
Crosscheck:
Hardening replicated multithreaded services

Arthur Martens
TU Braunschweig

Daniel Lohmann
FAU Erlangen-Nürnberg

Christoph Borchert
TU Dortmund

Olaf Spinczyk
TU Dortmund

Tobias Oliver Geißler
TU Braunschweig

Rüdiger Kapitza
TU Braunschweig

Abstract—State-machine replication has received widespread
attention for the provisioning of highly available services in data
centers. However, current production systems focus on tolerating
crash faults only and prominent service outages caused by state
corruptions have indicated that this is a risky strategy. In the
future, state corruptions due to transient faults (such as bit
flips) become even more likely, caused by ongoing hardware
trends regarding the shrinking of structure sizes and reduction
of operating voltages.

In this paper we present CROSSCHECK, an approach to
tolerate arbitrary state corruption (ASC) in the context of fault-
tolerant replication of multithreaded services. CROSSCHECK is
able to detect silent data corruptions ahead of execution, and
by crosschecking state changes with co-executing replicas, even
ASCs can be detected. Finally, fault tolerance is achieved by a fine-
grained recovery using fault-free replicas. Our implementation is
transparent to the application by utilizing fine-grained software-
hardening mechanisms using aspect-oriented programming. To
validate CROSSCHECK we present a replicated multithreaded
key-value store that is resilient to state corruptions.

I. INTRODUCTION

State-machine replication (SMR) is an established means
for implementing highly available services in data centers.
Prominent examples are coordination services [1], highly
available data storage [2], but also wide-area replication of
databases [3]. Existing production systems are usually limited in
that they tolerate only faults that lead to crash faults. Prominent
service outages due to state inconsistencies1 causing faulty
service behavior as well as recent studies [4], [5] indicate that
state corruptions need to be addressed for providing highly
available services. The latter gains even more importance given
that future hardware will be even less reliable due to the
shrinking structure sizes, increased clock frequencies, and
reduced operating voltages [6].

One way to cope with these problems is tolerating arbitrary
faults by means of Byzantine fault tolerance (BFT) [7].
However, despite recent research progress, BFT is more
complex and resource demanding than plain crash-tolerant
replication schemes and goes far beyond tolerating arbitrary
state corruptions [8], [9], [10]. To provide a tailored solution
there is a trend to make crash-tolerant systems resilient to
state corruptions [11], [12]. In production systems, this is

1http://status.aws.amazon.com/s3-20080720.html

usually handled in an ad-hoc manner by manually introducing
checksums for guarding critical data. However, this is a
laborious task and incidences, like the Amazon S3 outage
in 2007, indicate that in some cases important data has not
been protected against state corruptions. Recently, Correia et.
al. [11] proposed to cure such problems by extending replicas
using mechanisms that contain and detect errors locally by
checksums and redundant execution. A successive work by
Behrens et. al. [12] focuses on reducing the memory overhead
of the previous approach, but still relies on double execution
per replica. Both works are not strictly tied to state-machine
replication. Therefore, they do not exploit the full potential of
co-executing replicas.

This paper presents CROSSCHECK, an approach that hard-
ens state-machine replication against ASCs and explicitly
handles replicated multithreaded services, thereby enabling
the implementation of resilient highly available services for
data centers. Our approach is transparent to the replicated
service by utilizing aspect-oriented programming [13] and
is specifically tailored to state-machine replication. Ahead
of executing, CROSSCHECK detects silent data corruption
(SDC) by introducing checksums into data structures, that is,
objects in the terminology of object-oriented programming.
However, this only protects objects in memory and fails
guarding objects during modification. But, if deterministic
execution is enforced, the generated checksums can be exploited
to crosscheck state changes with co-executing replicas. Due to
these measures and periodic self-checks, ASCs are detected
in an early stage, thereby preventing corruptions to spread
throughout a service, which reduces the risk of failed replicas.
In case of detected state corruptions, the effected state can be
efficiently recovered from fault-free replicas at the granularity
of objects. Finally, CROSSCHECK makes use of STORYBOARD
[14], an infrastructure that enforces deterministic execution in
multithreaded environments based on the concept of schedule
memorization. For validating CROSSCHECK, we present an
early prototype of a replicated multithreaded key-value store
based on a C++ version of memcached that is resilient to
ASC. This was achieved by an automated application of object
checksums using the AspectC++ compiler [15] and a request-
centric memorization of critical sections using STORYBOARD.
Our results indicate that memory-intensive applications, such

http://status.aws.amazon.com/s3-20080720.html

as a key-value store, can efficiently be hardened.
In the remainder of the paper, we first define a system

model in Section II. Next, we present the core concept
of CROSSCHECK followed by a description of our current
prototype in Section IV. Finally, Section VI details related
approaches and Section VII concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

