prototype service that we hardened with
CrossCheck. We present the results for throughput, latency
and recovery times in this paper.

We first present related approaches on arbitrary faults in
Section II and our system model in Section III. Next, we
explain the detailed concept of CrossCheck in Section IV. In
Section V, we introduce aspect-oriented programming a core
technology, which we rely on for our implementation presented
in Section VI. The evaluation of our implementation is shown
in Section VII, while Section VIII concludes the paper.

II. RELATED WORK

In the high performance computing (HPC) domain, tolerance
against hard and soft errors in DRAM is usually provided
through special error correction code (ECC) protected hardware.
Among various ECC solutions, single-bit error correction,
double-bit error detection (SEC-DED) and Chipkill ECC are
the most common ones. Compared to SEC-DED, Chipkill
reduces the uncorrected DRAM errors by a factor of 42x [3].
Judging from the results of recent large-scale field studies [4],
[2], [15], only Chipkill ECC offers sufficient error protection.
However, commodity data center hardware, due to cost pressure,
utilizes at best DRAM with SEC-DED ECC, leaving many
errors uncorrected. Although very seldom, even with Chipkill
ECC uncorrectable errors still occur. Therefore, we argue

that additional software protection is needed to secure critical
services in order to address arbitrary state corruptions.

Tolerance against arbitrary faulty behavior and crashes
is traditionally provided by BFT protocols [6], [16], [17],
[18]. However, BFT is rather resource demanding as 3 f +1
nodes are required to tolerate f Byzantine faults. Therefore,
a recent trend targets to address arbitrary state corruptions
which have their origin in hardware malfunctioning. Correia
et al. [7] formulated the ASC error model. In this work,
tolerance against ASC is provided through the PASC library,
which duplicates the application state and executes all state
modifications redundantly. PASC achieves this transparently, if
a strict programming model is followed. All application state
has to be placed in one object and all modifications need to be
carried out by event handlers. A follow-up work by Behrens
et al. [8] generalized the aforementioned work. They removed
the notion of a specific programming model and addressed
the memory overhead by storing checksums of modified pages
during the initial execution instead of managing a full state
copy. Software encoded processing [19], [9] is another way of
dealing with unreliable hardware. Critical data is encoded in a
special way, and all processing is conducted on encoded data.
Data and control flow faults result in wrong codewords and
are thus detected. All these ASC-tolerance approaches share a
significant computational performance overhead ranging from
2x (redundant execution) up to 5x (encoded processing). In a
real world scenario where crash fault tolerance is required in
the first place, this would be needed on every replica, therefore
the overall overhead would be multiplied. Moreover, none of
these approaches covers multi-threaded applications.

Since concurrent operation on shared data makes reasoning
about the application state challenging, there is only limited
work that considers faults beyond crashes, and, at the same
instance, allows multithreaded execution. Kapritsos et al. [20]
proactively allow concurrent execution as long as the applica-
tion remains consistent. In the case of inconsistencies, a revert
to a save state followed by sequential re-execution is performed.
This assumes efficient support for micro checkpoints and a
transactional application behavior. Furthermore, application
workloads with high contention and large shared state will
suffer from a high rate of re-executions. Kotla et al. [17]
enables the concurrent execution of requests if they do not
change shared state. This essentially leaves the middle ground
where services can freely utilize threads but determinism is
pro-actively preserved.

This paper supersedes our preliminary workshop publica-
tion [21]. The paper at hand describes the fully implemented
CrossCheck library, refined concepts, and an extended recovery
procedure. Based on our new prototype implementation, we
present a detailed evaluation of CrossCheck.

III. SYSTEM MODEL AND ASSUMPTIONS

With CrossCheck we aim at hardening typical distributed
systems composed as a client-server architecture and deployed
in a Cloud.



A. Service structure

Multiple clients may connect and issue requests via messages
to one server, which in turn processes them. During the
execution of a request, commands may perform any kind of
access (i.e., read, write, create and delete) to the internal in-
memory state. Afterwards, the server responds to the clients
with a reply message. To address multi-core hardware and
recent service implementations, we assume a multi-threaded
service design. In this model multiple requests can be executed
concurrently by different threads which may cooperate via
shared data. Access to all critical sections needs to be race-
free, which is achieved by atomic locks (i.e., mutex locks).
Lock-free solutions are excluded. Without further measures,
the execution order of multiple requests is non-deterministic,
as the order depends on the internal scheduling policy of the
operating system that is influenced by the workload at the time
of execution. We expect the server application to be written in
an object-oriented way and to be well structured. In conclusion,
the in-memory state must be encapsulated in any number
of state-objects. However, only a subset of the state-objects
are considered critical for the service to operate correctly.
Typically these critical state-objects store mission-critical data
or messages which need to be externalized. According to the
best practice in object-oriented code design, critical data should
not be stored in public member variables.

