
Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring

Anil Kurmus1, Reinhard Tartler2,
Daniela Dorneanu1, Bernhard Heinloth2, Valentin Rothberg2, Andreas Ruprecht2,

Wolfgang Schröder-Preikschat2, Daniel Lohmann2, and Rüdiger Kapitza3

1IBM Research - Zurich
2Friedrich-Alexander University Erlangen-Nürnberg

3TU Braunschweig

Abstract

The economy of mechanism security principle states
that program design should be kept as small and simple as
possible. In practice, this principle is often disregarded to
maximize user satisfaction, resulting in systems supporting
a vast number of features by default, which in turn offers
attackers a large code base to exploit. The Linux kernel
exemplifies this problem: distributors include a large num-
ber of features, such as support for exotic filesystems and
socket types, and attackers often take advantage of those.

A simple approach to produce a smaller kernel is to
manually configure a tailored Linux kernel. However, the
more than 11,000 configuration options available in recent
Linux versions make this a time-consuming and non-trivial
task. We design and implement an automated approach
to produce a kernel configuration that is adapted to a
particular workload and hardware, and present an attack
surface evaluation framework for evaluating security im-
provements for the different kernels obtained. Our results
show that, for real-world server use cases, the attack
surface reduction obtained by tailoring the kernel ranges
from about 50% to 85%. Therefore, kernel tailoring is an
attractive approach to improve the security of the Linux
kernel in practice.

I. Introduction

The Linux kernel is a commonly attacked target. In
2011 alone, 148 Common Vulnerabilities and Exposures
(CVE)1 entries for Linux have been reported, and this

1http://cve.mitre.org/

number is expected to grow every year. This is a se-
rious problem for system administrators who rely on a
distribution-maintained kernel for the daily operation of
their systems. On the Linux distributor side, kernel main-
tainers can make only very few assumptions on the kernel
configuration for their users: Without a specific use case,
the only option is to enable every available configuration
option to maximize the functionality. The ever-growing
kernel code size, caused by the addition of new features,
such as drivers and file systems, at an increasing pace,
indicates that the Linux kernel will be subject to ever more
vulnerabilities.

In addition, as a consequence of the development,
testing, and patching process of large software projects,
the less a functionality is used, the more likely it is to
contain defects. Indeed, developers mostly focus on fixing
issues that are reported by their user base. As rarely used
functionalities only account for reliability issues in a small
portion of the user base, this process greatly improves
the overall reliability of the software. However, malicious
attackers can, and do, still target vulnerabilities in those
less-often-used functionalities. A recent example from the
Linux kernel is an arbitrary kernel memory read and write
vulnerability in the reliable datagram sockets (RDS) (CVE-
2010-3904), a rarely used socket type.

If the intended use of a system is known at kernel
compilation time, an effective approach to reduce the
kernel’s attack surface is to configure the kernel to not
include unneeded functionality. However, finding a suitable
configuration requires extensive technical expertise about
currently more than 11,000 Linux configuration options,
and needs to be repeated at each kernel update. There-
fore, maintaining such a custom-configured kernel entails
considerable maintenance and engineering costs.

http://cve.mitre.org/

Moreover, while it is widely accepted that making pro-
grams “smaller” improves security, quantitatively measur-
ing security improvements remains a difficult and impor-
tant problem [49]. Existing work on system security often
measures improvements in terms of Trusted Computing
Base (TCB) reduction, which in practice often translates
into a measurement of the total number of source lines of
code (SLOC) (e.g., [19, 34]). Although these metrics are
sensible (as every line of code can have a vulnerability)
and easy to obtain, they can be imprecise. For instance,
on a given kernel configuration, a large part of the kernel
sources will not be compiled, many parts will only be
compiled as kernel modules which might never be loaded,
and some functions might simply not be within reach of
an attacker.

This paper presents metrics for quantifying the security
of an OS kernel and a tool-assisted approach to automat-
ically determine a kernel configuration that enables only
kernel functionalities that are actually necessary in a given
scenario. Although it is easy to quantify the size of the
resulting kernel binaries, this is not convincing evidence
that the resulting kernel indeed presents less of an attack
surface to potential attackers. Hence, after defining what
attack surface means, we quantify the security gains in
two distinct security models in terms of attack surface
reduction. The first security model considers that the entire
kernel can be subject to attacks and is therefore a good
reference for comparison to previous work, whereas the
second considers the scenario of a restricted attacker, and is
a good reference for evaluating the security improvements
of configuration tailoring in the context of unprivileged
local attackers. Our measurements take into account the
static call graph of the kernel and the possible entry points
of the attacker to provide a more accurate comparison.

Our automated kernel-tailoring approach builds on our
previous work [51], and extends it with multiple improve-
ments, including loadable kernel module (LKM) support.
When compared to other hardening solutions, a notable
advantage of the kernel-configuration tailoring approach is
that it makes no changes to the source code of the kernel:
therefore, it is impossible to introduce new defects into the
kernel source. This approach uses run-time traces as input
for deducing a suitable kernel configuration, and we show
it to work equally well in different use cases. We detail
the use our tool to tailor a “Linux, Apache, MySQL and
PHP (LAMP) stack” kernel on server hardware, as well as
a network file system (NFS) running on a workstation. We
obtain comparative measurements of the tailored kernels
that show that configuration-tailoring incurs no overhead
and no stability issues, while greatly reducing the attack
surface in both security models.

The major contributions of this paper are:

• A definition of an attack surface and an attack-surface

metric based on static call graphs and security models;
examples of metrics satisfying this definition, and a
comparison of the effects of these choices on our
measurements.

• A tool that, given the kernel sources and run-time
traces characterizing a use case, produces a small ker-
nel configuration, taking into account LKMs, which
includes all kernel functionalities necessary for the
workload.

• An evaluation of the attack surface reduction as well
as performance results in the case of a LAMP-based
server and a workstation providing access to files via
NFS.

The remainder of this paper is structured as follows:
Section II defines the notions of attack surface and attack
surface measurement, as well as a set of attack surface
metrics that can be used in practice for our evaluation. Sec-
tion III presents an overview of the tailoring process, and
the implementation of the underlying automated kernel-
configuration-tailoring tool. Section IV evaluates the attack
surface reduction and performance of such an approach in
two use cases and with several attack surface reduction
metrics. These results are then discussed in Section V.
Section VI presents related work. The paper concludes in
Section VII.

II. Security Metrics

In this section, we present two distinct security models,
and, for each of them, security metrics (attack surface
measurements) which we use in Section IV to evaluate
and quantify the security of a running Linux kernel. The
dependence between notions defined or used in this section
are summarized in Figure 1.

A. Preliminary definitions

Definition 1 (Call graph). A call graph is a directed graph
(F,C), where F ⊆N is the set of nodes and represents the
set of functions as declared in the source of a program,
and C ⊆ F ×F the set of arcs, which represent all direct
and indirect function calls. We denote the set of all call
graphs by G .

In practice, static source code analysis at compile time
(that takes all compile-time configuration options into
account) is used to obtain such a call graph.

Definition 2 (Entry and barrier functions). A security
model defines a set of entry functions E ⊆ F , which
corresponds to the set of functions directly callable by
an attacker, and a set of barrier functions X ⊆ F , which
corresponds to the set of functions that, even if reachable,

Security
model

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
measurement

Attack surface
metric

Figure 1. Dependencies between notions de-
fined in this section.

would prevent an attacker from progressing further into the
call graph.

E would typically be the interface of the program that is
exposed to the attacker, whereas X would typically be the
set of functions that perform authorization for privileges
that the attacker is not assumed to have in the security
model (e.g., administrator privileges).

Definition 3 (Attack Surface). Given a call graph G =
(F,C), a set of entry functions E ⊆ F and a set of barrier
functions X ⊆ F , let G′ be the subgraph of G induced by
the nodes F ′=F \X , and let E ′=E \X . The attack surface
is then the subgraph GAS of G′ induced by all nodes f ∈ F ′

such that there exists e ∈ E ′ and a directed path from e to
f . By abusing notation, we denote GAS = (G,E,X).

The rationale behind this definition is that for most
types of kernel vulnerabilities due to defects in the source
code, the attacker needs to trigger the function containing
the vulnerability through a call to an entry function (which,
for local attackers, would be a system call). For example:
for exploiting a double-free vulnerability, the attacker will
need to provoke the extraneous free; for exploiting a stack-
or heap-based buffer overflow, the function writing to the
buffer will be reachable to the attacker; for exploiting a
user-pointer dereference vulnerability, the attacker owning
the user-space process will often provoke the dereference
through the system call interface.

Therefore, the attack surface represents the set of func-
tions that an attacker can potentially take advantage of.

B. Security Models

Quantifying a program’s security without specifying a
security model is attractive because it provides an “ab-
solute value” to compare other programs to. However,
taking into account a security model, and more generally
the actual use of the program, can only result in security
metrics that reflect the system’s security better. As a simple
example, it is common practice to measure a kernel’s
security by the total SLOC. However, the source code will
often contain branches that will never be compiled such as
architecture-specific code for other architectures. Hence,
limiting the SLOC by excluding unused architecture-

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

attacker
attack surface

running kernel
partial a.s.

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

LKM
(driver)

LKM
(other)

Figure 2. On the left, the GENSEC model. On
the right, the ISOLSEC model.

specific code, because this code cannot be exercised by
an attacker, is already an improvement in precision.