CROSSCHECK aims at harding multithreaded services against
arbitrary state corruptions. To apply CROSSCHECK, we require
that the in-memory service state is composed of objects, which
we denote as state objects. During the execution of a request,
commands may perform any kind of access (i.e., read, write,
create, and delete) to an arbitrary number of state objects. Such
a structure is commonly provided when an object-oriented
programming language is used.

To address multi-core hardware and recent service im-
plementations, we assume a multithreaded service design
where multiple requests can be executed concurrently. Access
to critical data sections is guarded by atomic locks (i.e.,
mutex locks). As a consequence, without further measures,
the execution order of multiple requests is non-deterministic
in commodity systems, as the order depends on the internal
scheduling policy that is influenced by the workload at time
of execution. Information is exchanged via message passing,
which may fail completely, corrupt or delay messages. Also,
messages sent may arrive in a different order.

To tolerate faults, such as node crashes, CROSSCHECK
utilizes state-machine replication (SMR) [16]. Thereby, liveness
is ensured while tolerating f crash faults with 2f+1 replicated
instances. Given the same ordered set of requests and the same
initial state, replicas execute the requests in the same order,
transfer into the same state, and externalize the same output.

To implement the requirements of SMR, we need to enforce
total ordering of messages and a deterministic execution of
the service replicas. The former is achieved by an agreement
protocol (e.g., Paxos [17]) or group communication framework
(e.g., Spread [18]) supporting total ordering of messages. The
latter requires deterministic execution of threads. In the case
of CROSSCHECK this is achieved by applying STORYBOARD
that follows the idea of scheduling memorization.

Beside node crashes, CROSSCHECK tolerates state corrup-
tions, which can lead to externalization of faulty results and
control-flow corruption altering the behavior of the service.
In line with previous work, we do not expect this to happen
arbitrarily often [11], that is, at most f out 2f +1 replicas can
be faulty at the same time. Thereby, we make no assumptions
on the number of state object that can be corrupted. A node
crash represents a special case, where all state objects of the
crashed machine are considered as faulty. As CROSSCHECK
provides means to recover state objects from fault-free replicas,
an arbitrary number of state corruptions can be tolerated over
time.

In accordance to current best practice, we require all data
that is exchanged via messages between replicas and clients to

be protected by checksums as well, to detect corrupt messages
and enforce a retransmit.

Furthermore, ASC may also affect the underlying operating
system and the ordering of messages itself (i.e., the agreement
protocol). As both components are not directly protected by
CROSSCHECK, we assume additional hardening measures for
them [19].

III. THE CROSSCHECK APPROACH

Our approach can be split into three tasks: First, CROSS-
CHECK enables the detection of data corruptions as service
state is accessed. Second, CROSSCHECK is able to track state
changes during request execution by means of checksums,
thereby enabling efficient crosschecking amongst co-executing
replicas. Third, corrupted state objects can be recovered from
the remaining fault-free replicas.

A. Detecting silent data corruptions

As described above, we assume that all in-memory service
state that needs to be protected from data corruptions is captured
by state objects. Robustness against data corruptions is achieved
by generic object protection (GOP) [20], which is an automated,
compiler-based approach using aspect-oriented programming
(AOP). With AOP it is possible to augment the code of an
existing program by giving advice to a pointcut, which defines
specific positions in the static structure (classes) and running
control flow (execution of methods). The combination of
advice and pointcut builds an aspect, which, thus, concentrates
functionality in a single module that otherwise would be
scattered and possibly duplicated across multiple locations.