B. Fault model

Any error may stop the system (i.e., an infinite loop), lead
to a crash or may corrupt data. In critical state-objects any
data corruption needs to be detected and repaired before data
is externalized to the client. For any other object it is sufficient
to ensure that all possible data corruptions that propagate to a
critical state-object are handled there. Information exchanged
via message passing may fail completely, corrupt or delay
messages. Also, messages may arrive out of order. In analogy
to [7], errors have an arbitrary character. They may consist of
single and multiple bit flips and may even alter the control flow.
We also make no assumptions on the number of state-objects
that can be corrupted at the same time. However, we expect
the behavior to be random and not coordinated malicious. In
the remainder of the paper, we will refer to these faults as
arbitrary state corruption (ASC). At most f out 2 f +1 replicas
can be faulty at the same time. Of course the entire system
(including the operating system and libraries) may be affected
by ASC. As long as ASC in these parts do not propagate to
the critical state-objects, protection of these parts is not needed
for correct behavior. Furthermore, we do not consider clients
to be faulty and assume that the server software itself does not
include bugs which cause arbitrary faults.

C. Architectural measures

In order to tolerate crashes or a not responding service
we expect that SMR [22] is applied. Thereby, liveness is
ensured while tolerating f crash faults with 2 f +1 replicated
instances. However, this requires that each replica receives
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Fig. 1. The CrossCheck approach

the same ordered set of requests and behaves like a de-
terministic state machine: To implement the requirements
of SMR, we need to enforce total ordering of messages
and enforce deterministic execution in each replica. Total
message order is achieved by an agreement protocol (e.g.,
Paxos [23], Raft [24]) or a group communication framework
(e.g., Spread [25]) supporting total ordering of messages.
To ensure determinism a deterministic threading library like
Dthreads [26] or a framework for determinism (Tern [27],
Coredet [28], Kendo [29]) can be applied. In the case of
CrossCheck we used Storyboard [13] that follows the idea of
scheduling memorization similar to Tern.

To ensure that messages do not contain corrupted data, any
information which leaves the protected application should be
protected by a checksum, i.e., a 32-bit cyclic redundancy check
(CRC32). Any other failures like missing or reordered messages
need to be handled by the communication protocol (TCP/IP) or
by a group communication layer. Protection of these software
layers is beyond the scope of this paper.

Tolerating ASC in critical state-objects before data gets
externalized to the client is the task of CrossCheck. CrossCheck
further provides means to recover the state of corrupted objects
via fault-free replicas. This way an arbitrary number of ASC
can be tolerated over time.

IV. THE CROSSCHECK APPROACH

The CrossCheck approach can be subdivided into three steps:
First, during the processing of a request every change of the
application state is tracked and aggregated as a state delta.
This builds the basis for the second step: before a reply gets
externalized to the client, the state delta is exchanged with
other replicas and validated for correctness via majority voting.
In case an error is detected, i.e., state deltas mismatch, a
recovery process is initialized as a third step. This involves a
synchronization of all replicas and a transmission of a recovery
packet to the faulty replica. Using the recovery packet the faulty
replica repairs its corrupted state. Normal execution continues
after the recovery is finished. The following subsections explain
each step in detail.



A. Tracking State Changes

Problem description: Tacking state changes in a concur-
rent environment: Tracking state changes can be done via
regularly building checksums over parts of the in-memory
service state, i.e., every time a reply is externalized to a client.
However, state of the art services may possess an in-memory
state of up to several GB and can easily serve thousands of
requests per second. Under such conditions, tracking the entire
state involves a substantial performance impact.

Fortunately, requests usually access only a very small portion
of the service state, but tracking these state parts is nevertheless
challenging. Naturally the state of an application is subdivided
into pages at the machine level. A common way to track page
access, i.e., during request processing, is to set all pages read-
only via the mprotect(2) system call [8]. On a write access
a page-fault is generated which can be caught by a special
page-fault handler. The page-fault handler tracks the access and
immediately grants write access to the affected page. At the
end of the execution period all tracked pages are switched back
to read-only access. The main advantage of this approach is
its generality and its transparency to the application. However
changing page access-rights implies flushing the respective
TLB entry [30], which in turn impacts performance. More
problematic, it is hard to apply this approach when requests are
served by multiple threads because it is complicated to decide
which changes belong to which request and thread. Furthermore,
if not addressed properly, scheduler non-determinism might
cause different checksums across replicas.

Thus, instead of tracking the access of pages, CrossCheck
tracks the access of coherent blocks of data. This partitioning
is usually provided by an object-oriented code design, which is
widely used in distributed systems. A block of data in this case
is simply an object. As mentioned in our system model we
assume all data inside critical state-objects is only accessible
via method calls. According to this assumption, accessing and
leaving an object is simply represented by calling and returning
from methods.

Separation of critical from non-critical data: While
protecting all data is in principle possible, this comes at a
price and is in many situations not necessary. Objects usually
offer an insight into the application semantics which can be
utilized to further divide the state into critical and non-critical
state-objects. For example statistical and logging informations
do not affect the main task and temporary data structures can
also be left unprotected. Usually connection management and
intermediate buffers fall into this category. E.g., the loss of a
connection is a common event in a distributed system that is
handled by existing mechanisms. Errors in intermediate buffers
are also not critical because the corrupted data will eventually
propagate to critical state-objects and be handled there. As a
rule of thumb all state objects that do not influence the output
behavior of a service are not critical and can be ignored when
hardening a service against state corruptions. An additional
way to find critical state-objects is by conducting fault injection
experiments, e.g., by using FAIL* [31].

