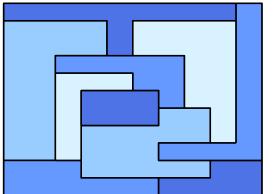


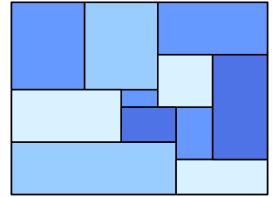
Drawings of planar graphs with prescribed face area Linda Kleist | WG 2016

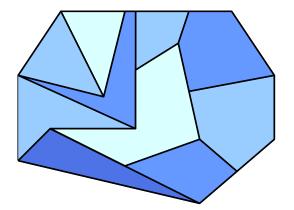
Cartograms

- contact representations
- weights on the vertices

- complexity of polygons
- restricted shapes







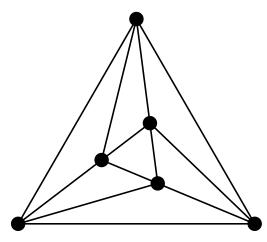
rectangular dual

- weights on the faces
- straight-line drawings

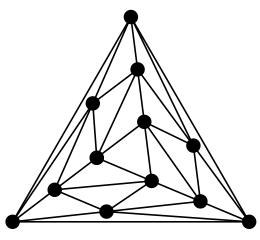
- weights on the faces
- straight-line drawings
- A planar graph G is equi-areal if there exists
 - planar straight-line drawing of G s.t.
 - every inner face has the same area.

- weights on the faces
- straight-line drawings
- A planar graph G is equi-areal if there exists
 - planar straight-line drawing of G s.t.
 - every inner face has the same area.

[Ringel, 1990] Octahedron and icosahedron are equi-areal.



octahedron graph

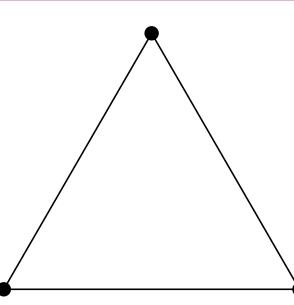


icosahedron graph

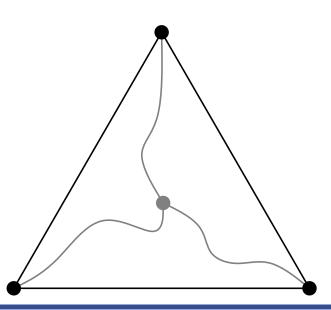
- $\begin{array}{l} G \ \text{plane graph, } F' \ \text{set of inner faces} \\ G \ \text{is} \ \underline{\text{area-universal}} \ \text{if} \\ \ \text{for all} \ A : F' \rightarrow \mathbb{R}^+ \ \text{there exists} \end{array}$
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$

- G plane graph, F' set of inner faces G is <u>area-universal</u> if - for all $A: F' \to \mathbb{R}^+$ there exists
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$

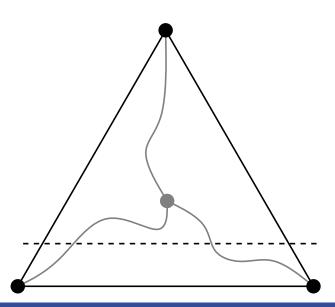
- $\begin{array}{l} G \text{ plane graph, } F' \text{ set of inner faces} \\ G \text{ is } \underline{\text{area-universal}} \quad \text{if} \\ \text{ for all } A \text{: } F' \rightarrow \mathbb{R}^+ \text{ there exists} \end{array}$
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$



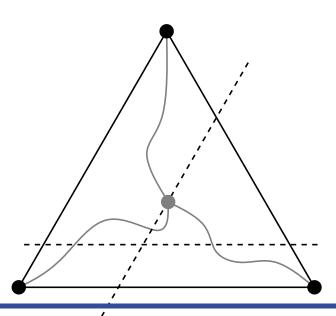
- G plane graph, F' set of inner faces G is <u>area-universal</u> if - for all $A: F' \to \mathbb{R}^+$ there exists
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$



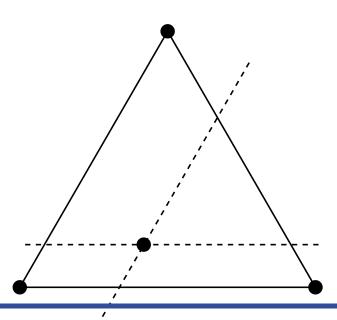
- $\begin{array}{l} G \mbox{ plane graph, } F' \mbox{ set of inner faces} \\ G \mbox{ is } \underline{\mbox{ area-universal}} \mbox{ if} \\ -\mbox{ for all } A \mbox{:} F' \rightarrow \mathbb{R}^+ \mbox{ there exists} \end{array}$
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$



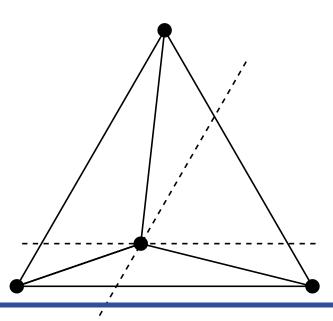
- $\begin{array}{l} G \mbox{ plane graph, } F' \mbox{ set of inner faces} \\ G \mbox{ is } \underline{\mbox{ area-universal}} \mbox{ if} \\ -\mbox{ for all } A \mbox{:} F' \rightarrow \mathbb{R}^+ \mbox{ there exists} \end{array}$
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$



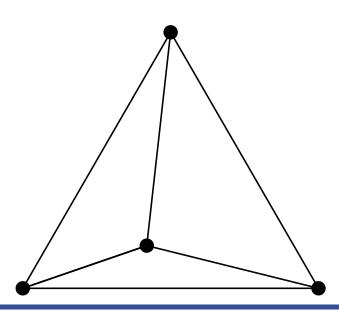
- $\begin{array}{l} G \mbox{ plane graph, } F' \mbox{ set of inner faces} \\ G \mbox{ is } \underline{\mbox{ area-universal}} \mbox{ if} \\ -\mbox{ for all } A \mbox{:} F' \rightarrow \mathbb{R}^+ \mbox{ there exists} \end{array}$
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$