In case of CROSSCHECK, all relevant service classes are
automatically extended by additional data members that store
redundancy. Furthermore, member functions (methods) that
compute (update()) and verify (check()) the redundancy are
introduced. Whenever a call to any original method of a state
object is performed, it is modified by the aspect compiler, as
depicted in the following listing:

1 s t a t e O b j . check () ;
2 s t a t e O b j . accessMembers () ; / / o r i g i n a l c a l l
3 s t a t e O b j . u p d a t e () ;

The method check() is called before the original method call
is executed. It validates the state object by comparing the
introduced redundancy with the object’s real data. If both
diverge an SDC has been detected and the affected state
object needs to be recovered (see Section III-C). In case no
error is detected, the original call to the method is performed.
Afterwards update() is invoked, which recomputes the state
object’s redundancy and stores it inside the object itself. On a
read-only access (a call to a C++ method qualified as const), the
update() operation is omitted for performance and reliability
reasons. Likewise, the check() operation may be omitted for
write-only access. However, the developer needs to provide a
specific pointcut that describes all write-only methods.

The generic object protection offers to choose from various
levels of redundancy, such as an error-detecting checksum or
CRC32 code, full object duplication for instant error correction,

and other mechanisms. In this paper, we apply an error-
detecting CRC32 code, implemented by the SSE 4.2 instruction
set provided by recent x86 processors. However, small state
objects can be additionally duplicated without incurring serious
memory overhead. We will use the term “checksum” in
an exchangeable way for describing the CRC32 code – in
conformity with the common use of the term “checksum” – even
if not mathematically accurate.

The recent version of the generic object protection supports
non-blocking synchronization on checksum operations, that is,
no additional locks are needed for multithreaded applications.

B. Crosscheck state changes

Using the aforementioned generic object protection, SDCs
can efficiently be detected ahead of execution and, depending
on the severeness, immediately resolved (see Figure 1 1).
However, this does not protect the service state against
corruptions that take place during execution 2 and, even
more problematic, faults during this phase remain undetected.
To address this issue we crosscheck state changes with co-
executing replicas. As part of the SDC detection, each time
a state object is modified, its checksum is updated. These
updates incorporate all state changes caused by a request and
can be exploited to validate execution and control flow.

Replica R0

Object

Objectobject

check

update

ch
ec

ks
u

m
 c

o
lle

ct
io

n

add

object

update add

access object

check
recover

Replica R1

Object

Objectobject

check

update

ch
ec

ks
u

m
 c

o
lle

ct
io

n

add

object

update add

access object

check

Replica R2

Object

Objectobject

check

update

ch
ec

ks
u

m
 c

o
lle

ct
io

n

add

object

update add

access object

check

CROSSCHECK

1

2

Fig. 1. CROSSCHECK approach

As depicted in Figure 1, each time we update the checksum
during the execution of a request, this checksum Ci is added
to a checksum collection (CC) together with a unique object
id, i ∈ I = {1 . . . n} that is equal across all replicas for the
corresponding object. This id fits two purposes: First, we can
efficiently compare objects across replica boundaries. Second, it
enables us to detect control-flow changes as divergent execution
flows result in a different sequence of checksums or divergent
checksum collections. We also add a reference to the state
object exhibiting the checksum and store it in the CC. In case
of recovery this enables the identification of corrupted state
objects (see Section III-C).

After executing the request, all replicas perform a state
validation as shown in Figure 2. Initially all replicas broadcast
their checksum collection CC, together with a potential client
reply message RM and its checksum RC as <CHECK, CC,
RM , RC> to the other replicas. As state object references are

1 s t a t e V a l i d a t i o n (){
2 b r o a d c a s t (<CHECK, CC,RM, RC>);
3 whi le (quorum < QUORUM NEEDED) {
4 chk= rece iveCheckMsg () ;
5 / / compare t o own :
6 i f (v r f y L o c a l ({ chk . CC, chk . RC}))
7 quorum ++;
8 e l s e
9 o r d e r e d B r o a d c a s t (<RECOVER>);

10 / / compare t o o t h e r s :
11 f o r e a c h (msgSet . e l e m e n t s ()) {
12 i f (v r fyMsgSe t ({ chk . CC, chk . RC}))
13 quorum ++;
14 e l s e
15 o r d e r e d B r o a d c a s t (<RECOVER>);
16 }
17 msgSet . add (chk) ;
18 }
19 i f (i s C l i e n t C o n n e c t e d == t rue)
20 e x t e r n a l i z e (<REPLY , RMu , RCv >);
21 }

Fig. 2. CROSSCHECK state validation algorithm

only valid at the origin, these are excluded from the <CHECK>
message.