Tracking state changes and calculating checksums: To
track object modifications, we need to calculate a checksum
from object members whenever an object is accessed at runtime.
This approach is depicted in Figure 1. Over the course of a
request-processing, every checksum generated for an object
is captured inside a state delta. For each accessed object,
the state delta contains a pair of the latest checksum and
a unique object id. To be able to compare the same object
across replica boundaries it is important that the object ids are
deterministically assigned and equal across all replicas.

Tracking the state of critical objects by checksum com-
putation of its members can be challenging depending on
the types of the member variables. While checksumming
primitive data types like char, int or long can be implemented
straight forward, references and members of a class type
require special treatment. As all critical-objects have their
own checksum, critical state-objects nested in other critical
state-objects should not contribute to a checksum to avoid
overhead. Non-critical-objects nested in critical objects should
also not contribute to the checksum because this data is not
critical by definition. References either need to be deterministic
across replica boundaries for comparison or should be avoided
for checksum creation. The former solution can be achieved
with deactivation of Address Space Layout Randomization
(ASLR), when memory allocation is deterministic. This comes
at the cost of reduced security and performance. In the latter
case references need to be protected with another technique
like [32], [33]. Implementing a tracking solution for every
object access cannot be solved without access to the source
code and code instrumentation. Fortunately, this can be done
automatically and transparently to the source code via aspect-
oriented programming as explained in Section V.

Over the course of a request-processing only the latest
checksums for each accessed object are stored inside the
state delta. Old checksums are not relevant because even if
they have a hint for a transient error this may be resolved
by application semantics. Of course discarded checksums
imply an overhead which seems unnecessary at first. In order
to prevent unnecessary checksumming a solution would be
to track object accesses and compute the checksums once,
right before broadcasting the checksums to other replicas.
However, under concurrent request processing and without
any additional means the timing of checksum computation is
not deterministic with respect to object accesses from other
threads. To overcome this issue every access to a critical object
needs to become deterministic, including checksum generation.
With weak determinism this could be achieved when a lock
is acquired for the entire object whenever it is accessed. This
dramatically increases the synchronization overhead because
even data which is not shared between threads but placed in one
object needs to be synchronized. Depending on the scenario
this impacts the performance for concurrent request processing
much more than redundant checksum computations.

Optimizing for concurrency: Even though checksums are
computed right after an object is accessed, concurrent access
to objects can still occur. For example two threads may access



different member variables of the same object concurrently.
As a performance optimization, tracking capabilities can be
relaxed. Whenever an object is accessed concurrently only the
last thread leaving the object computes the checksum and thus
tracks the state changes. This behavior can be realized with a
wait-free algorithm [34] and involves minimal overhead. With
this optimization not every modification is tracked immediately,
meaning a subsequent comparison with other replicas is not
always possible. Nonetheless, this solution is feasible under
two conditions: First, we need to ensure that every externalized
message is validated. Second, we need to guarantee that every
object modification is tracked eventually. The first requirement
ensures that even when an error in a critical state-object occurs
which was not tracked and validated, no corrupted reply is
externalized to the client or any other application. The second
requirement ensures that no critical state-object stays untracked
for an infinite period of time. This can be easily achieved
by blocking the access to the object until its state change
is tracked whenever too much accesses where not tracked
consecutively. Further details on the implementation can be
found in Sections V and VI.

B. CrossCheck state validation

Figure 1 gives an overview of the data flow during request-
processing. Critical state-objects may be affected directly 2
either when they are stored in the main-memory (passive-state)
or during the access (active-state). Furthermore, errors may
occur somewhere else in the remaining service state 1 and
might propagate to the critical state-objects. In any case, every
change of a critical state-object is tracked after the object is
accessed.

When the processing of a request is finished, we start the
CrossCheck state validation procedure directly before a reply
is externalized to the client. At this point the state delta
D contains one set of pairs P = {p1, ...pn, preply} with the
latest checksums for every critical state object accessed during
request-processing. Each pair p comprises a checksum C and
its corresponding object id I. Additionally P contains preply,
a special pair for the reply message. For a setup with three
replicas, the state validation follows the algorithm depicted in
Fig. 2. Initially the own P ∈ D is broadcasted to all replicas
in form of a <CHECK> message as shown in TABLE II. For
each replica and and each request a status is maintained that
represents the knowledge about the state of the replica. An
explanation for this status is given in TABLE I.