We now consider the case of the Linux kernel. First, we
define a generic security model that covers the dependabil-
ity of the entire running kernel, and then a more specific
model covering local attacks from unprivileged user space
directed against the kernel. They are depicted in Figure 2.

In both cases, the hardware and the compile-time con-
figuration of the kernel are fixed and taken into account.
In both cases, the high-level security goal is to provide the
traditional confidentiality, integrity and availability guar-
antees for the kernel: for instance, an attacker could target
full control with arbitrary code execution in kernel mode,
or more limited attacks such as information leakage (e.g.,
recover uninitialized kernel memory content) to breach
confidentiality, and denial of service by crashing the kernel
to reduce the system’s availability. In addition, we assume
that the hardware and the firmware the system is running
on are trusted.

1) Generic Model GENSEC: The GENSEC model cov-
ers all possible kernel failures, to obtain an attack surface
that is similar to the notion of TCB used for measuring
security in prior work (e.g., [19, 34]).

More precisely, the attacker is both local and remote,
i.e., it has an account on the target system, but can also
interact with all hardware devices (e.g., sending layer-1
traffic to network interface cards). We also assume that
the attacker has some amount of control over a privileged
application. This means the model includes failures due to
defects in the kernel in code paths that are only accessibly
from a privileged application.

Therefore, in this model, a defect in any part of the
running kernel — including the core kernel and all loaded
LKMs, as well as any LKM that might be loaded in the
future, e.g., when new hardware is plugged in — can cause
a failure.

This security model may not seem intuitive, but cor-
responds to what is implicitly assumed when considering

the entire compiled kernel included in the TCB, a common
practice.

GENSEC attack surface: In the GENSEC model
above, the attack surface is composed of the entire running
kernel, as well as LKMs that can be loaded. Hence, the
barrier functions set X is empty, and all entry points of
the kernel are included in E (both hardware interrupts and
system calls, as well as kernel initialization code).

2) Isolation Model ISOLSEC: The ISOLSEC model
reflects a common model in multi-user systems and in
systems implementing defense in depth, where it is as-
sumed an attacker has local access, e.g, by compromising
an unprivileged isolated (or sandboxed) process on the
system, and aims to escape the isolation by directly tar-
geting the kernel. In this model, the attacker is malicious
and has unprivileged local access, therefore it can exercise
the system call interface, but not all code paths: for
instance, the attacker cannot make the system call for the
insertion of a new kernel module. We will detail below,
when evaluating the attack surface, exactly which barrier
functions should be considered.

We also assume that the attacker can target code in
LKMs, including LKMs that are loaded on-demand by the
system. As the attacker is not able to plug hardware into
the target system, we assume that bugs in LKMs not related
to installed hardware cannot lead to failures.

ISOLSEC attack surface: An attacker in the
ISOLSEC model has the set of all system calls as entry
points E. The set of barrier functions X contains func-
tions that are only accessible from privileged applications
and LKMs that cannot possibly be loaded by an action
triggered by the attacker. We provide a more detailed
description of those functions in the next three paragraphs.

Functions that are not reachable because of lacking per-
missions are highly dependent on the isolation technology
used (e.g., LSM-based [11, 18, 32], chroot, LXC [28],
seccomp [17]) and the policies applied to the application,
and at a first approximation, we only consider the default
privilege checking in use in the Linux kernel: POSIX capa-
bilities. Hence, we assume that the set of barrier functions
X includes those functions performing POSIX capability
checks (functions calling the capable() function).

However, this is not sufficient. Linux proposes a va-
riety of pseudo-filesystems, namely sysfs, debugfs,
securityfs and procfs, in which filesystem operations
are dispatched to specific code paths in the kernel, mostly
in LKMs, and are often used to expose information or
fine-tuning interfaces to user-space processes which, in
general, are privileged. However, these privilege checks
are performed at the virtual filesystem layer, using POSIX
ACLs: hence, they do not contain calls to the capable()

function, and need to be considered separately. In addition,
as those filesystems should not be accessible from an

unprivileged application that is sandboxed (e.g., this is
the case even with a simple chroot jail), we include all
functionality provided by those four pseudo-filesystems as
barrier functions X .

Finally, as a consequence of our assumptions on LKMs
in the ISOLSEC model, we include in X all LKMs that are
either (a) not loaded while the workload is running, but
not loadable on demand, or (b) a hardware driver that is
not loaded while the workload is running.

For these reasons, we mark in Figure 2 the kernel
components which can contain funcions in the attack
surface only as “partial a.s (attack surface)”: their inclusion
depends on being reachable, after consideration of the
barrier functions.

C. Attack Surface Measurements

To quantify security improvements in terms of the attack
surface, we need a metric that reflects its size. Although
we are not the first to make this observation [20, 30], we
propose the first approach that quantifies the attack surface
within a particular security model by using call graphs. In
the following, we present a general approach to measure
an attack surface in a security model as well as specific
metrics that we will use in the case of the Linux kernel.

Definition 4 (Code-quality metric). A code-quality metric
µ is a mapping associating a non-negative value to the
nodes of the call graph:

µ : F → R+

Example. A function’s SLOC (denoted SLOC), the cy-
clomatic complexity [33] (denoted cycl), or a CVE-based
metric associating the value 1 to a function that had a
CVEs in the past 7 years, and 0 otherwise (denoted CV E),
are code-quality metrics that we use in this paper.

CVE-based metrics provide a posteriori knowledge
on vulnerable functions: they allow an estimate of the
number of CVEs a partical attack surface reduction method
would have avoided, in the past. However, this metric,
alone, is unsatisfactory for multiple reasons. For instance,
CVEs only form a sample of all vulnerabilities existing
in an application, and this sample is likely to be biased:
vulnerabilities tend to be searched and discovered non-
uniformly accross the code base, with often-used parts
being more likely to be tested and audited. Additionally,
past CVEs are not necessarily a good indicator of future
CVEs: although a function with a history of vulnerabilities
might be prone to more vulnerabilities in the future (e.g.,
due to sloppy coding style), the opposite is also likely,
since this might indicate that the function has now been
thoroughly audited. For this reason, we also use a priori
metrics such as lines of code and cyclomatic complexity,
which, although imperfect for predicting vulnerabilities, do

not suffer from the aforementioned issues and can be easily
collected through static analysis.

Definition 5 (Attack Surface Metric). An attack surface
metric associated with a code-quality metric µ assigns a
non-negative real value to an attack surface:

ASµ : G → R+

GAS 7→ ASµ(GAS)

and satisfies the property:

∀E ′ ⊆ E,∀X ′ ⊇ X , ASµ(G′AS)≤ ASµ(GAS)

with GAS = (G,E,X),G′AS = (G,E ′,X ′)

That is, the more entry points, the higher the attack
surface measurement; the more barrier functions, the lower
the attack surface measurement.

Lemma 1. Let m be a mapping:

m : G → R
G 7→ m(G)

If m satisfies:
∀G ∈ G , m(G)≥ 0

∀G′ ⊆ G ∈ G , m(G′)≤ m(G)

then it is an attack surface metric.

Proof. Let GAS = (G,E,X),G′AS = (G,E ′,X ′) such that
E ′ ⊆ E and X ′ ⊇ X . Then:

G′AS ⊆ GAS

Hence m satisfies the property in Definition 5:

m(G′AS)≤ m(GAS)

Note that this property is not necessary to satisfy
Definition 5, because a smaller set of functions (in G′AS)
should not necessarily mean a smaller attack surface
measurement. This is sensible, because in practice some
functions can reduce the overall attack surface (e.g., by
sanitizing input), and an attack surface metric could take
this into account (e.g., Murray, Milos, and Hand [36]
propose such a metric for measuring TCB size). Such
an example is depicted in Figure 1: A metric satisfying
Lemma 1 would always measure a lower attack surface
for G′AS than for GAS, whereas this is not necessary for a
metric satisfying Definition 5.

Proposition 1. The following two functions are attack
surface metrics:

AS1µ(GAS) = ∑
i∈FAS

µ(i)

AS2µ(GAS) = µAS
T L(G̃AS)µAS

Figure 3. Example attack surfaces GAS (with
E = {e} and X = /0) and G′AS (with E ′ = {e′} and
X ′ = /0). Note that E ′ 6⊆ E and G′AS ⊆ GAS.

where GAS = (FAS,CAS), µAS
T = (µ(1), . . . ,µ(|F |)), and

L(G) is the Laplacian matrix of a simple (non-directed)
graph:

L(G) = D−A

where D is a diagonal matrix with the degrees of the nodes
on the diagonal, and A the adjacency matrix of the graph
(Ai j = 1 when the (i,j) edge exists, 0 otherwise). As GAS is
directed, we transform it into a simple graph by ignoring
the direction on its arcs, which we denote G̃AS.

AS1 provides a simple and intuitive formulation of an
attack surface metric: for instance, AS1SLOC is a sum of
the lines of code in the attack surface. However, it values
each function equally. AS2 takes advantage of the functions
position in the call graph, and attaches more value to
code-quality metrics in functions that have a large number
of callers (and callees) that have a lower code-quality
measurement. The Appendix contains a proof, and a more
detailed explanation of the formulation of AS2. We use
both these attack surface metrics in our evaluations in
Section IV.

D. Summary

The metrics introduced in this section are for the
purpose of a precise evaluation of the security gains of our
approach. These metrics contain metrics used commonly
in prior work, such as total TCB size in SLOC (AS1SLOC
in the GENSEC model). We do not claim the metrics
presented in this section are the panacea in measuring
attack surfaces. Rather, we propose new metrics that take
into account what attackers are capable of. This will
allow us to discuss attack surface reduction results in
Section V for additional insights into the advantages and
disadvantages of tailoring the Linux kernel configuration.