On each receipt of a <CHECK> message, a replica calls
vrfyLocal() to verify its checksums (all Ci in CC and RC)
and the modified state object ids by comparison with the
received data from the remote replica (Line 6). Additionally, all
received messages are compared to each other by vrfyMsgSet()
(Line 12). Whenever an error is detected (Line 9 and 15), a
<RECOVER> request is send via the ordering stage. This
is required for recovery and causes all replicas eventually to
enter a quiescent state by finishing all running executions.
Meanwhile, error detection proceeds until a quorum of f+1
matching checksums is gathered.

At this point we are able to distinguish the corrupted from the
correct-working replicas and the affected state objects which
are added to a list for later recovery. Since the reply messages
RM are also exchanged, the replica responsible for the client
connection may externalize a correct reply to the client even
in the presence of a fault. As additional faults may occur
during reply to the client, the <REPLY, RMu, RCv> may
contain RMu and RCv from any validated replica u and v.
This procedure is also described in [11] and enables client-side
error detection (if supported).

C. Recovering from faults

As outlined in our system model (see Section II), we consider
state corruptions of one or multiple state objects in f replicas.
This leaves a pool of f+1 fault-free replicas which can be used
for recovery. State corruptions are either detected ahead of state
object access (see Section III-A), or as part of crosschecking
the execution (see Section III-B). In the latter case, control-
flow errors are also detected beside plain state corruptions. In
the most simple case, recovery from state corruptions that are
detected ahead of access can be handled by the generic object
protection, if object state duplication has been applied.

In the absence of a local object-state copy, the affected
state object has to be requested from any fault-free replica.
However, since the remaining fault-free replicas might already
have successfully passed and modified their fault-free copy
of the affected state object, there is no state object version
available that enables the direct replacement and continuation
of the effected request execution at the faulty replica. The same
problems arise if both state corruptions and control-flow errors
are detected during the crosscheck phase.

Therefore, we use a synchronization model where the
remaining fault-free replicas finish the execution of ongoing
requests to provide updates for the faulty replica. In a naive
implementation we would simply compare all state object
checksums and replace faulty ones, however, this would be
time consuming. To minimize the overhead, we focus on the
deltas between the co-executing replicas that are determined
by their recent execution history.

If a state corruption is detected, we proceed as follows: First,
all replicas need to reach a quiescent state. Therefore, once a
fault is detected, a <RECOVER> request is distributed via
the ordering stage to all replicas ensuring that running request
executions are finished and no new executions are started.
More specifically, all requests that have been distributed via the
ordering stage before the <RECOVER> request are finished
by the fault-free replicas. After this point, all of them are in a
consistent state. The faulty replica finishes all already executing
requests and aborts request execution in case of detecting a
corrupted object. The latter prevents control-flow errors and
contains the state corruption. Next, the faulty replica transmits a
list of all state-object checksums that have been changed during
or after the detection of the state corruption. This explicitly
includes requests that were executed concurrently to the fault-
detecting or faulty request. Once the fault-free replicas receive
the list of checksums, they build their own list and compile
a state delta. This state delta consists of state objects with
diverging checksums, state objects that are locally changed
due to request execution but not at the faulty replica, and state
objects that changed at the faulty replica but not locally. The
latter group is caused by control-flow errors. The state delta
is then transmitted to the faulty replica, which in turn uses
the first complete incoming data set to update its local state.
All requests that are not finished before recovery need to be
discarded by the faulty replica, since the state (delta) update
already covers those requests. However, if the faulty replica
is responsible for any client connection, it must externalize
the reply to the client. Therefore, the state-delta transfer also
includes the reply messages.

After finishing recovery, the repaired replica broadcasts a
<CONTINUE> message via the ordering stage. Once received
by any replica, normal operation can be safely continued.