As long as the own replica status is UNKNOWN or SUSPECT
the algorithm waits for new <CHECK> messages from other
replicas (Line 3). On arrival of a <CHECK> message all pairs
from the message are compared with the pairs stored in D
(Line 5). Depending on the result of the comparison the replica
states are updated (Lines 6 to 18). In case all pairs from
<CHECK> match with the pairs stored in D for a majority of
replicas, the successfully compared replicas can be set directly
into the VALID state. For a setup with three replicas this can be
reached after comparing the pairs of two replicas. If the first
comparison fails, the state of the involved replicas changes from

Data: state delta D containing for each replica Ri a set
of pairs Pi with pairs p=(checksum C, object id I);

1 broadcast own <CHECK> message;
2 while own status is UNKNOWN or SUSPECT do
3 wait until one <CHECK> message arrives;
4 foreach Pi ∈ D and Pi /∈ /0 do
5 compare all Pj ∈ <CHECK> of replica R j with Pi;
6 if comparison succesful then
7 foreach replica R ∈ {Ri,R j} do
8 set state of R to VALID;
9 end

10 else
11 foreach replica R ∈ {Ri,R j} with state

UNKNOWN do
12 set state of R to SUSPECT;
13 end
14 foreach replica R ∈ {Ri,R j} with state

SUSPECT do
15 set state of R to FAILED;
16 initiate recovery for R;
17 end
18 end
19 end
20 add all Pj ∈<CHECK> to D;
21 end
22 if replica needs to reply then
23 if local preply is corrupt then
24 wait until recovery is finished;
25 end
26 externalize <REPLY> to client;
27 end

Fig. 2. CrossCheck state validation algorithm for three replicas

UNKNOWN to SUSPECT. At this point we know that an error
exists but not which replica is affected. Another comparison is
needed to identify the corrupt replica. In that case an already
SUSPECT replica transits into the FAILED state when it is
involved again in a failed comparison. A replica will also
change into the FAILED state when it is SUSPECT and not part
of a successful second comparison. Therefore two comparisons
and pairs of all three replicas are needed to reach the FAILED
state. When a FAILED replica is identified a recovery procedure
is started (Line 16). Eventually for every request the state of the
own replica is set either to VALID or FAILED. Finally, normal
execution is continued even in case of an error. If the replica
needs to externalize a reply its correctness must be ensured
(Lines 22 to 27). Otherwise the reply must be hold back until
it is repaired during recovery (Line 24).

A reply is send to the client as soon as a quorum of replicas
reaches the VALID state. At that point not every replica state is
known. However, for recovery we need to obtain the knowledge
about the state of each replica. For that we need to continue
validation until all replicas are validated. This can be offloaded
to a separated, deferred validation step.



TABLE I
REPLICA STATUS FOR EACH REQUEST

Name Meanining

UNKNOWN Replica not verified
SUSPECT Replica may have errors

VALID Replica has no errors
FAILED Replica has error

TABLE II
STRUCTURE OF A <CHECK> MESSAGE

CHECK header p0 p1 ... pn preply

Faulty

Replica

Correct

Replica

Total

Ordering

sync

pack
<REPAIR>

replace

normal,

concurrent

execut ion

de-sync

sync

de-sync

Fig. 3. Recovery procedure

C. Recovering from faults

In case of an error detected by any replica, Cross-
Check invokes the recovery procedure through broadcasting
a <RECOVER> message as shown in Fig. 3. On arrival of
the first <RECOVER> message the whole recovery process is
carried out in two steps: synchronization and repair. Because all
replicas operate on their own speed, we first need to synchronize
all replicas to bring them into an equal and quiescent state.
Therefore, it is crucial to integrate the <RECOVER> message
into the total order of all requests. All requests that arrive
prior to <RECOVER> are executed in a normal way while any
request that arrives afterwards is put on hold until the recovery
procedure is finished.

Even though we risk error propagation inside the faulty
replica, normal operation should be continued until synchro-
nization is finished. However, by cross-checking every request,
we ensure that every critical state object and each reply is
validated before a request is finished. Any corrupted object we
detect in that period is added to a set which will be repaired
during the next step of recovery. This approach has performance
advantages when errors do not propagate to subsequent requests.
It also does not prolong the synchronization procedure because
the fault free replicas need to continue cross-checking messages
anyway. In contrast, stopping the faulty replica immediately
would require additional state comparisons after synchroniza-

tion and additional state updates would need to be transmitted.
When synchronization is initialized all threads processing

requests need to stop in a deterministic way. Additionally it is
necessary that every replica has the same global knowledge
about the state of every other replica. To achieve this, every
request that was executed on the replica needs to be compared
regarding its state changes. Therefore each replica needs to
wait until all <CHECK> messages have arrived. Of course
a corrupted replica may crash or run into a deadlock during
synchronization before it can transmit every <CHECK> message.
Thus every synchronization needs to get finished in a given
time or the corrupted replica must be considered unrecoverable
and replaced by a new one.

After synchronization is finished each replica has the same
global knowledge about the faulty replica and its corrupted
objects. In order to repair the corrupted objects, each fault-
free replica needs to pack and transmit the corresponding
fault-free objects as a <REPAIR> message to the faulty replica.
The structure of a <REPAIR> message is shown TABLE III.
Each packed data set Ki inside <REPAIR> is identified by the
unique object id Ii which is equal across all replicas. The faulty
replica in turn accepts the first incoming <REPAIR> message
and overwrites the corrupted objects with the packed data.