III. Kernel Tailoring

A. General Idea and Solution Overview

The formalism introduced in Section II provides a
solid means to calculate the attack surface in a given
security model. We apply these theoretical considerations
to improve the overall system security of Linux as shipped
by Linux distributions such as Ubuntu or Red Hat Linux.
These popular distributions cannot afford to ship and
maintain a large number of different kernels. Therefore,
they configure their kernels to be as generally usable as
possible, which requires the kernel package maintainers
responsible to enable as much functionality (i.e., KCONFIG
features) as possible. Unfortunately, this also maximizes
the attack surface. As security-sensitive systems do not
require the genericalness provided, the attack surface can
be reduced by simply not enabling unnecessary features.
What features are necessary, however, depends on the
actual workload of the corresponding use-case. Therefore,
our approach consists of two phases. In the analysis phase,
the workload is analyzed at run time. The second phase
calculates a reduced Linux configuration that enables only
the functionality that has been observed in the analysis
phase.

B. Configuration Mechanisms in Linux

Variability in Linux is centrally managed by means of
KCONFIG, which is both a tooling and a configuration
language, in which constraints such as dependencies and
conflicts are modeled in a domain specific language (DSL).
In the literature, the formal semantics [44, 55] have been
analyzed for use in variability extractors [52], which trans-
late the specified constraints into propositional formulas.
These formulas are essential for constructing the optimized
Linux configuration.

However, the implementation of variability is very scat-
tered in Linux, which makes holistic reasoning challeng-
ing. In practice, the analysis of KCONFIG files, MAKE files
and C Preprocessor (CPP) code requires very specialized
and sophisticated extraction tools. A reliable mapping of
user-configurable features in KCONFIG to source lines
in the source tree requires a correct combination of all
three sources of variability. A solid understanding of the
Linux build system KBUILD and the configuration tool
KCONFIG is instrumental to correctly relate the variability
declaration in KCONFIG. This work therefore implements
our approach as extension to existing work [13, 37, 52],
which has been kindly provided to us by the original
authors.

C. Kernel-Configuration Tailoring

The goal of our approach is to compile a Linux kernel
with a configuration that has only those features enabled
which are necessary for a given use case. This section
shows the fundamental steps of our approach to tailor such
a kernel. The six steps necessary are shown in Figure 4.

Ê Enable tracing. The first step is to prepare the
kernel so that it records which parts of the kernel code are
executed at run time. We use the Linux-provided ftrace

feature, which is enabled with the KCONFIG configuration
option CONFIG_FTRACE. Enabling this configuration op-
tion modifies the Linux build process to include profiling
code that can be evaluated at runtime.

In addition, our approach requires a kernel that is built
with debugging information so that any function addresses
in the code segment can be correlated to functions and
thus source file locations in the source code. For Linux,
this is configured with the KCONFIG configuration option
CONFIG_DEBUG_INFO.

To also cover code that is executed at boot time by
initialization scripts, we need to enable the ftrace as
early as possible. For this reason, we modify the initial
RAM disk, which contains programs and LKMs for low-
level system initialization 2. Linux distributions use this
part of the boot process to detect installed hardware
early in the boot process and, mostly for performance
reasons, load only the required essential device drivers.
This basically turns on tracing even before the first process
(init) starts.

Ë Run workload. In this step, the system adminis-
trator runs the targeted application or system services.
The ftrace feature now records all addresses in the
text segment that have been instrumented. For Linux, this
covers most code, except for a small amount of critical
code such as interrupt handling, context switches and the
tracing feature itself.

To avoid overloading the system with often accessed
kernel functions, ftrace’s own ignore list is dynamically
being filled with functions when they are used. This
prevents such functions from appearing more than once in
the output file of ftrace. We use a small wrapper script
for ftrace to set the correct configuration before starting
the trace, as well as to add functions to the ignore list while
tracing and to parse the output file, printing only addresses
that have not yet been encountered.

During this run, we copy the output of the tracing
wrapper script at constant time intervals. This allows us
to compare at what time what functionality was accessed,
and therefore to monitor the evolution of the tailored kernel
configuration over time based on these snapshots.

2This part of the Linux plumbing is often referred to as “early
userspace”

enable
tracing

1

run workload
& store trace

2

correlate to
source line locations

Makefile
arch/x86/init.c:59

arch/x86/...
arch/x86/entry32.S:14

lib/Makefile
kernel/sched.c:723
...

3
B00 <-> CONFIG_X86
&&
B1 <-> CONFIG_NUMA
&&
B2 <-> ! B1
&&
...

establish a
propositional

formula

4
CONFIG_X86=y
CONFIG_NUMA=y
CONFIG_SCSI=m
...
...

derive a kernel
configuration

5

complete the
configuration

6

Figure 4. Kernel-Configuration Tailoring Workflow

Ì Correlation to source lines. A system service
translates the raw address offsets into source line locations
using the ADDR2LINE tool from the binutils tool suite.
Because LKMs are relocated in memory depending on
their non-deterministic order of loading, the system service
compares the raw, traced addresses to offsets in the LKM’s
code segment. This allows the detection of functionality
that is not compiled statically into the Linux kernel. This
correlation of absolute addresses in the code segment with
the debug symbols allows us to identify the source files
and the #ifdef blocks that are actually being executed
during the tracing phase.

Í Establishment of the propositional formula. This
step translates the source-file locations into a proposi-
tional formula. The propositional variables of this for-
mula are the variation points the Linux configuration tool
KCONFIG controls during the compilation process. This
means that every CPP block, KCONFIG item and source
file can appear as propositional variable in the resulting
formula. This formula is constructed with the variabil-
ity constraints extracted from #ifdef blocks, KCONFIG
feature descriptions and Linux Makefiles. The extractors
we use have been developed, described and evaluated in
previous work [13, 46, 52]. The resulting formula holds
for every KCONFIG configuration that enables all source
lines simultaneously.

Î Derivation of a tailored kernel configuration. A
SAT checker proves the satisfiability of this formula and
returns a concrete configuration that fulfills all these con-
straints as example. Note that finding an optimal solution to
this problem is an NP-hard problem and was not the focus
of our work. Instead, we rely on heuristics and configurable
search strategies in the SAT checker to obtain a sufficiently
small configuration.

As the resulting kernel configuration will contain some
additional unwanted code, such as the tracing functionality
itself, the formula allows the user to specify additional
constraints to force the selection (or deselection) of certain
KCONFIG features, which can be specified in whitelists
and blacklists. This results in additional constraints being
conjugated to the formula just before invoking the SAT
checker.

Ï Completing the Linux kernel configuration. The
resulting kernel configuration now contains all features
that have been observed in the analysis phase. The caveat
is that the resulting propositional formula can only cover
KCONFIG features of code that has been traced. In prin-
ciple, features that are left unreferenced are to be dese-
lected. However, features in KCONFIG declare non-trivial
dependency constraints [55], which must all hold for a
given configuration in order to produce a valid KCONFIG
configuration. The problem of finding a feature selection
with the smallest number of enabled features, (which is
generally not unique) has the complexity NP-hard. We
therefore rely on heuristics to find a sufficiently small
configuration that satisfies all constraints of KCONFIG
but is still significantly smaller compared to a generic
distribution kernel.

IV. Evaluation

In this section, we present two use cases, namely
a LAMP-based server and a graphical workstation that
provides an NFS service, both on distinct, non-virtualized
hardware, that we use to evaluate the effects of kernel-
configuration tailoring. This evaluation demonstrates the
approach with practical examples, verifies that the obtained
kernel is functional, i.e., no required configuration option
is missing in the tailored kernel, and shows that the
performance of the kernel with the configuration generated
remains comparable to that of the distribution kernel. We
quantify the attack surface reduction achieved with the
formalisms described in Section II.

A. Overview

In both use cases, we follow the process described in
Section III to produce a kernel configuration that is tailored
to the respective use case. For each use case, we detail
the workload that is run to collect traces in the following
subsections. Both machines use the 3.2.0-26 Linux kernel
distributed by Ubuntu as baseline, which is the kernel
shipped at the time of this evaluation in Ubuntu 12.04.

To compare the performance, we use benchmarks that

are specific to the use case. We repeat both experiments
at least 10 times and show 95%-confidence intervals in
our figures where applicable. The benchmarks compare the
original, distribution-provided kernel to the tailored kernel
generated. All requests are initiated from a separate ma-
chine over a gigabit Ethernet link. To avoid interferences
by start-up and caching effects right after the system boots,
we start our workload and measurements after a warm-up
phase of 5 min.

To measure the attack surface reduction, we first cal-
culate code-quality metrics for each function in the kernel
by integrating the FRAMA-C [15] tool into the kernel build
system. For CVEs, we parse all entries for the Linux kernel
in the National Vulnerability Database (NVD)3. For entries
with a reference to the GIT repository commit (only those
CVEs published after 2005), we identify the C functions
that have been changed to patch a security issue, and add
each function to a list. Our metric assigns a value of 1
to functions that are in this list, and 0 otherwise. We also
generate static call graphs for each use case by using both
FRAMA-C and NCC [38] and combining both call graphs
to take into account calls through function pointers, which
are very widely used in the Linux kernel. In the case of
the GENSEC model, we compute the AS1 and AS2 attack
surface metrics directly over all functions in this graph, for
both the baseline and the tailored kernel. In the case of the
ISOLSEC model, we compute the subgraph corresponding
to the attack surface by performing a reachability anal-
ysis from functions corresponding to system calls (entry
points) and removing all barrier functions as detailed in
Section II-B2. We then evaluate the security improvements
by computing the attack surface reduction between the
baseline kernel and a tailored kernel.