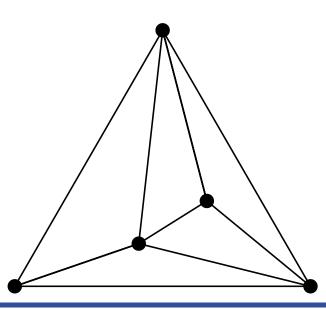
- $\begin{array}{l} G \mbox{ plane graph, } F' \mbox{ set of inner faces} \\ G \mbox{ is } \underline{\mbox{ area-universal}} \mbox{ if} \\ -\mbox{ for all } A \mbox{:} F' \rightarrow \mathbb{R}^+ \mbox{ there exists} \end{array}$
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$



- G plane graph, F' set of inner faces G is <u>area-universal</u> if - for all $A: F' \to \mathbb{R}^+$ there exists
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$



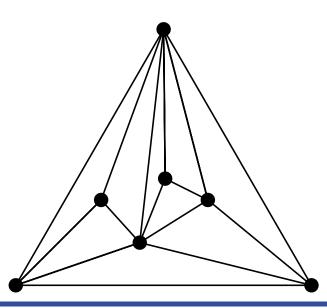
- $\begin{array}{l} G \mbox{ plane graph, } F' \mbox{ set of inner faces} \\ G \mbox{ is } \underline{\mbox{ area-universal}} \mbox{ if} \\ -\mbox{ for all } A \mbox{:} F' \rightarrow \mathbb{R}^+ \mbox{ there exists} \end{array}$
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \forall f \in F'.$



G plane graph, F' set of inner faces G is <u>area-universal</u> if - for all $A: F' \to \mathbb{R}^+$ there exists

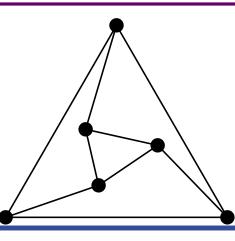
- planar straight-line drawing of G s.t.

$$-area(f) = A(f) \ \forall f \in F'.$$



- G plane graph, F' set of inner faces G is <u>area-universal</u> if
 - for all $A: F' \to \mathbb{R}^+$ there exists
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \ \forall f \in F'.$

[Thomassen, 1992] Plane cubic graphs are area-universal.



- *G* plane graph, *F*' set of inner faces *G* is <u>area-universal</u> if for all $A: F' \rightarrow \mathbb{D}^+$ there exists
 - for all $A: F' \to \mathbb{R}^+$ there exists
 - planar straight-line drawing of G s.t.
 - $-area(f) = A(f) \ \forall f \in F'.$

[Thomassen, 1992] Plane cubic graphs are area-universal.

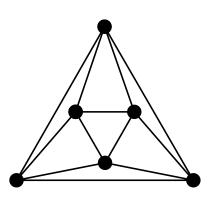
[Ringel, 1990] Octahedron graph is not area-universal.

2 directions

Today's agenda

2 directions

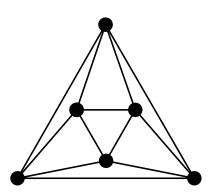
- non-area-universality
 - a combinatorial proof
 - large class



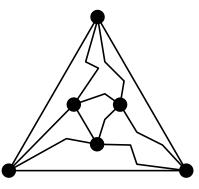
Today's agenda

2 directions

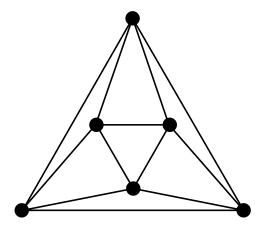
- non-area-universality
 - a combinatorial proof
 - large class



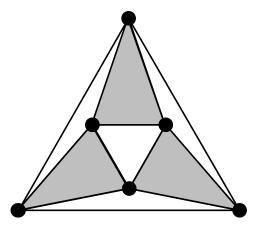
 \blacktriangleright Realizing all faces areas \rightarrow Drawings with bends



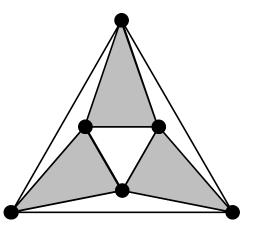
- Proof-Sketch:
- T Eulerian plane triangulation



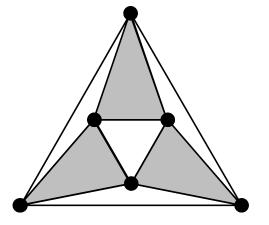
- Proof-Sketch:
- T Eulerian plane triangulation
 - has 2-face coloring, |W| > |G|



- Proof-Sketch:
- T Eulerian plane triangulation
 - has 2-face coloring, |W| > |G| \rightarrow area-assignment = $\begin{cases} 0 \text{ white face} \\ 1 \text{ gray face} \end{cases}$



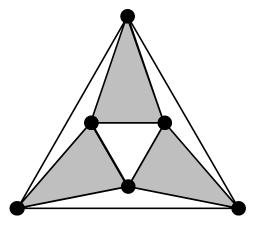
- Proof-Sketch:
- T Eulerian plane triangulation
 - has 2-face coloring, |W| > |G| \rightarrow area-assignment = $\begin{cases} 0 \text{ white face} \\ 1 \text{ gray face} \end{cases}$



Properties of a realizing drawing:

- each white face has flat angle \implies

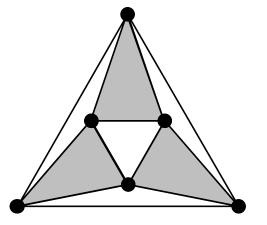
- Proof-Sketch:
- T Eulerian plane triangulation
 - has 2-face coloring, |W| > |G| \rightarrow area-assignment = $\begin{cases} 0 \text{ white face} \\ 1 \text{ gray face} \end{cases}$



Properties of a realizing drawing:

- each white face has flat angle 🖂 -
- each inner vertex has at most one flat angle -

- Proof-Sketch:
- T Eulerian plane triangulation
 - has 2-face coloring, |W| > |G| \rightarrow area-assignment = $\begin{cases} 0 \text{ white face} \\ 1 \text{ gray face} \end{cases}$



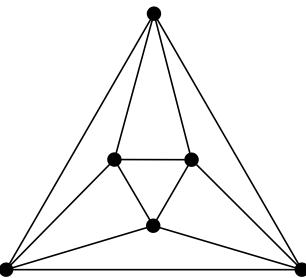
Properties of a realizing drawing:

- each white face has flat angle -

number of white faces > inner vertices $\frac{1}{2}$

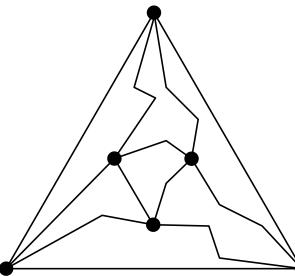
Realizing all face areas

G plane graph, F' inner face set *A*: $F' \rightarrow \mathbb{R}^+$



Realizing all face areas

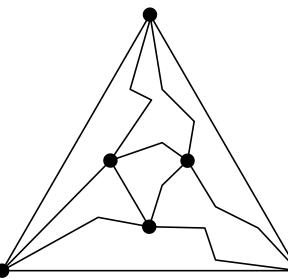
G plane graph, F' inner face set *A*: $F' \rightarrow \mathbb{R}^+$



\rightsquigarrow allow bends

Realizing all face areas

G plane graph, F' inner face set *A*: $F' \rightarrow \mathbb{R}^+$



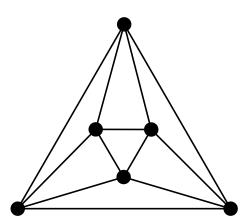
\rightsquigarrow allow bends

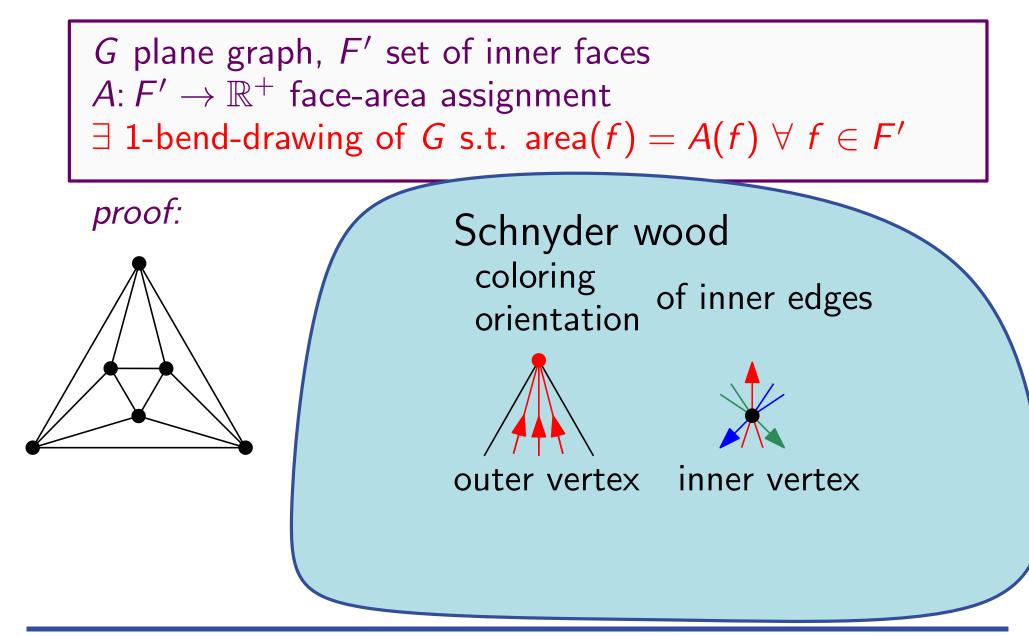
How many bends are sufficient?

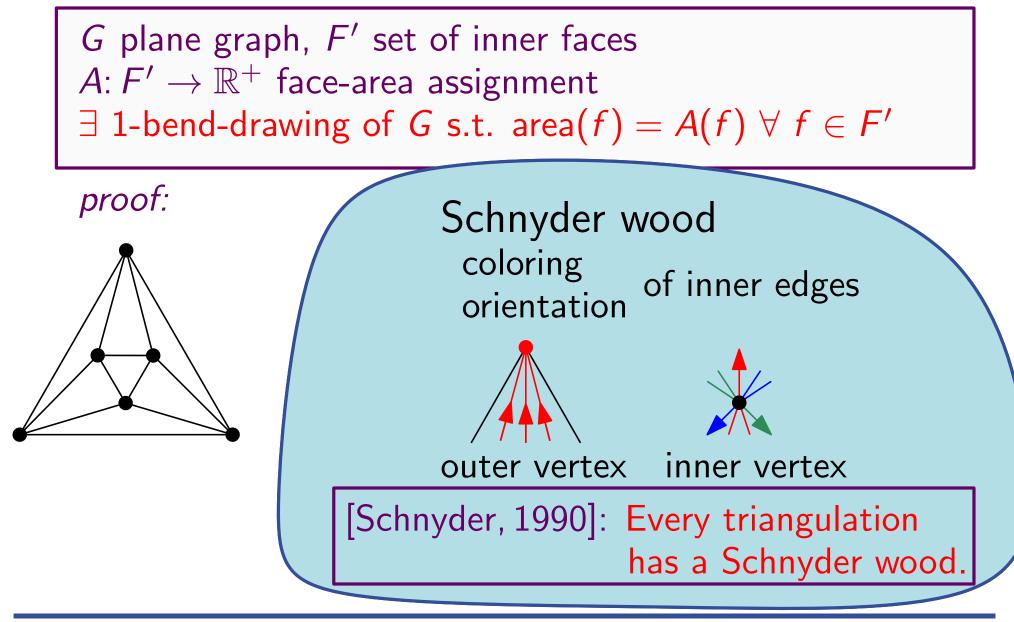
G plane graph, *F'* set of inner faces $A: F' \to \mathbb{R}^+$ face-area assignment \exists 1-bend-drawing of *G* s.t. area $(f) = A(f) \forall f \in F'$