This procedure requires a special fine-grained packing
technique, since we can not treat objects as simple data blobs
or utilize existing serialization procedures. References inside
objects for instance are not invariant between replica boundaries
and nested objects are tracked and transmitted on their own. Our
solution requires specialized pack and replace methods for each
critical class which covers only the tracked parts of the objects.
This way pack generates a coherent data set Ki consisting of
all tracked object parts for object i. Calling the replace method
overwrites all tracked parts inside the object i with the contents
of Ki. Although this approach requires a tailored solution for
each protected class, it can be implemented in a generic way
in form of an aspect as explained in Section VI.

To continue normal execution no further communication
is needed. Immediately after a fault-free replica finishes
transmission of the <REPAIR> message it can carry on with
normal request processing. The faulty replica has to finish
replacement for all corrupted objects, but afterwards it may
also continue serving requests.

Control-flow faults like deadlocks or infinite loops, which
prevent a thread to ever finish its task, require a special
treatment. We recommend to pair CrossCheck with a traditional
watchdog approach in order to ensure each thread is running.
Additionally errors may manifest outside the protected critical
objects. By propagating to the critical state frequent repairs
that will highly impact the performance may follow. Therefore,
when a replica encounters too many recoveries in a given time
period or when the watchdog is triggered, the affected replica
should be replaced.

D. Dealing with false positives during error detection

Weak determinism does not ensure that every object access
happens in the same order on every replica, because we do not



TABLE III
STRUCTURE OF A <REPAIR> MESSAGE

REPAIR header I0 K0 I1 K1 ... In Kn

1 class OperationsCounter {
2 int writes;
3 int reads;
4 void incrementReads();
5 void incrementWrites();
6 };
7 OperationCounter opCnt;
8

9 void writerThread() {
10 opCnt.incrementWrites();
11 [...] //do stuff
12 }
13

14 void readerThread() {
15 opCnt.incrementReads();
16 [...] //do stuff
17 }

Fig. 4. Example of an asynchronous object access that may lead to false
positives during error detection

acquire a lock whenever an object is accessed. Although not
very common, situations may occur where several threads
modify different members of the same object in different
order without using a lock. An example for such a situation
is depicted in Fig. 4. Here two threads, the writerThread
and the readerThread, access the object opCnt. Because both
threads access different member variables no synchronization
is needed and therefore no determinism is enforced. Therefore
no guarantees can be given in which order or at which point
in time the threads modify the shared object and divergent
checksums may turn up across replicas. In a simple case only F
out of 2F +1 replicas exhibit a false positive at the same time.
Thus an unnecessary recovery will be initiated that affects only
performance. However, the checksums may also be different at
every replica. This would break our assumptions about faults.
In this situation it is necessary to initiate a synchronization
followed by a re-computation and exchange of all checksums
that were divergent across replicas before. If a false positive
error detection was the cause, all exchanged checksums must be
equal after synchronization and normal operation can continue.

As shown in our evaluation Section VII-B, recovery is fast in
CrossCheck and does not affect the performance significantly.
Furthermore, false positives occurred only seldom in our
example application. Nevertheless, if the false positive rate
would be high for a given use case, a lock could be added to
the affected objects thereby eliminating the race condition.

V. GENERIC OBJECT PROTECTION

We use aspect-oriented programming (AOP) [35] and
generic object protection (GOP) [34] as base technologies
for CrossCheck. This section gives a brief introduction to
both technologies.

class Foo class Bar class Baz

cross-cutting concerns 

trackingrecoverabil ity

tracking

debugging

tracking

recoverabil ity

recoverabil ity

debugging

debugging

tracking

(a) Traditional implementation

class Foo class Bar

recoverabil ity

class Baz

cross-cutting concerns 

Aspect

tracking

debugging

(b) Implementation using AOP

Fig. 5. Implementation of cross-cutting concerns

1 criticalObj.check(); //introduced by Aspect
2 criticalObj.accessMembers(); //original call
3 criticalObj.update(); //introduced by Aspect

Fig. 6. New methods are woven around every original method call

A. Aspect-Oriented Programming (AOP)

AOP is a programming paradigm that focuses on the
separation of cross-cutting concerns at the implementation
level. A cross-cutting concern is a particular feature that is
usually spread across the source code as shown in Fig. 5a. In the
presented example, three cross-cutting concerns of CrossCheck
are shown: tracking, recoverability and debugging. A traditional
implementation of these concerns would be spread over many
classes. With AOP, cross-cutting concerns can be implemented
by an aspect as depicted in Fig. 5b.