B. LAMP-stack use case

1) Description: This use case employs a machine with
a 2.8 GHz Celeron CPU and 1 GB of RAM. We use the
Ubuntu 12.04 Server Edition with all current updates and
no modifications to either the kernel or any of the installed
packages. As described in Section III-C, we extend the
system-provided initial RAM disk (initrd) to enable
tracing very early in the boot process. In addition, we set
up an web platform consisting of APACHE2, MYSQL and
PHP. The system serves static documents, the collabo-
ration platform DOKUWIKI [16] and the message board
system PHPBB3 [40] to simulate a realistic use case.

The test workload for this use case starts with a simple
HTTP request using the tool WGET, which fetches a file
from the server right after the five-minute warm-up phase.
This is followed by one run of the HTTPERF [35] tool,

3http://nvd.nist.gov/

0 300 600 900 1200 1500 1800 2100

465

470

475

480

485

490

495

500

time in s after finished boot (in runlevel 3)

en
ab
le
d
K
C
on
fig

fe
at
ur
es

ssh

wget httperf

skipfish

Figure 5. Evolution of KCONFIG features en-
abled over time. The bullets mark the point in
time at which a specific workload was started.

which accesses a static website continuously, increasing
the number of requests per second for every run. Finally,
we run the SKIPFISH [54] security scan on the server.
SKIPFISH is a tool performing automated security checks
on web applications, hence exercising a number of edge-
cases, which is valuable not only to exercise as many code
paths as possible, but also to test the stability of the tailored
use case.

2) Results: Figure 5 depicts the number of KCONFIG
features that our tool obtains from the trace logs collected
at the times given. After the warm-up phase, connecting
to the server via ssh causes a first increase in enabled
KCONFIG features. The simple HTTP request triggers only
a small further increase, and the configuration converges
quickly after the HTTPERF tool is run, and shows no
further changes when proceeding to the SKIPFISH scan.
This shows that, for the LAMP use case, a tracing phase
of about ten minutes is sufficient to detect all required
features.

Tailoring: The trace file upon which the kernel
configuration is generated is taken 1,000 sec after boot,
i.e., after running the tool HTTPERF, but before running
the SKIPFISH tool. It consists of 8,320 unique function
addresses, including 195 addresses from LKMs. This cor-
relates to 7,871 different source lines in 536 files. Our
prototype generates the corresponding configuration in 145
seconds and compiles the kernel in 89 seconds on a
commodity quad-core machine with 8 GB of RAM.

When comparing the original kernel to the distribution
kernel shipped with Ubuntu, we observe a reduction of
KCONFIG features that are statically compiled into the
kernel of over 70%, and almost 99% for features that lead
to compilation as LKMs (cf. Table I). Consequently, the
overall size of the text segment for the tailored kernel is

arch

block

crypto

drivers

fs

ipc

kernel

lib

mm

net

sound

others

0 1000 2000 3000 4000 5000 6000

33%

15%

71%

95%

86%

38%

34%

25%

8%

87%

100%

62%

removed files from tailored
kernel compared to Ubuntu
standard

source files in both kernels

Figure 6. Reduction in compiled source files
for the tailored kernel, compared with the
baseline in the LAMP use case (results for the
workstation with NFS use case are similar).
For every subdirectory in the Linux tree,
the number of source files compiled in the
tailored kernel is depicted in blue and the
remainder to the number in the baseline
kernel in red. The reduction percentage per
subdirectory is also shown.

over 90% lower than that of the baseline kernel supplied
by the distribution.

To relate to the savings in terms of attack surface, we
show the number of source code files that the tailored
configuration does not include when compared to the dis-
tribution configuration in Figure 6. The figure breaks down
the reduction of functionality by subdirectories in terms of
source files that get compiled. The highest reduction rates
are observed inside the sound/ (100%), drivers/ (95%),
and net/ (87%) directories. As the web server does not
play any sounds, the trace file does not indicate any sound-
related code. Similarly, the majority of drivers are not
needed for a particular hardware setup. The same applies to
most of the network protocols available in Linux, which
are not required for this use case. Out of 8,670 source
files compiled in the standard Ubuntu distribution kernel,
the tailored kernel only required 1,121, which results in an
overall reduction of 87% (cf. Table I).

Stability: To ensure that our tailored kernel is fully
functional, we run SKIPFISH [54] once on the baseline
kernel and then compare the results to a scan on the
tailored kernel. The report produced by the tool finds no
significant difference from one kernel configuration to the
other, hence the tailored kernel can handle unusual web
requests equally well. Furthermore, this shows that for this
use case even a kernel tailored from a trace file which only

0 100 200 300 400 500 600 700

40

42

44

46

48

50

52

54

baseline kernel

tailored kernel

request rate in req/s

re
pl
ie
s/
s

Figure 7. Comparison of reply rates of the
LAMP-based server using the kernel shipped
with Ubuntu and our tailored kernel. Confi-
dence intervals were omitted, as they were
too small and thus detrimental to readability.

covers a smaller test workload than the target scenario is
suitable for stable operation of the service.

Performance: We measure the performance with
the HTTPERF tool. The result is compared with a run
performed on the same system that runs the baseline
kernel. Figure 7 shows that the tailored kernel achieves
a performance very similar to that of the kernel provided
by the distribution.

Security: Finally, we compute attack surface reduc-
tion with AS1 and AS2 in the GENSEC and ISOLSEC
models after generating the relevant call graphs. The
numbers in Table I show that the AS1SLOC, AS1cycl and
AS2SLOC attack surface reduction is around 85% in the
GENSEC model, and around 80% in the ISOLSEC model.
In both models, there are also 60% fewer functions that
were affected by patches due to CVEs in the past. We
also observe that AS2cycl is slightly lower, with an attack
surface reduction around 60%. Overall, the attack surface
reduction is between 60% and 85%.

C. Workstation/NFS use case

1) Description: For the workstation/NFS server use
case, we use a machine with a 3.4 GHz quad-core CPU
and 8 GB of RAM, running the Ubuntu 12.04 Desktop
edition, again without modifications to packages or kernel
configuration. The machine is configured to export a local
directory via NFS.

To measure the performance of the different kernel
versions, we use the BONNIE++ [10] benchmark, which
covers reading and writing to this directory over the
network. To achieve results that are meaningful, we disable
caching on both server and client.

2) Results: The trace file of the configuration selected
for further testing consists of 13,841 lines that reference

Baseline Tailored Reduction
LAMP NFS LAMP NFS LAMP NFS

Kernel (vmlinux) size in Bytes 9,933,860 4,228,235 4,792,508 56% 52%
LKM total size in Bytes 62,987,539 2,139,642 2,648,034 97% 96%
Options set to ’y’ 1,537 452 492 71% 68%
Options set to ’m’ 3,142 43 63 99% 98%
Compiled source files 8,670 1,121 1,423 87% 84%

GENSEC

Call graph nodes 230,916 34,880 47,130 85% 80%
Call graph arcs 1,033,113 132,030 178,523 87% 83%
AS1SLOC 6,080,858 895,513 1,122,545 85% 82%
AS1cycl 1,268,551 209,002 260,189 84% 79%
AS1CV E 848 338 429 60% 49%
AS2SLOC 58,353,938,861 11,067,605,244 11,578,373,245 81% 80%
AS2cycl 2,721,526,295 1,005,337,180 1,036,833,959 63% 62%
AS2CV E 20,023 7,697 9,512 62% 52%

ISOLSEC

Call graph nodes 92,244 96,064 15,575 21,561 83% 78%
Call graph arcs 443,296 462,433 64,517 89,175 85% 81%
AS1SLOC 2,403,022 2,465,202 425,361 550,669 82% 78%
AS1cycl 504,019 518,823 99,674 126,710 80% 76%
AS1CV E 485 524 203 276 57% 47%
AS2SLOC 15,753,006,783 15,883,981,161 4,457,696,135 4,770,441,587 72% 70%
AS2cycl 918,429,105 929,197,559 374,455,910 391,855,241 59% 57%
AS2CV E 10,151 11,127 4,287 5,489 57% 51%

Table I. Summary of kernel tailoring and attack surface measurements.

a total of 3,477 addresses in modules. This resolves to
13,000 distinct source lines in 735 files. Building the
formula and therefore the configuration takes 219 seconds,
compiling the kernel another 99 seconds on the same
machine as described above. We observe a reduction of
KCONFIG features that are statically compiled into the
kernel by 68%, 98% for features compiled into LKMs,
and about 90% less code in the text segment.

Performance and Stability: We did not find any
impact on the regular functionality of the workstation, i.e.,
all hardware attached, such as input devices, Ethernet or
sound, remained fully operable with the tailored kernel
booted. Using the tailored kernel, we run BONNIE++ again
with the same parameters, and compare the results with
those of the distribution kernel. Figure 8 shows that also
in this use case the kernel compiled with our tailored
configuration achieves a very similar performance.