IV. IMPLEMENTATION

As a case study, we implemented our approach in an actively
replicated key-value store based on MEMCACHED++ (Figure 3),
a C++ version of memcached. In case of MEMCACHED++, all
relevant components of memcached are represented by classes

Replica RiReplica R0

Ordering

Executio
n

<REQUEST>

<REPLY>

Connect

Dispatch

CROSSCHECK

Dispatch

Externalize

Ordering

Executio
n

Dispatch

CROSSCHECK

Dispatch

Client

<CHECK>

first

last

STATE STATE

first

last

SPREAD
<MSG>

Fig. 3. Prototype implementation

that can be individually hardened by applying GOP. These
components include a central hash table that manages all key-
value pairs, the individual key-value pairs, and a number of
management classes.

Such a replicated key-value store can be used to provide
a highly available source for data exchange (e.g., configu-
ration information) in distributed applications and could be
extended to offer coordination support similar to Chubby [1]
and Zookeeper [21]. MEMCACHED++ offers an object-oriented
design and features the same API and threading model as the
original version of memcached.

As described by the system model, we need to enforce an
ordered execution of requests. We achieve this by the integration
of ordering support into MEMCACHED++: On receipt of a client
request, a replica parses the request and broadcasts a client
request <MSG, threadID, operation, key, value> to all replicas
(including itself) via the Spread Toolkit [18]. Spread provides a
reliable group communication channel and brings all requests
in one defined order. After receiving <MSG>, each replica
registers the new request to Storyboard [14], which creates
a lock-order prediction and ensures deterministic execution.
Afterwards, all replicas execute the request in a multi-threaded
– but controlled – way.

Before externalizing the reply, we perform the crosscheck
by exchanging <CHECK> between the replicas and validating
its content (see Section III-B). While waiting for <CHECK>
messages to arrive, we continue execution by processing further
client requests. Upon arrival of <CHECK>, we validate local
results, and in the fault free case, forward them to the respective
clients.

V. PRELIMINARY RESULTS

As part of our preliminary evaluation, we were interested in
the overhead introduced by hardening a multithreaded key-value
store via CROSSCHECK. Thereby, we measured the overhead of
applying GOP to individual classes, and also when hardening
all relevant classes.

For our evaluation, we used MEMCACHED++ that is orig-
inally based on version 1.4.10 of memcached. For ordering
requests, we utilized the most recent version of the Spread
toolkit (v. 4.3.0). To simulate clients, we selected the memslap
benchmark, which is a part of libmemcached.

Class Description
Assoc Hashtable
Item Key-value container
Items Management of items and statistics
Slab Container for pre-allocated memory
Slabs Management of Slab instances

Fig. 4. GOP-hardened classes

All evaluations were performed on a cluster of four machines
with each a Core i7-3770 CPU (4 Cores at 3,4 GHz, supporting
8 parallel threads), equipped with 16 GB RAM and connected
over a switched gigabit network. Three machines were used for
hosting replicas, whereas the fourth machine was responsible
for generating client requests.

We selected a write-intensive workload where each client
performs 10.000 set requests with a key length of 100 B and a
value length of 400 B. To enable concurrent execution, each
MEMCACHED++ instance used four worker threads for handling
requests. As can be seen in Figure 5, we constantly increased
the workload by simulating more clients. The baseline of
our measurement builds a plain replicated version of MEM-
CACHED++ without generic object protection. Furthermore,
we individually hardened five classes (see Figure 4) with a
CRC32 error detection code. In Figure 5(b), we also evaluated
GOP with object state copy, thereby enabling a local recovery
from state corruption that are detected ahead of execution.

As can be seen in both figures the overhead for the individual
classes varies significantly between 2% and 23%. The reasons
are twofold: The overhead greatly depends on the state objects
size of protected data as well as on the access pattern for the
individual object. For Items and Item both issues apply. The
size of these objects ranges from 300 B (Items) to 712 B (Item).
Furthermore, for each request one object of both classes is
checksummed around 40 to 80 times per request. However,
objects of type Assoc and Slab are much smaller and accessed
only a few times, hence they introduce only little overhead of
2% to 10% decrease in performance.

For the protection of all five classes the overhead sums up to
a performance decrease of 30% for 256 clients. The addition
of a local object state copy reduces the performance by another
9%, resulting in a 39% performance reduction.