We used AspectC++ [36], an AOP extension for C++, in
the course of implementing CrossCheck. AspectC++ allows
code transformations (weaving) in classes and functions at any
point that can be described by match expressions. Thereby,
classes can be extended by new members, methods, or parent
classes. In addition, methods and functions can be extended by
new code. Furthermore AspectC++ provides a compile-time
introspection API that is comparable to the Java Reflection API
available at runtime. AspectC++ offers information on the class
hierarchy and the call graph. Together with C++ templates this
provides a very powerful tool to build generic solutions.

That way, our solution for tracking state changes and
recovery can be applied transparently to any class.



B. Generic Object Protection
GOP is an AOP-based dependability mechanism that we

exploit for tracking state changes. The main goal of GOP is
to protect critical state-objects from transient faults during
the passive state. Applying GOP only requires the developer
to specify a set of classes by a match expression, and the
resulting code transformation is automatically carried out by
the AspectC++ compiler.

For example, all classes considered as critical can be
extended by a checksum. Integrity verification is carried out
whenever a critical object (that means an object of a critical
class) is accessed through a call of its methods. As shown in
Fig. 6, new check() and update() methods are woven around
every original method call. check() validates the critical object
by comparing the introduced checksum with the object’s real
data. If both diverge an error has been detected and further
measures can be applied. In case no error is detected, the
original method call is performed. Afterwards update() is
invoked. It recomputes the critical object’s checksum and stores
it inside the object itself.

GOP is highly configurable and error detecting and also
correcting variants are available. Redundancy can be applied
in various forms of checksums as well as full-fledged object
copies. For CrossCheck we use a CRC32-based error-detecting
variant that uses hardware instructions provided by SSE 4.2.
According to Koopman et. al. [37] CRC32 achieves for
reasonable data sizes a hamming distance of at least 4. For the
simplicity we will keep using the term “checksum” for referring
to the CRC32 code, even though it is not mathematically
accurate. Recovery capabilities are not required as they are
provided by CrossCheck.

GOP performance optimizations: Several optimizations
are applied to improve performance. Typically GOP requires
two checksum computations for each access of a critical object,
one during check() and one during update(). However read-
only methods (in C++ these are qualified as const) do not
modify the object, thus the update() can be omitted for
performance reasons.

Furthermore short running methods like getters and setters
typically appear in sequences of calls. In these cases the
critical object stays only very short in the passive state while
frequent checksum computations involve high computational
overhead. An optimal solution would invoke check() at the
beginning of such call sequence and update() when the last
short method was called. The AspectC++ provides a project
model that contains information from a static control- and data-
flow analysis during compilation. This project model can used
to automatically optimize out unneeded check() and update()
operations. Further details on this topic are given in [38].

As mentioned in Section IV-A, computing the checksums
can be implemented with a wait-free synchronization algorithm
without the need for locks. Every critical object is extended
with an atomic counter that is incremented for every thread con-
currently accessing the object. Whenever check() or update()
are called, the counter has to be examined. If it is not zero,
another thread is accessing the same object concurrently, thus,
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Fig. 7. Prototype implementation

check() should be omitted. Likewise, update() should be left
out whenever the counter is not set to one. Additionally an
atomic dirty flag is needed to mark an ongoing checksum
computation. Altogether this algorithm ensures that check() is
called by the first thread entering the object and update() is
called by the last thread leaving the object. Further details on
the algorithm, including a formal model and verification are
explained in [34].

VI. IMPLEMENTATION

A. Example service: Memcached++

We implemented CrossCheck as a framework based on a
small library that is augmented by aspects. As a case study
for CrossCheck we used Memcached++ (Figure 7), a C++
version of the well-known key-value store Memcached. Since
all relevant components of Memcached++ are represented
by classes we can apply the whole spectrum of AOP as
provided by AspectC++. Memcached++ features the same
API and threading model as the original version (v 1.4.10)
of Memcached. Additionally, Memcached++ supports active
replication and deterministic execution. Both features are
required for CrossCheck.

Communication between the Memcached++ replicas is
carried out via the Spread Toolkit [25] (v 4.04). Spread provides
group communication channels with configurable guarantees. In
each replica every request is broadcasted over a totally ordered
channel to bring all incoming requests in total order. Only
requests that arrive over this channel are processed subsequently.
During the execution of requests weak determinism is enforced
by our Storyboard [13] framework.

B. State tracking

State changes are tracked during execution by GOP that is
configured with a CRC32-based error detection. We extended
the GOP implementation so that checksums are gathered in a set
of checksums for every request separately. This set represents
the state delta as detailed in Fig. 1. Additionally wildcard check-
sums are generated whenever multiple threads access the same
object concurrently. With this approach we protect the individ-
ual key-value pairs, the central hash table and a number of other
management classes. The state machine, which controls the exe-
cution, and the client connection handler on the other hand were
the most prominent parts which stayed unprotected. We have



chosen this partitioning because any error will either stop the
application or propagate to at least one of the protected objects.