Security: Attack surface reduction results are similar
to the LAMP use case. The numbers in Table I show that
the AS1SLOC, AS1cycl and AS2SLOC attack surface reduction
is around 80% in the GENSEC model, and around 75% in
the ISOLSEC model. In both models, there are also 50%
fewer functions that were affected by patches due to CVEs
in the past. We also observe that AS2cycl is slightly lower
as well, with attack surface reduction around 60%. Overall,
our measurements suggest the attack surface reduction is
between 50% and 80%.

block write

block rewrite

block read

0 20 40 60 80 100 120

tailored kernel baseline kernel

throughput
in MB/s

Figure 8. Comparison of the test results from
the BONNIE++ benchmark, showing no signif-
icant difference between the tailored and the
baseline kernel.

V. Discussion

A. Attack surface measurements

This section discusses the results of our attack surface
measurements.

Use cases: Figure 9 shows that the tailored ker-
nel configurations are largely similar for both cases. We
observe a number of features that differentiate the use

1423 1121
419 1004 117

source
files

Workstation/NFS LAMP

492

63 43
loadable kernel

modules

452built-in

37–26–17

50 442 10

– –

– –

total NFS only – shared – LAMP only totalKConfig features
configured as

Figure 9. Comparison of the two generated
configurations from the use cases in terms of
KCONFIG features leading to built-in code and
code being compiled as LKM. Below, the total
number of compiled source files is compared
between the two resulting kernels.

cases, both in terms of hardware and workload. The
workstation/NFS use case requires the highest number of
differentiating features (87 enabled KCONFIG options for
NFS compared to 27 for LAMP). This can be explained
by the setup (the desktop version of Ubuntu has the X11
window system installed and running, whereas the server
version has not) and by the workload: as NFS also runs in
kernel mode, additional kernel features are required. This
point is useful for understanding attack surface reduction
results. Although both use cases show similar AS1SLOC
reductions (around 80%), there is a slight difference for
both GENSEC and ISOLSEC and the various AS metrics
in the reduction achieved in favor of the LAMP use case
(see Table I). This is simply because the workstation/NFS
use case requires a larger kernel than the LAMP one.

The case of CVE-2010-3904: Out of the 422 CVEs
we have inspected, we detail the case of one highly
publicized vulnerability for illustration purposes. CVE-
2010-3904 documents a vulnerability that is due to a
lack of verification of user-provided pointer values, in
RDS, a rarely used socket type. An exploit for obtaining
local privilege escalation was released in 2010 [42]. We
verified that in the case of the workstation/NFS use case,
both tailored kernel configurations have the functionality
removed in the GENSEC and ISOLSEC models, and thus
would have prevented the security issue. In contrast, the
baseline kernel contains the previously-vulnerable feature
in the GENSEC and ISOLSEC models.

CVE sampling bias: The results in Table I show
slightly lower CVE reduction numbers than for all other
metrics, especially in the case of AS1. We hypothesize that
this small difference is due to a sampling bias: code that
is used more often is also audited more often, more bug
reports concerning it are submitted, and better care is taken
in documenting the vulnerabilities of such functions. We
also observe the average number of CVEs per function
is lower in the functions that are in the tailored kernel,

when compared to those functions that are not. Previous
studies [9, 39] have shown that code in the drivers/

sub-directory of the kernel, which is known to contain
a significant amount of rarely used code, on average
contains significantly more bugs than any other part of the
kernel tree. Consequently, it is likely that unused features
provided by the kernel still contain a significant amount of
relatively easy-to-find vulnerabilities. This further confirms
the importance of attack surface reduction as presented in
this paper.

Nevertheless, we still take the CVE reduction numbers
into account, because they reflect a posteriori knowledge
about vulnerability occurrences. All our measurements
indicate attack surface reduction lies approximately within
50% and 85% across all parameters (use cases, security
models, metrics), which is a very positive result for kernel
tailoring.

Attack surface metric comparison: The AS1 and AS2
results are quite close, which, considering how different
their formulations are, shows the robustness of the simple
attack surface definition introduced in Section II. AS2
is also of interest because it introduces the use of the
Laplacian, which is instrumental in many applications of
graph theory (e.g., for data mining [2]), for the purpose of
attack surface measurements.

Comparison to kernel extension isolation: Ap-
proaches such as [31, 50] provide a way, through impres-
sive technical feats, of isolating LKMs from the kernel, i.e.,
running them with lesser privileges. This means, ideally,
the compromise of an LKM by an attacker cannot lead
to kernel compromise. To evaluate how such solutions
compare to kernel tailoring, we again make use of the
attack surface formalism introduced in Section II. As-
suming that these isolation solutions are ideal (i.e., that
their own implementation does not increase the kernel’s
attack surface and the attackers are not able to bypass the
isolation), we remove all LKMs from the baseline kernel’s
attack surface in the ISOLSEC model, hence obtaining
a lower bound of the real attack surface of such LKM-
isolated kernels. Our results in Table II show that kernel
tailoring is superior to LKM isolation: for instance, the
AS1SLOC measurement of the ideal LKM isolation is four
times higher. We also evaluate whether combining both
approaches could be beneficial, i.e., first generating a
tailored kernel and then applying an ideal LKM isolation.
The results show that the resulting attack surface is not
significantly lower than that obtained by kernel tailoring
alone, which further confirms the improvements of our
approach, even when compared to an ideal LKM isolation
solution. Additionally, we remark that this lower bound
is also applicable to approaches that prevent automatic-
loading of LKMs, such as the well-known grsecurity kernel
patch with the MODHARDEN option [48].

baseline
0

2

3

4

5

6

7

drivers

fs

net

sound
kernel
others

tailored baseline tailored

GenSec IsolSec

at
ta

ck
 s

ur
fa

ce
 in

 m
ill

io
n

lin
es

 o
f c

od
e

1

LAMP baseline
0

2

3

4

5

6

7

drivers

fs

net

sound
kernel
others

tailored baseline tailored

GenSec IsolSec

at
ta

ck
 s

ur
fa

ce
 in

 m
ill

io
n

lin
es

 o
f c

od
e

1

NFS

Figure 10. AS1SLOC attack surface measurements per kernel subsystem in both security models and
use cases.

Ideal LKM isolation Kernel Tailoring Both combined
LAMP Workstation/NFS LAMP Workstation/NFS

AS1SLOC 2,064,526 425,361 550,669 420,373 489,732
AS1cycl 444,775 99,674 126,710 98,534 113,735
AS1CV E 390 203 276 203 240
AS2SLOC 11,826,476,219 4,457,696,135 4,770,441,587 4,452,329,879 4,663,745,009
AS2cycl 851,676,457 374,455,910 391,855,241 374,214,950 386,472,434
AS2CV E 7,725 4,287 5,489 4,287 4,849

Table II. Comparison of ISOLSEC attack surface measurements between an ideal LKM isolation
approach (a lower bound of the attack surface of kernel extension fault isolation approaches) and
our approach, when applied to the current Ubuntu 12.04 Kernel. The third column represents attack
surface measurements that would result if both approaches were combined.

Security models: The attack surface reduction is
important in both security models, but more so in the
GENSEC model. This can be attributed to the fact that
the GENSEC model includes a large number of drivers,
whereas the ISOLSEC model does less. As can be seen
from Figure 10, the attack surface reduction is particularly
high for drivers. In other words, tailoring appears to be
slightly more effective in the GENSEC model than in
the ISOLSEC model. This is to be expected, since our
approach reduces the kernel’s attack surface system-wide
(and not per-process). Figure 10 also shows that, both in
the baseline and tailored kernels and independently of the
use case, the ISOLSEC attack surface is about half of the
GENSEC attack surface. In other words, the attack surface
of a local attacker (as defined in the ISOLSEC model) is
about half of what is generally considered as the TCB of
the kernel.

Importance of kernel configuration: When quoting
SLOC measurements of the Linux kernel as a simple way
of quantifying TCB size, we advocate specifying the kernel
configuration the measurement corresponds to. Indeed, our
results show that, depending on the kernel configuration,
the total number of lines of code can vary by up to an
order of magnitude. An other important factor is the kernel
version, since the Linux kernel increased significantly in
size over the past years.

B. Kernel tailoring

We will discuss now the key strengths and weaknesses
of the kernel-tailoring tool with respect to various proper-
ties.

Effectiveness: Although in absolute terms the attack
surface of the tailored Linux kernel remains high (for AS1,
about 500K SLOC in the ISOLSEC model, and 1000K

SLOC in the GENSEC model), Table I shows that for both
use cases and across all meaningful metrics, the attack
surface is reduced by almost an order of magnitude. As
such, vulnerabilities existing in the Linux kernel sources
are significantly less likely to impact users of a tailored
kernel. This makes the approach presented an effective
means for improving security in various use cases.

Applicability: The approach presented relies on the
assumption that the use case of the system is clearly
defined. Thanks to this a-priori knowledge, it is possible
to determine which kernel functionalities the application
requires and therefore, which kernel configuration options
have to be enabled. With the increasing importance of
compute clouds, where customers use virtual machines
for very dedicated services such as the LAMP stack
presented in Section IV, we expect that our approach will
prove valuable for improving the security in many cloud
deployments.

Usability: Most of the steps presented in Section III
require no domain-specific knowledge of Linux internals.
We therefore expect that they can be conducted in a
straightforward manner by system administrators without
specific experience in Linux kernel development. The
system administrator, however, continues to use a code
base that constantly receives maintenance in the form of
bug fixes and security updates from the Linux distributor.
We therefore are confident that our approach to tailor a
kernel configuration for specific use-cases automatically
is both practical and feasible to implement in real-world
scenarios.