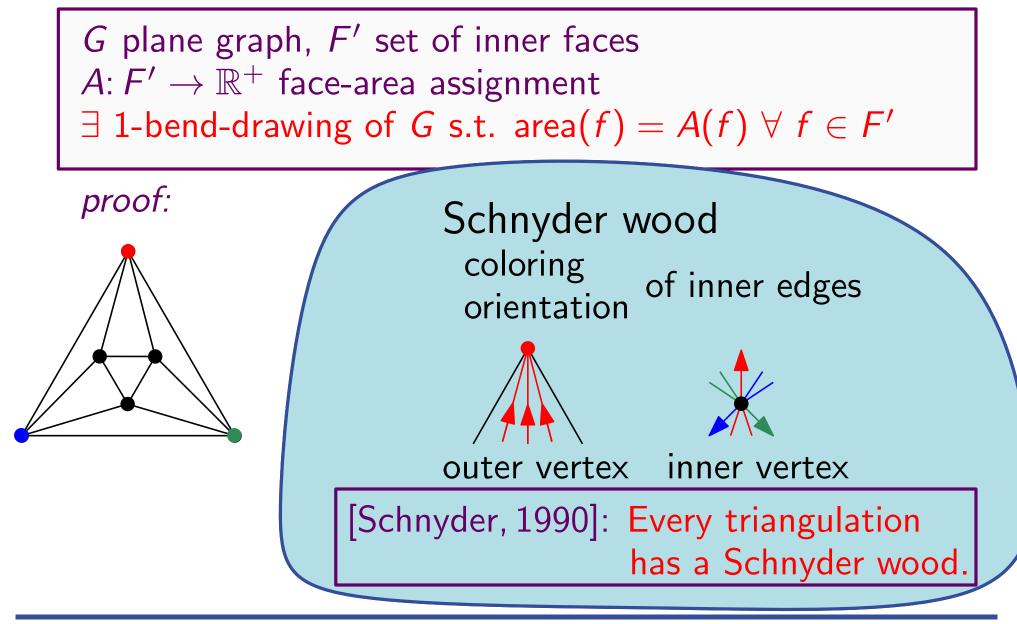
G plane graph, *F*' set of inner faces $A: F' \to \mathbb{R}^+$ face-area assignment \exists 1-bend-drawing of *G* s.t. $\operatorname{area}(f) = A(f) \forall f \in F'$

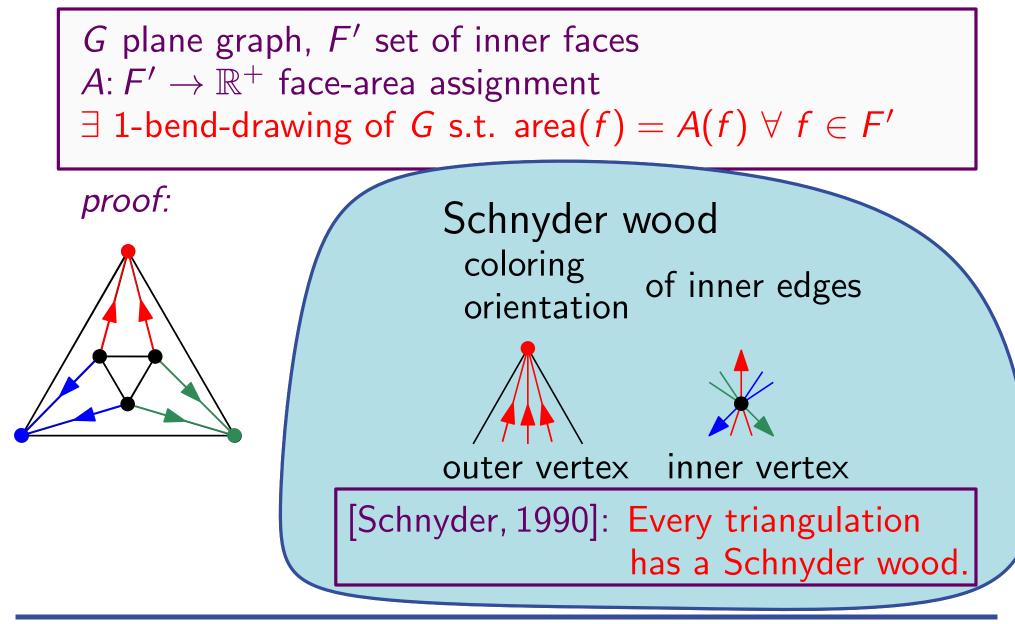
proof:

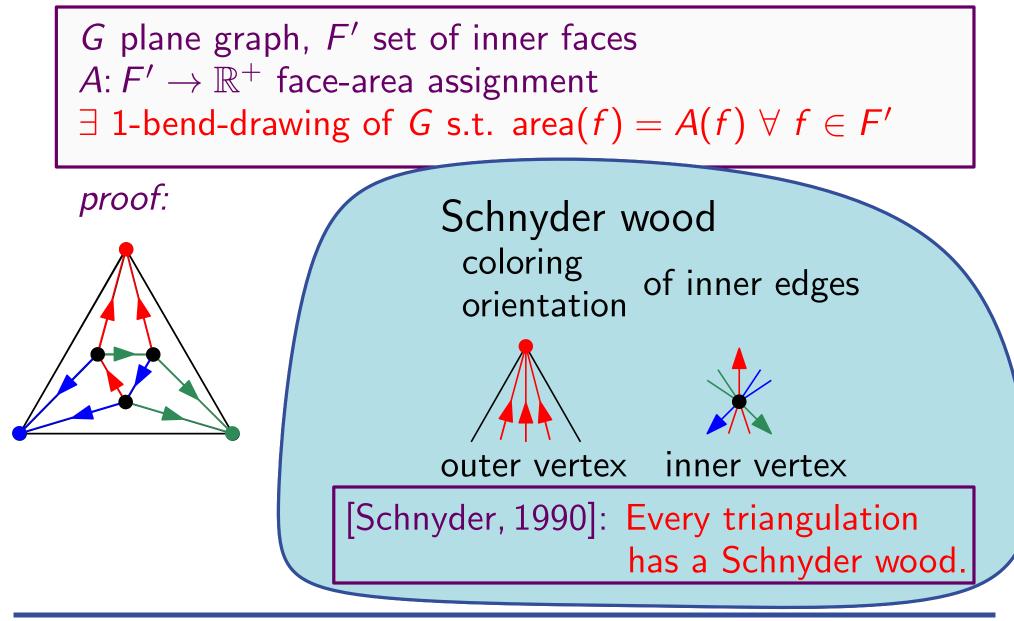


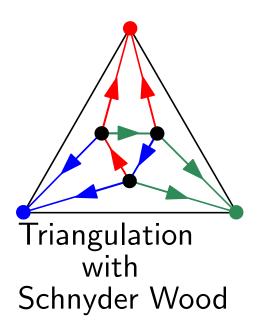




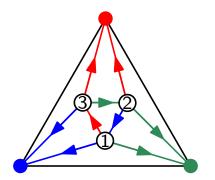




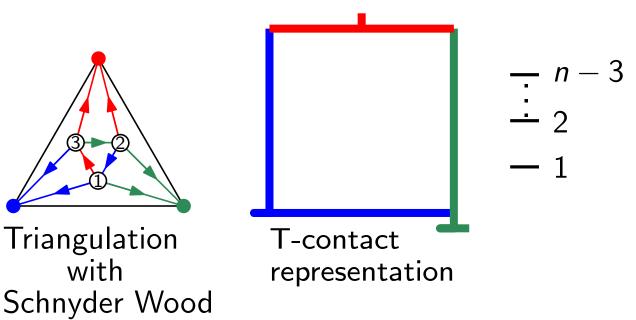


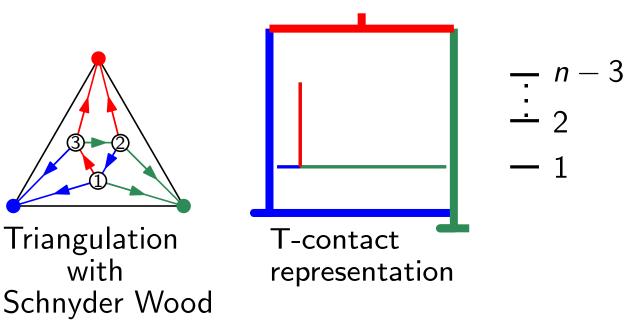


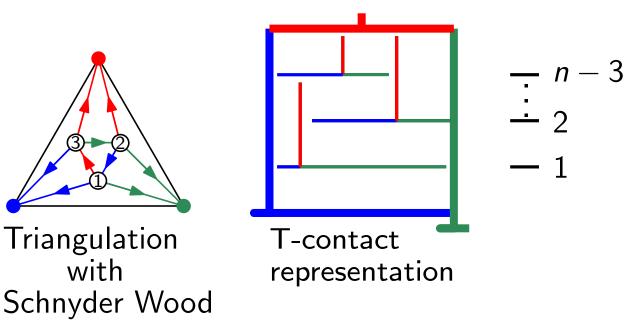
proof:



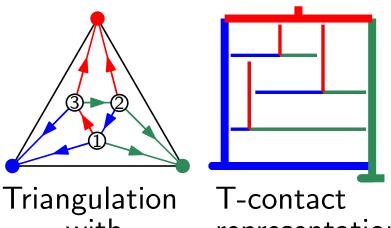
Triangulation with Schnyder Wood





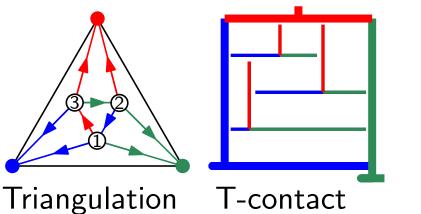


proof:

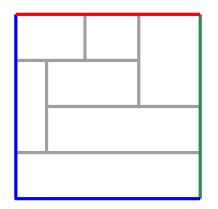


with representation Schnyder Wood

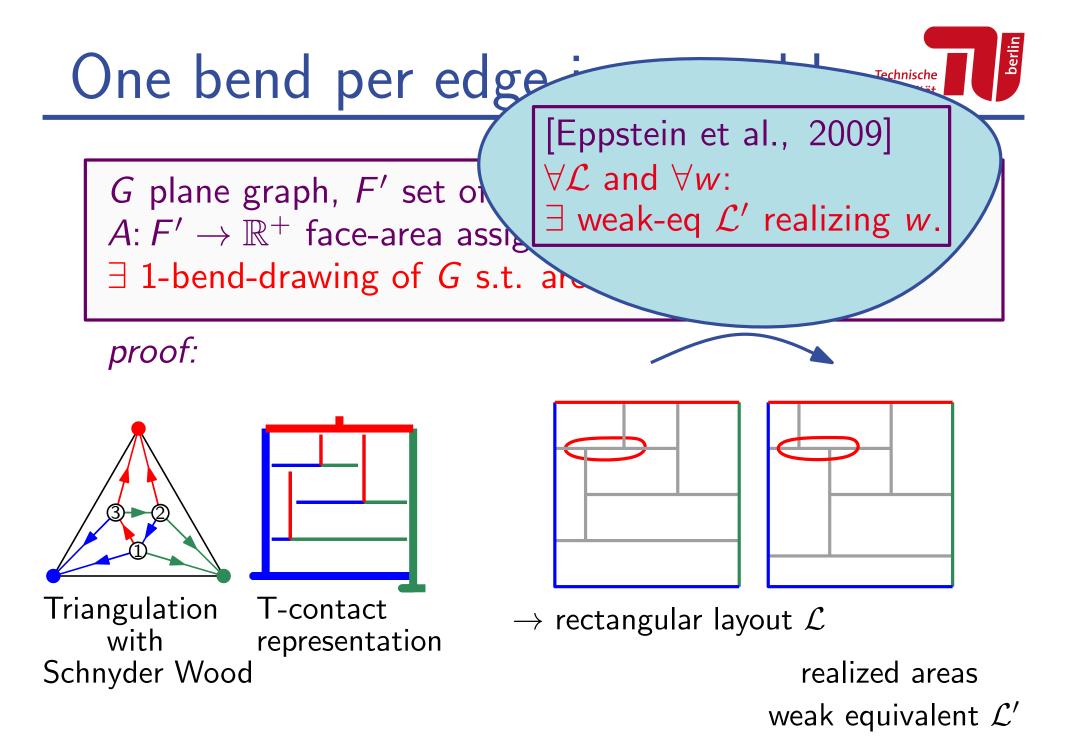
proof:

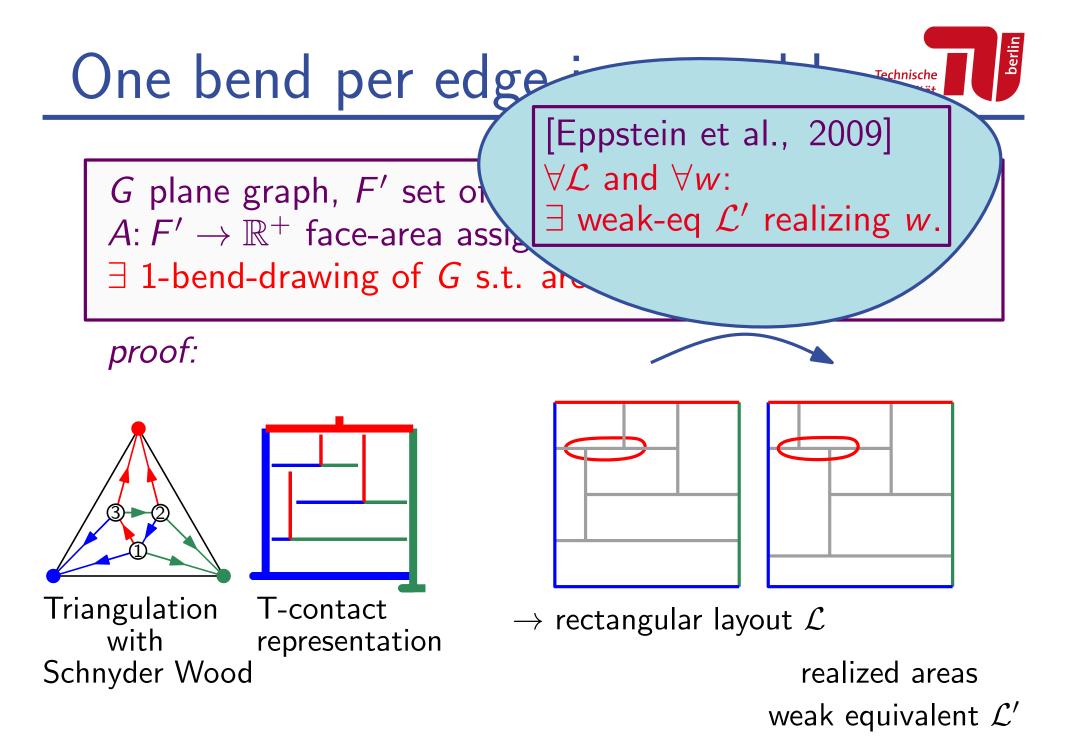


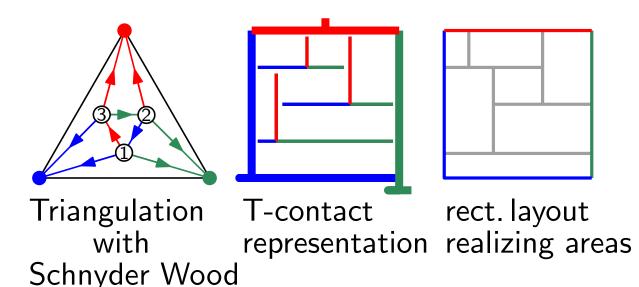
Irlangulation I-contact with representation Schnyder Wood



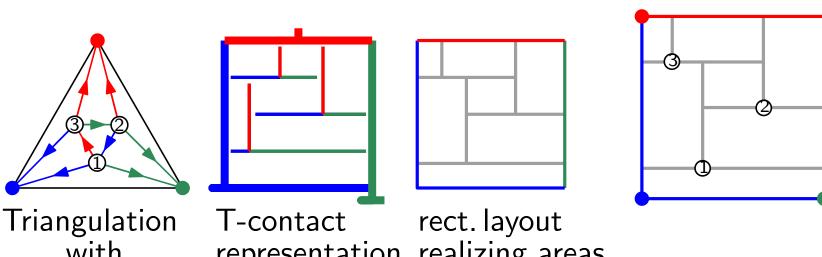
ightarrow rectangular layout ${\cal L}$





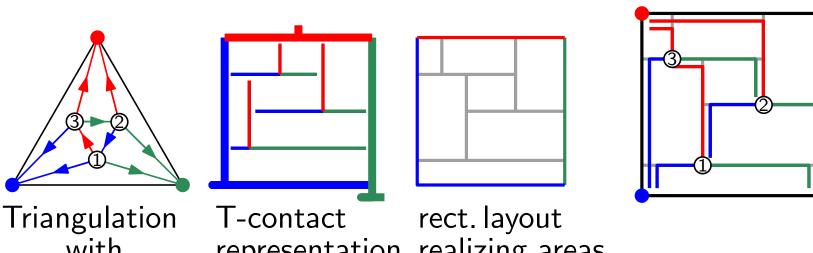


proof:

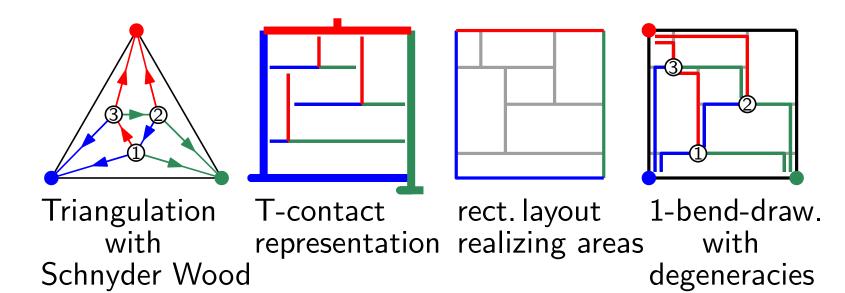


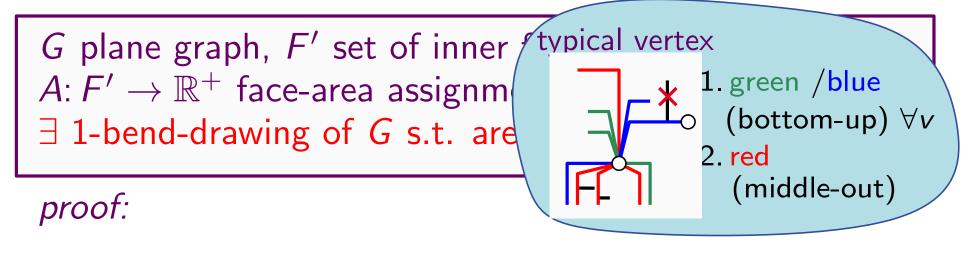
with representation realizing areas Schnyder Wood

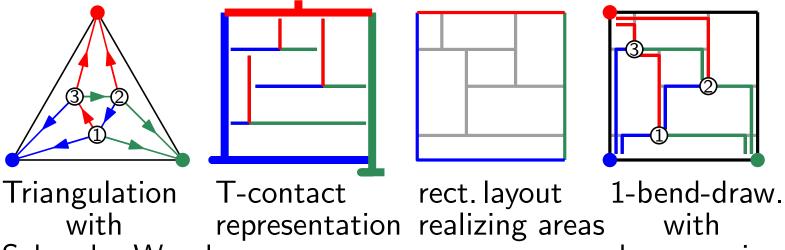
proof:



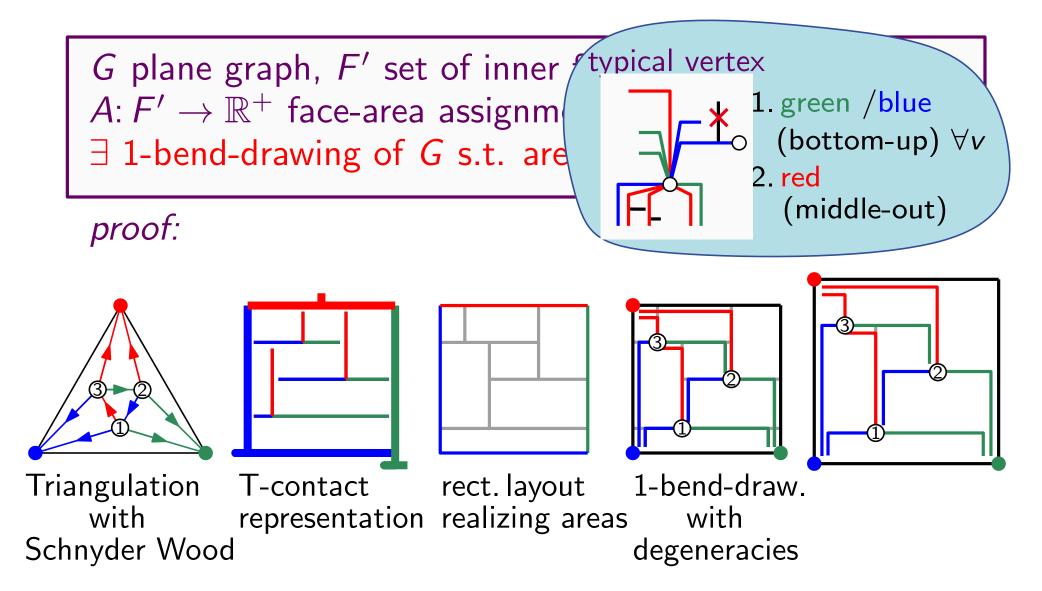
with representation realizing areas Schnyder Wood