C. Cross-checking state changes

State validation by CrossCheck is conducted in the last
state of execution, before reply externalization. As explained in
Section IV-B, the CrossCheck algorithm of Fig. 2 is executed at
this point in time and <CHECK> messages are broadcasted. The
<CHECK> messages do not need to be totally ordered and are
exchanged over a reliable channel. To improve performance we
send out <CHECK> in batches of 5 messages with a dedicated
thread. Since waiting for other <CHECK> messages is very
time consuming, CrossCheck stores its state and immediately
returns. This allows to continue execution by processing other
client requests. When <CHECK> messages eventually arrive, we
return to corresponding request execution, reinvoke CrossCheck
and continue with state validation.

D. Recovering from faults

For recovery, the CrossCheck library provides an API that
supports synchronization of threads, in addition to aspects
to make critical classes recoverable. Since many different
threading models are exhibited by distributed applications only
very basic operations like stopping a thread or notifications are
provided by the CrossCheck library. For the synchronization of
the worker threads in Memcached++ we create specific requests
that are dispatched deterministically to every worker on arrival
of a <RECOVER> message. These requests use the API calls
of CrossCheck to stop the workers until recovery is finished.

The recovery itself is implemented in an aspect-oriented way.
No manual changes need to be applied to the critical classes.
Fig. 8 shows a class diagram which explains the extensions we
weave into every critical class. First, we derive every critical
class from a recoverable abstract class, which declares the pack
and replace functions. This serves as a common interface for
every critical object. Then, with the help of AOP, we extend
the derived classes with a tailored implementation of these
functions. The introspection API of AspectC++ and template
meta programming together provide the necessary tools to
iterate over all class members.

Unique object ids that allow object identification across
replica boundaries are also implemented as an aspect. The
ObjectIds aspect extends the constructor of each critical class by
a getObjectId() method call. This method acquires an object
id and stores the reference to the object inside the objectIdStore.
All ids are created from an textitidGeneratorCounter that
is deterministic across replica boundaries via storyboard. To
obtain the reference of an object by its id, a getReference()
method is provided.

E. Portability

In Summary only minor changes are needed in order to use
the CrossCheck framework for any other application that fits
our requirements from Section III. The most important are
SMR that also implies determinism and a well structured C++
code basis.

<<Interface>>

Recoverable

+pack()
+replace(packedData)

Widged
{Critical Class}

<<aspect>>

Recovery

+pack()
+replace(PackedData)

<<aspect>>

ObjectIds

+getId(Reference)
+getReference(ObjectId)

-idGeneratorCounter
-objectIdStore

Fig. 8. Aspect-based class extensions for state validation and recovery

Our framework covers all necessary changes to existing
data classes via the use of AOP. With this approach marking
a class as critical is simply a matter of configuration and a
recompilation of the code. This automatically enables state
tracking and recovery capabilities. Message exchange, state
validation, and synchronization are supported in form of a small
library. It is the responsibility of the application developer to
integrate the library functions at the right positions in the
target application. As usual, this requires minor manual code
modifications. For Memcached++ this was in the range of 100
to 200 lines of code. However this effort depends highly on
the architecture of the application.

VII. EVALUATION

For the evaluation of our prototype, we set up a cluster
of three Memcached++ replicas, each configured with four
worker threads. Each replica was running on a dedicated server
machine equipped with two Intel Xeon E5645 CPUs (six cores
at 2.40 GHz) and 24 GB RAM. An identical fourth machine
was used to simulate clients. All machines were connected
with two switched gigabit ethernet networks, one dedicated for
to <CHECK> messages and the other for everything else. To
simulate clients and generate load we used the benchmark tools
Memaslap and Memslap from Libmemcached 2 (v1.0.16).

A. Overhead Analysis

To study the performance impact of CrossCheck we sim-
ulated multiple concurrent clients issuing requests with the
Memaslap benchmark tool. We conducted measurements over
2 seconds of operation and repeated these experiments 10
times. All requests were configured with a fixed key-length of
100 B and a fixed value-length of 400 B. We varied the used

2http://libmemcached.org/

TABLE IV
Memcached++ CONFIGURATION CODE

Code Meaning

R Replication enabled
D Deterministic execution enabled
G GOP enabled
X CrossCheck enabled
0 Feature disabled
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Fig. 9. Throughput of Memcached++ in different configurations

techniques and components in our Memcached++ prototype to
identify their individual overhead proportion. In all figures
the active components are identified by a code, which is
explained in Table IV. For instance, a traditional active
replication setup is represented by the RD00 configuration
that means Memcached++ is replicated and requests are
processed deterministically.

Throughput: Fig. 9 shows the average throughput for three
different workloads consisting of pure GET-requests (Fig. 9a),
pure SET-requests (Fig. 9b), and a 75:25 mix of GET- and SET-
requests (Fig. 9c). The error bars represent the 95% confidence
interval. At 100 concurrent clients, the throughput limit is
reached in all configurations of Memcached++.