Extensibility: The experiments in Section IV show
that, for proper operation, the resulting kernel requires
eight additional KCONFIG options, which the ftrace

feature could not detect. By using a whitelist mechanism,
we demonstrate the ability to specify wanted or unwanted
KCONFIG options independently of the tracing. This allows
our approach to be assisted in the future by methods
to determine kernel features that tracers such as ftrace

cannot observe.
Safety: Many previous approaches that reduce the

Linux kernel’s TCB (e.g., [17], [24]) introduce additional
security infrastructure in form of code that prevents func-
tionality in the kernel from being executed, which can lead
to unexpected impacts and the introduction of new defects
into the kernel. In contrast, our approach modifies the
kernel configuration instead of changing the kernel sources
(e.g., [25, 48]) or modifying the build process (e.g., [12]).
In that sense, our approach, by design, cannot introduce
new defects into the kernel.

However, as the configurations produced are specific to
the use case analyzed in the tracing phase, we cannot rule
out that the tailored configuration uncovers bugs that could
not be observed in the distribution-provided Linux kernel.

Although we have not encountered any of such bugs in
practice, we would expect them to be rather easy to fix,
and of rare occurence, as the kernels produced contain a
strict subset of functionality. In some ways, our approach
could therefore even help improve Linux by uncovering
bugs that are hard to detect.

This also emphasizes the importance of the analysis
phase, which must be sufficiently long to observe all
necessary functionality. In case of a crash or similar failure,
however, we could only attribute this to a bug in either the
kernel or the application implementation that needs to be
fixed. In other words, this approach is safe by design.

VI. Related work

This paper is related to previous research from many
areas: improving OS kernel reliability and security, reduc-
ing the attack surface of the kernel towards user-space
applications, specializing kernels for embedded systems,
measuring attack surfaces, and code complexity.

Kernel specialization: Several researchers have sug-
gested approaches to tailor the configuration of the Linux
kernel, although security is usually not a goal. Instead,
most often improvements in code size or execution speed
are targeted. For instance, Lee et al. [25] manually modify
the source code (e.g., by removing unnecessary system
calls) based on a static analysis of the applications and
the kernel. Chanet et al. [8], in contrast, propose a method
based on link-time binary rewriting, and also employ static
analysis techniques to infer and specialize the set of system
calls to be used. Both approaches, however, do not leverage
any of the built-in configurability of Linux to reduce
unneeded code. Moreover, our approach is completely
automated and it is significantly safer, because we do not
make any unsupported changes to the kernel.

Micro-kernel architectures and retrofitting security:
TCB size reduction has always been a major design goal
for micro-kernels [1, 27], and in turn facilitates a formal
verification of the kernel [22] or its implementation in
safer languages, such as OCaml [29]. Our work achieves
this goal with a widely-used monolithic kernel, i.e., Linux,
without the need of new languages or concepts.

A number of approaches exist that retrofit micro-kernel–
like features into monolithic OS kernels, mostly target-
ing fault isolation of kernel extensions such as device
drivers [7, 31, 50]. For instance, the work of Swift
et al. [50] wraps calls from device drivers to the core
Linux kernel API (and vice-versa), as well as use virtual
memory protection mechanisms, which leads to a more
reliable kernel in the presence of faulty drivers. In the
presence of a malicious attacker who can compromise
such devices, however, this is in general insufficient. This
can be mitigated with more involved approaches such as

LXFI [31], which requires interfaces between the kernel
and extensions to be annotated manually. An alternative is
to prevent potential vulnerabilities in the source code from
being exploitable in the first place. For instance, Secure
Virtual Architecture (SVA) [12] compiles the existing ker-
nel sources into a safe instruction set architecture, which
is translated to native instructions by the SVA VM. This
provides among other guarantees, a variant of type safety
and control flow integrity. However, it is very difficult to
recover from attacks (or false positives) without crashing
the kernel with such defenses [26]. In contrast, kernel
tailoring only uses the built-in configurability of Linux,
hence kernel crashes can only be due to defects already
present in the kernel.

Kernel attack surface reduction: The ISOLSEC
model used in this paper is commonly used when build-
ing sandboxes or isolation solutions, in which a set of
processes must be contained within a particular security
domain (e.g., with [11, 18, 32], which are all based on
the Linux Security Module (LSM) framework [53]). As
we have demonstrated, adjusting the kernel configuration
also significantly reduces the attack surface in such a
model (this corresponds to the ISOLSEC model). The
idea of directly restricting or monitoring for intrusion
detection the system call interface on a per-process basis
has been extensively explored (e.g., [23, 41] and references
in [14]), although not often with specific focus on reducing
the kernel’s attack surface (i.e., reducing AS1SLOC in the
ISOLSEC model), or in other words, to specifically pre-
vent vulnerabilities in the kernel from being exploited by
reducing the amount of code reachable by an attacker in
this model

SECCOMP [17] directly tackles this issue by allowing
processes to be sandboxed at the system call interface.
KTRIM [24] goes beyond simply limiting the system call
interface, and explores the possibility of finer-granularity
kernel attack surface reduction by restricting individual
functions (or sets of functions) inside the kernel. In
contrast, this work focuses on compile-time removal of
functionality from the kernel at a system-wide level instead
of a runtime removal at a per-application level. In future
work, we will investigate how dynamic approaches such
as SECCOMP or KTRIM can be combined with the static
tailoring of the kernel configuration most effectively.

Analysis of variability in Linux: This work relies on
static analysis to identify the implementation of variability
in Linux. Berger et al. [5] statically analyze the implemen-
tation and expressiveness of the variability declaration lan-
guages of Linux and eCos, an operating systems targeted
at embedded systems, with the goal to extract a reliable
feature-to-code mapping. In our approach, we make use of
this mapping for Linux when establishing the propositional
formula from the identified source line locations in the

traces (Step Í in Figure 4). The work of Berger et al. [5]
is continued in a follow-up publication [4] and by Nadi
and Holt [37], which analyze implementation anomalies
in KBUILD. Unfortunately, both extractors are based on
parsing MAKE files, which turns out to be error-prone or to
require adaptations for each new Linux kernel version [13].
We therefore use an improved version of the GOLEM tool
by Dietrich et al. [13], which extracts variability from
KBUILD with a sufficient accuracy for this work.

The variability extracted the GOLEM tool is combined
with the variability model used by the UNDERTAKER
tool, which checks for configuration inconsistencies in
Linux [52]. Configuration inconsistencies manifest them-
selves in #ifdef blocks that are only seemingly config-
urable, but in fact are not in any KCONFIG configuration.
While in this work we do not aim to improve the Linux
implementation, we have extended the UNDERTAKER tool
to generate the tailored configurations. The necessary mod-
ifications were straightforward to implement, and we will
include them into the next public release.

Complexity, security metrics, and attack surface:
The need for better security metrics is widely accepted
in both academia and industry [3, 21, 43, 49]. Howard,
Pincus, and Wing [20] were the first to propose the use of
code complexity and bug count metrics to compare the
relative “attackability” of different software, and others
have followed [30, 45, 47]. Murray, Milos, and Hand [36]
underline the fact that TCB size measurements by SLOC,
while good, might not be precise enough because addi-
tional code can sometimes reduce the attack surface (e.g.,
sanitizing input). Manadhata and Wing [30] present an
attack surface metric based on an insightful I/O automata
model of the target system, taking into account in particular
the data flow from untrusted data items and the entry points
of the system. The definition of attack surface used in
their work closely relates to ours, with the differences that
our modeling is solely based on static call graphs and a
measure of code complexity of each underlying function.
In contrast, this work measures the attack surface with
respect to a particular attacker model.

VII. Conclusion

Linux distributions ship “generic” kernels, which con-
tain a considerable amount of functionality that is provided
just in case. For instance, a defect in an unnecessarily
provided driver may be sufficient for attackers to take
advantage of. The genericalness of distribution kernels,
however, is unnecessary for concrete use cases. This paper
presents an approach to optimize the configuration of the
Linux kernel. The result is a hardened system that is
tailored to a given use case in an automated manner. We
evaluate the security benefits by measuring and comparing

the attack surface of the kernels that are obtained. The
notion of attack surface is formally defined and evaluated
in a very generic security model, as well as a security
model taking precisely into account the threats posed by a
local unprivileged attacker.

We apply the prototype implementation of the approach
in two scenarios, a Linux, Apache, MySQL and PHP
(LAMP) stack and a graphical workstation that serves data
via network file system (NFS). The resulting configuration
leads to a Linux kernel in which unnecessary function-
ality is removed at compile-time and thus, inaccessible
to attackers. We evaluate this reduction using a num-
ber of different metrics, including SLOC, the cyclomatic
complexity and previously reported vulnerability reports,
resulting in a reduction of the attack surface between
about 50% and 85%. Our evaluations also indicate that this
approach reduces the attack surface of the kernel against
local attackers significantly more than previous work on
kernel extension isolation for Linux. We are convinced
that the presented approach improves the overall system
security and is practical for most use cases because of its
applicability, effectiveness, ease and safety of use.

Acknowledgments

This research has been partially supported by the
TClouds project4 funded by the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement number ICT-257243.

References

[1] Mike Accetta, Robert Baron, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. “MACH:
A New Kernel Foundation for UNIX Development”. In:
Proceedings of the USENIX Summer Conference. 1986,
pages 93–113.

[2] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps
and Spectral Techniques for Embedding and Clustering”.
In: Advances in Neural Information Processing Systems
14. 2001, pages 585–591.

[3] S.M. Bellovin. “On the Brittleness of Software and the
Infeasibility of Security Metrics”. In: Security Privacy,
IEEE 4.4 (2006), page 96. ISSN: 1540-7993. DOI: 10.1109/
MSP.2006.101.