However, these results can be optimized by further tailoring
GOP to fit the demands of CROSSCHECK. So far, each time
objects are accessed, at least one checksum is generated. In
case of Items and Item this leads to a significant overhead.
However, during the crosscheck, we only compare the most
recent generated checksums. Hence, instead of generating a
checksum, we could simply log (e.g. by using a dirty bit) if an
object is accessed. Then at the end of executing a request, but
before initiating the actual crosscheck, we generate checksums
for all logged objects. This way only one checksum is generated
for each object per request.

Unfortunately this approach would reduce our error
detection capabilities ahead of execution. To mitigate this
each class could be individually protected by the GOP. For
example, Assoc and Slab could be protected by CRC32 error

0

10

20

30

40

50

60

32 64 128 256

K
 R

EQ
U

ES
TS

 /
 S

EC

CLIENTS

Baseline Slabs Slab Items Assoc Item All

(a) Without local object state copy

0

10

20

30

40

50

60

32 64 128 256

K
 R

EQ
U

ES
TS

 /
 S

EC

CLIENTS

Baseline Slabs Slab Items Assoc Item All

(b) With local object state copy

Fig. 5. Overhead of generic object protection

detection code plus local copy while Items and Item could be
protected with the optimization described above. With these
optimizations we expect to decrease the overall performance
overhead far below the current level.

VI. RELATED WORK

Utilizing checksums to compare and synchronize replicas
in distributed system has been proposed in multiple contexts,
however support is usually either limited to persistent state [22],
[23] or does not consider state corruptions [24]. CROSSCHECK
focuses on hardening and recovering the in-memory state of
replicated services.

Correia et. al. [11] proposed an approach for hardening
distributed applications against arbitrary state corruptions by
means of redundant execution at the granularity of requests
inside of a single node. This way, state corruptions can be
contained at the node level and masked as crash faults. While
being effective for hardening distributed applications, this
approach demands a certain application structure to access
application state and effectively doubles memory and CPU
demand.

The approach of Behrens et. al. [12] can be seen as a
refinement of [11]. It explicitly addresses the memory overhead
by saving checksums of an initial execution instead of a full
state copy. Furthermore, data access is intercepted and checked
via checksums at the level of memory pages. Behrens et. al.
[25] also propose the use of encoded processing via AN-coding.
Amongst other things this offers fine-grained control-flow
checks but comes attached with an computational overhead

of factor five. In comparison to the aforementioned systems,
CROSSCHECK achieves a similar fault-tolerance level, but
requires only moderate additional resources due to its tight
integration with SMR.

Furthermore, there is only limited work that considers faults
beyond crashes, and, at the same instance, allows multithreaded
execution. Instead of enforcing determinism, Kapritsos et al.
[26] cleverly batches requests to minimize concurrent access
to state objects. During parallel execution, if the replicas don’t
reach a consistent state, a revert with sequential re-execution
is performed. This introduces a significant overhead when
state object access is shared by many requests as is the case
for management objects in our prototype. Same issues apply
to Kotla et al. [27] who enables the concurrent execution of
requests if they do not change shared state. This essentially
leaves the middle ground where services can freely utilize
threads but determinism is pro-actively persevered.

VII. CONCLUSIONS

CROSSCHECK builds an approach to tolerate arbitrary state
corruptions for implementing highly available multithreaded
services for data centers. The use of generic object protection
enables CROSSCHECK to harden state objects in a generic
and flexible kind of fashion. Our initial evaluation based on
key-value store showed an overhead of 2% to 23% for the
different protected classes. Our next steps are performance
optimization, support for efficient recovery, and performing a
fault-injection campaign to assess the achieved error coverage.

REFERENCES

[1] M. Burrows, “The chubby lock service for loosely-coupled dist. sys-
tems,” in Proc. of the 7th Symp. on Operating Systems Design and
Implementation, 2006, pp. 335–350.

[2] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li,
“Paxos replicated state machines as the basis of a high-performance data
store,” in Proc. of the 8th USENIX Conf. on Networked Systems Design
and Implementation, 2011.

[3] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete, “Mdcc:
Multi-data center consistency,” in Proc. of the 8th ACM European Conf.
on Comp. Systems, 2013, pp. 113–126.