For GET-requests the enforcement of determinism and GOP
involve only insignificant overhead. This can be explained by
the simple control flow of GET-requests. Only two critical
sections are passed and a minimum of 5 accesses to critical
objects is needed during GET-requests. In contrast, SET-
requests pass 7 critical sections and accesses at least 23
times a critical object. This affects the performance of all
components of Memcached++ and leads to lower throughput.
At 100 concurrent clients, determinism reduces the throughput
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Fig. 10. Latency of Memcached++ in different configurations

of SET-requests by 9%, GOP adds another 6 percentage points
and finally 11 percentage points are added by CrossCheck
alone. Compared to a traditional active replication setup that is
represented by the RD00 configuration, CrossCheck achieves
81% to 86% of the throughput.

Latency: Fig. 10 depicts the average latency together with
the 95% confidence interval for GET- and SET-requests. We
kept here the same setup as for the throughput measurements.
CrossCheck adds roughly 1 ms to the latency of requests due
to the exchange and comparison of checksums during request
processing. For SET-Requests at high access rates, GOP adds
also a significant amount of latency as it increases the execution
time of requests by multiple checksum computations. The
high latency peaks in the RDGX configuration for 10 and 20
clients are caused by message batching. If too few clients are
connected, batches don’t get filled timely and transmitted only
after a timeout that was set to 3 ms in all our experiments. With
30 clients and more this timeout was only seldom triggered.

Execution time variation: Requests in Memcached++ are
typically processed very quickly. On our machines it takes
15 us to process a GET-Request including a reply and 21 us
are needed for SET-Requests on an average. With CrossCheck
however, more than 500 us are needed to finish a request since
<CHECK> messages need to be exchanged first. As explained in
Section VI-C, other requests can be processed while waiting for
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plain active replication (RD00) for a variation of request execution times

<CHECK> messages. Judging by the execution times of requests,
25-35 requests need to be processed in parallel per worker
thread to hide the effect of the <CHECK> messages. However,
our system is not capable to serve this high concurrent rate of
requests without a performance drop due to the overhead that
is added by the total ordering of requests. To investigate the
performance of CrossCheck when requests would require more
processing time, we added artificial overhead into the execution
of requests. For this we used the RDTSC instruction [39] in
conjunction with an empty loop.

For the measurement campaign we used again the same setup
as for the throughput measurement but with a fixed amount
of 50 clients. The results of this experiment are presented in
Fig. 11 as throughput normalized to the RD00 configuration.
Although not linear, a trend can be seen for more complex
requests having lower throughput penalty with a minimum of
93% reached at approximately 111 us of total execution time. It
should be noted, that by increasing the request execution time
by only 10 us (to a total of 31 us on an average) the relative
throughput penalty is reduced by 5 percentage points to a total
of 88%. We think services like databases, that exhibit longer
request execution times, could be very efficiently hardened by
CrossCheck.

B. Overhead of Recovery

Recovery influence on throughput: In order to analyze
the overhead introduced by our recovery mechanism, we used
the benchmark tool Memslap and set it up with 100 clients,

each issuing 100 SET-requests. Every 2 ms we collected the
amount of finished requests and computed the throughput. After
counting 5000 requests inside Memcached++ we injected a
fault in one replica by altering one byte in the request string.
This fault propagated to an item object that is the biggest object
in our system and eventually caused a recovery of 512 bytes
of data. The results of this experiment are shown in Fig. 12.
After the fault injection, that is represented as a black spike
in the figure, the throughput drops not immediately as we
continue execution until all replicas are synchronized. During
synchronization we also need to wait until all requests are fully
validated by CrossCheck and the repair package is transmitted.
The throughput gap, that is approximately 10 ms long in this
case, is mainly caused by this validation because we have to
wait for the slowest replica. This time is highly influenced by
the batch transmission timeout that is always triggered during
synchronization. After recovery is finished we see a throughput
peek since new requests are accepted during recovery and
can be immediately processed afterwards. This mitigates the
throughput drop during the whole recovery procedure.

Recovery influence on throughput: As mentioned in
Section IV-D we cannot prevent false error detections. Although
we did not see any false positives during our evaluation, we
cannot claim that this may be always the case. To study the
throughput impact of unnecessary recoveries we periodically
injected faults into the request string after every 5000 requests.
We think this is a highly overestimated value that leads
to roughly 4 recoveries per second. Like in the previous
experiment, every injected fault propagated to an item object.
For comparability, we used the same setup as during our
throughput measurement in the previous Section VII-A but kept
the number of clients fixed at 100. With multiple recoveries the
throughput is not much affected and remains at 96% of the fault
free case. In summary 86 recoveries were conducted over the
course of all 10 experiment runs. On an average 6.4 ms were
needed to finish the synchronization while 2.6 ms were needed
for packet transmission and the replacement of corrupted data.
Altogether the the mean time to complete a recovery was 9 ms

VIII. CONCLUSIONS

We presented CrossCheck, an approach to harden multi-
threaded services against arbitrary state corruptions and crash-



stop failure. This is achieved by selectively protecting critical
data objects using an AOP-based generic object protection
combined with SMR replication and providing a fine-grained
object-level recovery support. Our evaluation based on a
multithreaded key-value store shows that CrossCheck can reach
86% performance of a classical SMR-based replication, which
only tolerates crash stop faults.
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