[4] Thorsten Berger, Steven She, Krzysztof Czarnecki, and
Andrzej Wasowski. Feature-to-Code Mapping in Two
Large Product Lines. Technical report. University of
Leipzig (Germany), University of Waterloo (Canada), IT
University of Copenhagen (Denmark), 2010.

[5] Thorsten Berger, Steven She, Rafael Lotufo, and Andrzej
Wasowski und Krzysztof Czarnecki. “Variability Modeling
in the Real: A Perspective from the Operating Systems
Domain”. In: Proceedings of the 25th IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE ’10). (Antwerp, Belgium). 2010, pages 73–82. ISBN:
978-1-4503-0116-9. DOI: 10.1145/1858996.1859010.

[6] N. Biggs. Algebraic Graph Theory. 1974.

4http://www.tclouds-project.eu

[7] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Mar-
cus Peinado, Periklis Akritidis, Austin Donnelly, Paul
Barham, and Richard Black. “Fast byte-granularity soft-
ware fault isolation”. In: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. SOSP
’09. 2009, pages 45–58. ISBN: 978-1-60558-752-3. DOI:
10.1145/1629575.1629581.

[8] Dominique Chanet, Bjorn De Sutter, Bruno De Bus,
Ludo Van Put, and Koen De Bosschere. “System-wide
Compaction and Specialization of the Linux Kernel”. In:
Proceedings of the 2005 ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers and Tools for Embedded
Systems (LCTES ’05). 2005, pages 95–104. ISBN: 1-
59593-018-3. DOI: 10.1145/1065910.1065925.

[9] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. “An empirical study of operating
systems errors”. In: Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01). (Banff,
Alberta, Canada). 2001, pages 73–88. ISBN: 1-58113-389-
8. DOI: 10.1145/502034.502042.

[10] Russell Coker. Bonnie++. Benchmark suite for hard drive
and file system performance. URL: http://www.coker.com.
au/bonnie++/ (visited on 08/02/2012).

[11] Kees Cook. Yama LSM. 2010. URL: http://lwn.net/Articles/
393012/ (visited on 06/04/2012).

[12] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and
Vikram Adve. “Secure Virtual Architecture: A Safe Exe-
cution Environment for Commodity Operating Systems”.
In: Proceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP ’07). (Stevenson, WA, USA).
2007, pages 351–366. ISBN: 978-1-59593-591-5. DOI: 10.
1145/1294261.1294295.

[13] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. “A Robust Approach for
Variability Extraction from the Linux Build System”. In:
Proceedings of the 16th Software Product Line Conference
(SPLC ’12). (Salvador, Brazil, Sept. 2–7, 2012). 2012,
pages 21–30. ISBN: 978-1-4503-1094-9. DOI: 10 . 1145 /
2362536.2362544.

[14] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji.
“The Evolution of System-Call Monitoring”. In: Proceed-
ings of the 2008 Annual Computer Security Applications
Conference. ACSAC ’08. 2008, pages 418–430. ISBN:
978-0-7695-3447-3. DOI: 10.1109/ACSAC.2008.54.

[15] Frama-C: A framework for static analysis of C programs.
URL: http://frama-c.cea.fr/ (visited on 08/01/2012).

[16] Andreas Gohr. DokuWiki. URL: http : / / dokuwiki . org
(visited on 06/03/2012).

[17] Google. Seccomp Sandbox for Linux. 2009. URL: http :
/ / code . google . com / p / seccompsandbox / wiki / overview
(visited on 06/05/2012).

[18] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka.
“Task Oriented Management Obviates Your Onus on
Linux”. In: Proceedings of the Japan Linux Conference
(2004). ISSN: 1348-7868.

[19] H. Hartig, M. Hohmuth, N. Feske, C. Helmuth, A.
Lackorzynski, F. Mehnert, and M. Peter. “The Nizza
secure-system architecture”. In: Collaborative Computing:
Networking, Applications and Worksharing, 2005 Inter-
national Conference on. 2005, 10 pp. DOI: 10 . 1109 /
COLCOM.2005.1651218.

[20] M. Howard, J. Pincus, and J. Wing. “Measuring Relative
Attack Surfaces”. In: Computer Security in the 21st Cen-
tury (2005), pages 109–137.

[21] A. Jaquith. Security Metrics: Replacing Fear, Uncertainty,
and Doubt. 2007.

[22] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. “seL4: formal
verification of an OS kernel”. In: Proceedings of the
22nd ACM Symposium on Operating Systems Principles
(SOSP ’09). (Big Sky, Montana, USA). 2009, pages 207–

http://dx.doi.org/10.1109/MSP.2006.101
http://dx.doi.org/10.1109/MSP.2006.101
http://dx.doi.org/10.1145/1858996.1859010
http://www.tclouds-project.eu
http://dx.doi.org/10.1145/1629575.1629581
http://dx.doi.org/10.1145/1065910.1065925
http://dx.doi.org/10.1145/502034.502042
http://www.coker.com.au/bonnie++/
http://www.coker.com.au/bonnie++/
http://lwn.net/Articles/393012/
http://lwn.net/Articles/393012/
http://dx.doi.org/10.1145/1294261.1294295
http://dx.doi.org/10.1145/1294261.1294295
http://dx.doi.org/10.1145/2362536.2362544
http://dx.doi.org/10.1145/2362536.2362544
http://dx.doi.org/10.1109/ACSAC.2008.54
http://frama-c.cea.fr/
http://dokuwiki.org
http://code.google.com/p/seccompsandbox/wiki/overview
http://code.google.com/p/seccompsandbox/wiki/overview
http://dx.doi.org/10.1109/COLCOM.2005.1651218
http://dx.doi.org/10.1109/COLCOM.2005.1651218

220. ISBN: 978-1-60558-752-3. DOI: 10 .1145/1629575.
1629596.

[23] Calvin Ko, Timothy Fraser, Lee Badger, and Douglas
Kilpatrick. “Detecting and countering system intrusions
using software wrappers”. In: Proceedings of the 9th
conference on USENIX Security Symposium - Volume 9.
SSYM’00. 2000, pages 11–11.

[24] Anil Kurmus, Alessandro Sorniotti, and Rüdiger Kapitza.
“Attack surface reduction for commodity OS kernels:
trimmed garden plants may attract less bugs”. In: Pro-
ceedings of the 4th European Workshop on system security
(EUROSEC ’11). (Salzburg, Austria). 2011, 6:1–6:6. ISBN:
978-1-4503-0613-3. DOI: 10.1145/1972551.1972557.

[25] C.T. Lee, J.M. Lin, Z.W. Hong, and W.T. Lee. “An
Application-Oriented Linux Kernel Customization for Em-
bedded Systems”. In: Journal of information science and
engineering 20.6 (2004), pages 1093–1108. ISSN: 1016-
2364.

[26] Andrew Lenharth, Vikram S. Adve, and Samuel T. King.
“Recovery domains: an organizing principle for recover-
able operating systems”. In: Proceedings of the 14th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
’09). (Washington, DC, USA). 2009, pages 49–60. ISBN:
978-1-60558-406-5. DOI: 10.1145/1508244.1508251.

[27] Jochen Liedtke. “On µ-Kernel Construction”. In: Proceed-
ings of the 15th ACM Symposium on Operating Systems
Principles (SOSP ’95). ACM SIGOPS Operating Systems
Review. 1995. DOI: 10.1145/224057.224075.

[28] lxc: Linux Containers. URL: http : / / lxc . sourceforge . net
(visited on 08/01/2012).

[29] A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire,
S. Hand, T. Deegan, D. McAuley, and J. Crowcroft.
“Turning Down the LAMP: Software Specialisation for the
Cloud”. In: Proceedings of the 2nd USENIX Conference
on hot topics in cloud computing (HOTCLOUD’10). 2010,
pages 11–11.

[30] P.K. Manadhata and J.M. Wing. “An Attack Surface
Metric”. In: Software Engineering, IEEE Transactions on
37.3 (2011), pages 371 –386. ISSN: 0098-5589. DOI: 10.
1109/TSE.2010.60.

[31] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M. Frans Kaashoek. “Software
fault isolation with API integrity and multi-principal mod-
ules”. In: Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP ’11). (Cascais, Por-
tugal). 2011, pages 115–128. ISBN: 978-1-4503-0977-6.
DOI: 10.1145/2043556.2043568.

[32] Frank Mayer, Karl MacMillan, and David Caplan.
SELinux By Example: Using Security Enhanced Linux.
2006, page 456. ISBN: 978-0131963696.

[33] T.J. McCabe. “A Complexity Measure”. In: Software En-
gineering, IEEE Transactions on SE-2.4 (1976), pages 308
–320. ISSN: 0098-5589. DOI: 10.1109/TSE.1976.233837.

[34] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei
Zhou, Anupam Datta, Virgil Gligor, and Adrian Perrig.
“TrustVisor: Efficient TCB Reduction and Attestation”.
In: Security and Privacy (SP), 2010 IEEE Symposium on.
2010, pages 143 –158. DOI: 10.1109/SP.2010.17.

[35] David Mosberger and Tai Jin. “httperf. A tool for mea-
suring web server performance”. In: SIGMETRICS Per-
formance Evaluation Review 26.3 (1998), pages 31–37.
ISSN: 0163-5999. DOI: 10.1145/306225.306235.