[4] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t
strike twice: Understanding the nature of dram errors and the implications
for system design,” SIGARCH Comp. Architecture News, vol. 40, no. 1,
pp. 111–122, 2012.

[5] V. Sridharan and D. Liberty, “A study of dram failures in the field,” in
Proc. of High Performance Computing, Networking, Storage and Analysis
(SC), 2012, pp. 1–11.

[6] S. Y. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[7] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems, vol. 20,
no. 4, pp. 398–461, 2002.

[8] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating agreement from execution for Byzantine fault tolerant
services,” in Proc. of the 19th Symp. on Operating Systems Principles,
2003, pp. 253–267.

[9] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verı́ssimo,
“Efficient Byzantine fault tolerance,” IEEE Transactions on Computers,
2011.

[10] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet, “ZZ
and the art of practical BFT execution,” in Proc. of the 6th EuroSys
Conf., 2011, pp. 123–138.

[11] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini, “Practical
hardening of crash-tolerant systems,” in Proc. of the 2012 USENIX
Annual Technical Conf., vol. 12, 2012.

[12] D. Behrens, C. Fetzer, F. P. Junqueira, and M. Serafini, “Towards
transparent hardening of distributed systems,” in Proc. of the 9th Work.
on Hot Topics in Dependable Systems, 2013, pp. 4:1–4:6.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proc. of the
Eleventh European Conf. on Object-Oriented Programming, 1997, pp.
220–242.

[14] R. Kapitza, M. Schunter, C. Cachin, K. Stengel, and T. Distler,
“Storyboard: optimistic deterministic multithreading,” in Proc. of the
6th Int. Work. on Hot Topics in System Dependability, 2010.

[15] O. Spinczyk and D. Lohmann, “The design and implementation of
AspectC++,” Knowledge-Based Systems, Special Issue on Techniques to
Produce Intelligent Secure Software, vol. 20, no. 7, pp. 636–651, 2007.

[16] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comp. Survey, vol. 22, no. 4, pp.
299–319, 1990.

[17] L. Lamport, “The part-time parliament,” ACM Transaction Computer
Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[18] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J. Stanton, “The
spread toolkit: Architecture and performance,” Johns Hopkins University,
Center for Networking and Dist. Systems (CNDS) Technical report CNDS-
2004-1, 2004.

[19] M. Hoffmann, C. Borchert, C. Dietrich, H. Schirmeier, R. Kapitza,
O. Spinczyk, and D. Lohmann, “Effectiveness of Fault Detection
Mechanisms in Static and Dynamic Operating System Designs,” in
Proc. of the 17th IEEE Int. Symp. on Object-Oriented Real-Time Dist.
Comp., 2014.

[20] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generative software-
based memory error detection and correction for operating system
data structures,” in Proc. of the 43rd Annual IEEE/IFIP Int. Conf. on
Dependable Systems and Networks, 2013, pp. 1–12.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for Internet-scale systems,” in Proc. of the 2010 USENIX
Annual Technical Conf., 2010, pp. 145–158.

[22] A. Tridgell and P. Mackerras, “The rsync algorithm,” 1996.
[23] M. Castro, R. Rodrigues, and B. Liskov, “Base: Using abstraction to

improve fault tolerance,” ACM Transaction Computer Systems, vol. 21,
no. 3, pp. 236–269, Aug. 2003.

[24] R. Kapitza, T. Zeman, F. J. Hauck, and H. P. Reiser, “Parallel State
Transfer in Object Replication Systems,” in Distributed Applications and
Interoperable Systems, vol. 4531, 2007, pp. 167–180.

[25] D. Behrens, S. Weigert, and C. Fetzer, “Automatically tolerating arbitrary
faults in non-malicious settings,” in Proc. of 6th Latin-American Symp.
on Dependable Comp., 2013, pp. 114–123.

[26] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin,
“All about eve: Execute-verify replication for multi-core servers,” in
Proc. of the 10th USENIX Conf. on Operating Systems Design and
Implementation, 2012, pp. 237–250.

[27] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,”
in Proc. of the 2004 Int. Conf. on Dependable Systems and Networks,
2004, pp. 575–.