[36] Derek Gordon Murray, Grzegorz Milos, and Steven Hand.
“Improving Xen security through disaggregation”. In: Pro-
ceedings of the fourth ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments. VEE
’08. 2008, pages 151–160. ISBN: 978-1-59593-796-4. DOI:
10.1145/1346256.1346278.

[37] Sarah Nadi and Richard C. Holt. “Mining Kbuild to
Detect Variability Anomalies in Linux”. In: Proceedings of
the 16th European Conference on Software Maintenance

and Reengineering (CSMR ’12). (Szeged, Hungary). 2012.
ISBN: 978-1-4673-0984-4. DOI: 10.1109/CSMR.2012.21.

[38] ncc: The new generation C compiler. URL: http://students.
ceid.upatras.gr/∼sxanth/ncc/ (visited on 08/01/2012).

[39] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe
Calvès, Julia L. Lawall, and Gilles Muller. “Faults in
Linux: Ten years later”. In: Proceedings of the 16th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
’11). 2011, pages 305–318. DOI: 10 . 1145 / 1950365 .
1950401.

[40] phpBB. Free and Open Source Forum Software. URL:
www.phpbb.com (visited on 06/03/2012).

[41] Niels Provos. “Improving host security with system call
policies”. In: Proceedings of the 12th Conference on
USENIX Security Symposium (SSYM ’03). Volume 12.
2003, pages 18–18.

[42] D. Rosenberg. CVE-2010-3904 exploit. URL: www .
vsecurity.com/download/tools/linux-rds-exploit.c (visited
on 08/01/2012).

[43] B. Schneier. “Attack trees”. In: Dr. Dobb’s journal 12
(1999).

[44] Steven She and Thorsten Berger. Formal Semantics of the
Kconfig Language. Technical Note. University of Water-
loo, 2010.

[45] Yonghee Shin and Laurie Williams. “Is complexity really
the enemy of software security?” In: Proceedings of the
4th ACM workshop on Quality of protection. QoP ’08.
2008, pages 47–50. ISBN: 978-1-60558-321-1. DOI: 10 .
1145/1456362.1456372.

[46] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and
Wolfgang Schröder-Preikschat. “Efficient Extraction and
Analysis of Preprocessor-Based Variability”. In: Proceed-
ings of the 9th International Conference on Generative
Programming and Component Engineering (GPCE ’10).
(Eindhoven, The Netherlands). 2010, pages 33–42. ISBN:
978-1-4503-0154-1. DOI: 10.1145/1868294.1868300.

[47] Lenin Singaravelu, Calton Pu, Hermann Härtig, and Chris-
tian Helmuth. “Reducing TCB complexity for security-
sensitive applications: three case studies”. In: Proceedings
of the ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006 (EuroSys ’06). (Leuven, Bel-
gium). 2006, pages 161–174. ISBN: 1-59593-322-0. DOI:
10.1145/1217935.1217951.

[48] Brad Spengler and PaX team. grsecurity kernel patches.
URL: www.grsecurity.net (visited on 08/01/2012).

[49] S. Stolfo, S.M. Bellovin, and D. Evans. “Measuring Se-
curity”. In: Security Privacy, IEEE 9.3 (2011), pages 60
–65. ISSN: 1540-7993. DOI: 10.1109/MSP.2011.56.

[50] Michael M. Swift, Steven Martin, Henry M. Levy, and
Susan J. Eggers. “Nooks: an architecture for reliable
device drivers”. In: Proceedings of the 9th ACM SIGOPS
European Workshop “Beyond the PC: New Challenges
for the Operating System”. (Saint-Emilion, France). 2002,
pages 102–107. DOI: 10.1145/1133373.1133393.

[51] Reinhard Tartler, Anil Kurmus, Andreas Ruprecht, Bern-
hard Heinloth, Valentin Rothberg, Daniela Dorneanu,
Rüdiger Kapitza, Wolfgang Schröder-Preikschat, and
Daniel Lohmann. “Automatic OS Kernel TCB Reduction
by Leveraging Compile-Time Configurability”. In: Pro-
ceedings of the 8th Workshop on Hot Topics in System
Dependability (HotDep ’12). 2012.

[52] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and
Wolfgang Schröder-Preikschat. “Feature Consistency in
Compile-Time-Configurable System Software: Facing the
Linux 10,000 Feature Problem”. In: Proceedings of the
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2011 (EuroSys ’11). (Salzburg, Austria).
2011, pages 47–60. ISBN: 978-1-4503-0634-8. DOI: 10 .
1145/1966445.1966451.

[53] Chris Wright, Crispin Cowan, James Morris, Stephen
Smalley, and Greg Kroah-Hartman. “Linux Security Mod-

http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1145/1972551.1972557
http://dx.doi.org/10.1145/1508244.1508251
http://dx.doi.org/10.1145/224057.224075
http://lxc.sourceforge.net
http://dx.doi.org/10.1109/TSE.2010.60
http://dx.doi.org/10.1109/TSE.2010.60
http://dx.doi.org/10.1145/2043556.2043568
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/SP.2010.17
http://dx.doi.org/10.1145/306225.306235
http://dx.doi.org/10.1145/1346256.1346278
http://dx.doi.org/10.1109/CSMR.2012.21
http://students.ceid.upatras.gr/~sxanth/ncc/
http://students.ceid.upatras.gr/~sxanth/ncc/
http://dx.doi.org/10.1145/1950365.1950401
http://dx.doi.org/10.1145/1950365.1950401
www.phpbb.com
www.vsecurity.com/download/tools/linux-rds-exploit.c
www.vsecurity.com/download/tools/linux-rds-exploit.c
http://dx.doi.org/10.1145/1456362.1456372
http://dx.doi.org/10.1145/1456362.1456372
http://dx.doi.org/10.1145/1868294.1868300
http://dx.doi.org/10.1145/1217935.1217951
www.grsecurity.net
http://dx.doi.org/10.1109/MSP.2011.56
http://dx.doi.org/10.1145/1133373.1133393
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1966445.1966451

ule Framework”. In: Proceedings of the Ottawa Linux
Symposium. (Ottawa, OT, Canada). 2002, pages 604–617.

[54] Michal Zalewski, Niels Heinen, and Sebastian Roschke.
skipfish. Web application security scanner. URL: http : / /
code.google.com/p/skipfish/ (visited on 06/03/2012).

[55] Christoph Zengler and Wolfgang Küchlin. “Encoding the
Linux Kernel Configuration in Propositional Logic”. In:
Proceedings of the 19th European Conference on Artifi-
cial Intelligence (ECAI 2010) Workshop on Configuration
2010. 2010, pages 51–56.

Appendix

The following is a proof of Proposition 1.
Proof (AS1 and AS2 are attack surface metrics). AS1µ

satisfies Definition 5 through Lemma 1, as adding new
functions to the sum results in a larger attack surface
measurement (since µ has non-negative values).

For AS2µ , the non-negativity is a known result of
algebraic graph theory [6]: the Laplacian matrix of a
simple graph is symmetric real and all eigenvalues are
non-negative, hence, the quadratic form associated with
the Laplacian (x 7→ xT L(G)x) can only take non-negative
values.

Before proving that AS2µ satisfies the second property
in Lemma 1, we explicit the rationale behind chosing this
metric. The metric contains a quadratic term that accounts
for the relative “complexity” of a function in comparison
to its callers and callees: if a function is calling (or is called
by) a more complex function, its relative contribution to the
attack surface should increase and vice versa. For instance,
this can be written for a function n, called by functions
m, m′ and calling function m′′, κ(n) denoting the relative
complexity of function n:

κ(n)= µ(n)
[
(µ(n)−µ(m))+(µ(n)−µ(m′))+(µ(n)−µ(m′′))

]

Generalizing to any function:

κ(n) = µ(n)

deg(n)µ(n)− ∑
(i,n)∈C̃AS

µ(i)

Which, after summing over all functions, corresponds to
µAS

T L(G̃AS)µAS.
Let’s now prove that adding a new node to an existing

graph can only increase this quadratic term. Without loss
of generality, we assume we starting with function set F =
J1 . . .N−1K and affect N to the newly added function. This
function is either called or is calling m functions in I ⊆ F
with deg(N) = m < N. We denote by κ the old relative
complexity and κ ′ the new (after the addition of N to the
graph), and deg corresponds as well to the old degree of
a node, unless it is deg(N). Then:

∀i ∈ F,κ ′(i)−κ(i) = µ(i) [µ(i)−µ(N)]

Therefore:

κ(N)+ ∑
i∈F

(κ ′(i)−κ(i)) = µ(N)

[
deg(N)µ(N)−∑

i∈I
µ(i)

]
+∑

i∈I
µ(i) [µ(i)−µ(N)]

= ∑
i∈I

µ(i)2 +mµ(N)2−2µ(N)∑
i∈I

µ(i)

= ∑
i∈I

(µ(i)−µ(N))2 ≥ 0

Hence, adding new functions can only increase the attack
surface measurement AS2µ .

http://code.google.com/p/skipfish/
http://code.google.com/p/skipfish/

	Introduction
	Security Metrics
	Preliminary definitions
	Security Models
	Generic Model GenSec
	Isolation Model IsolSec

	Attack Surface Measurements
	Summary

	Kernel Tailoring
	General Idea and Solution Overview
	Configuration Mechanisms in Linux
	Kernel-Configuration Tailoring

	Evaluation
	Overview
	LAMP-stack use case
	Description
	Results

	Workstation/NFS use case
	Description
	Results

	Discussion
	Attack surface measurements
	Kernel tailoring

	Related work
	Conclusion