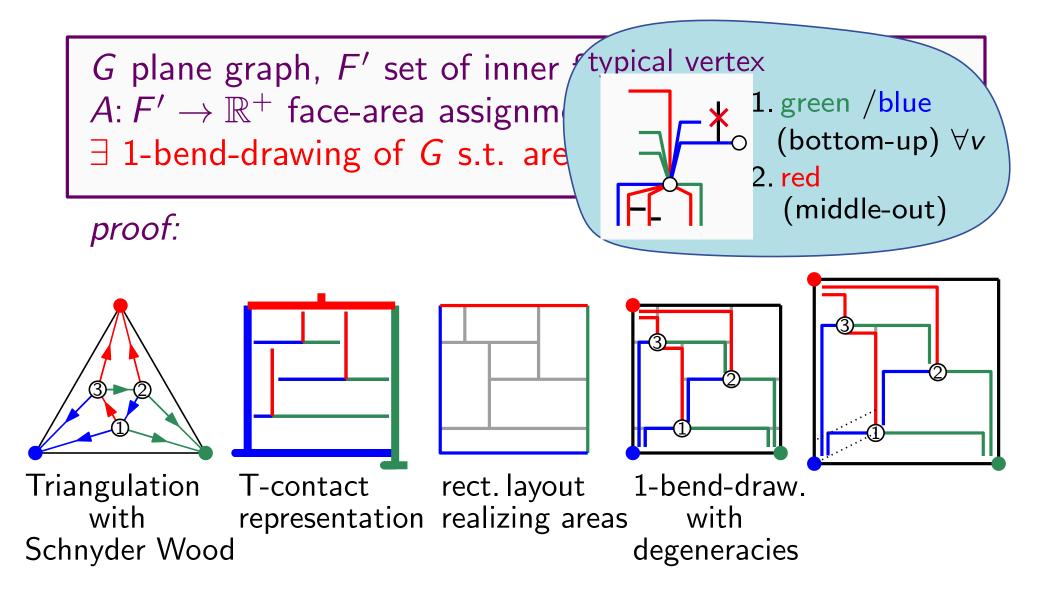


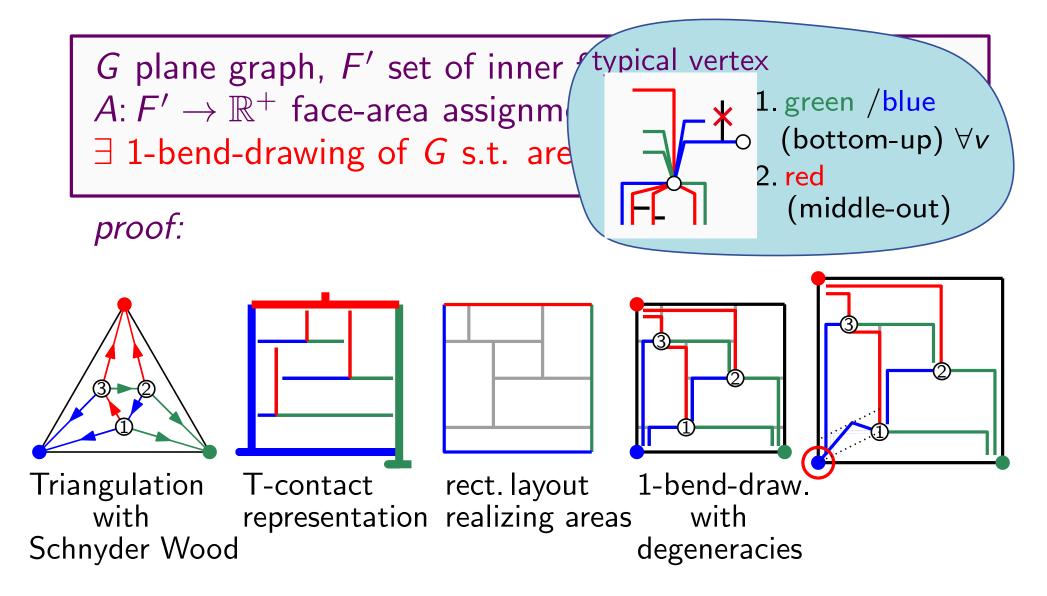


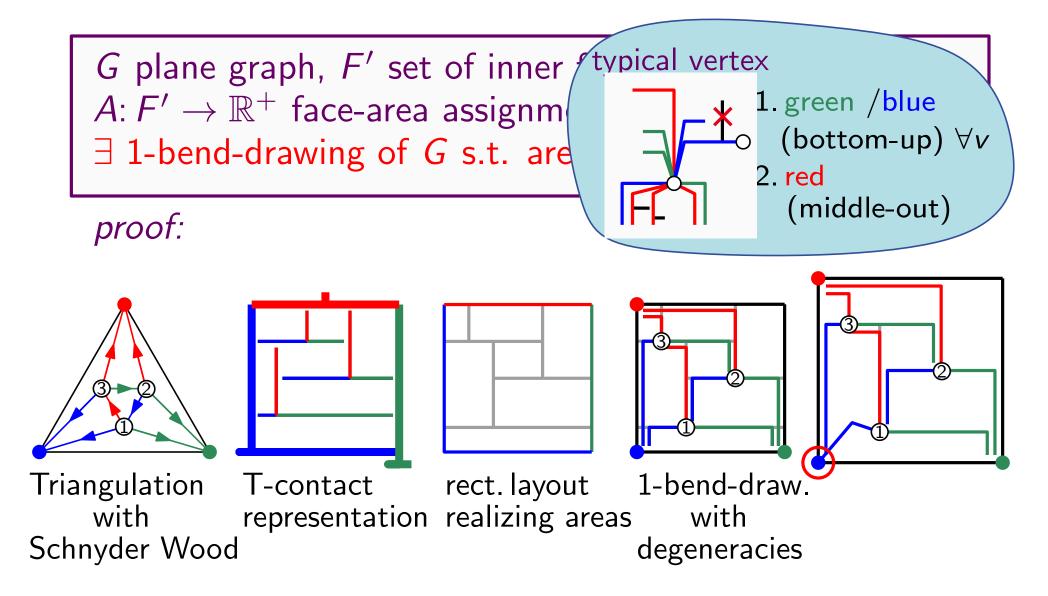


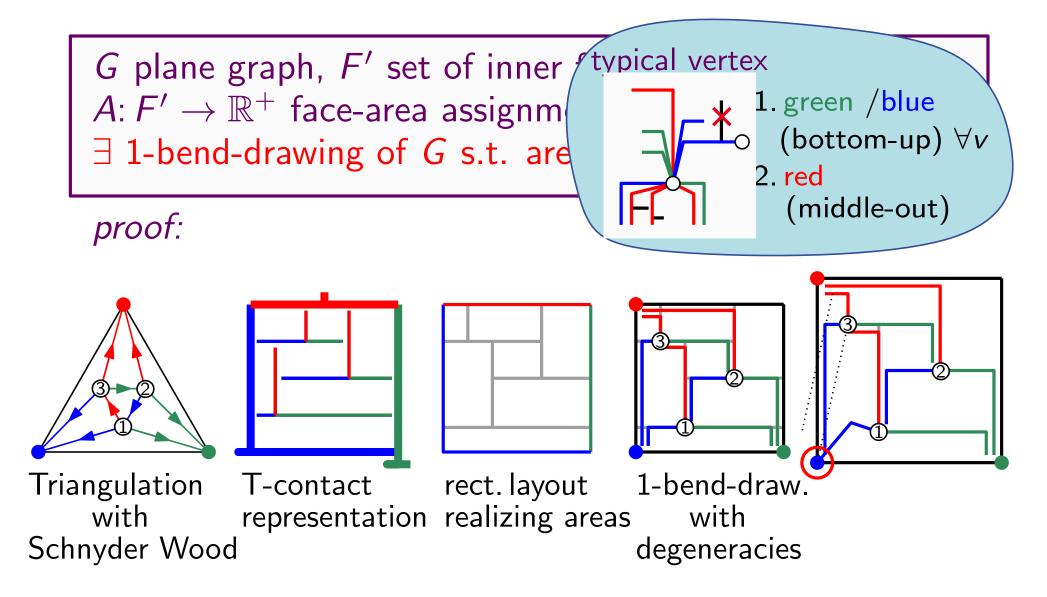
Schnyder Wood degeneracies

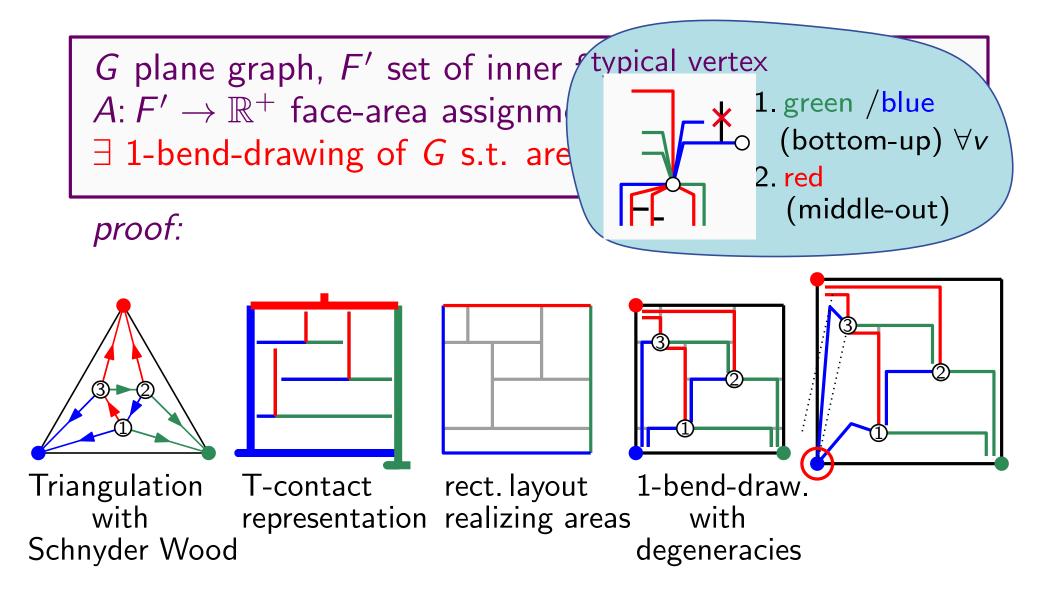


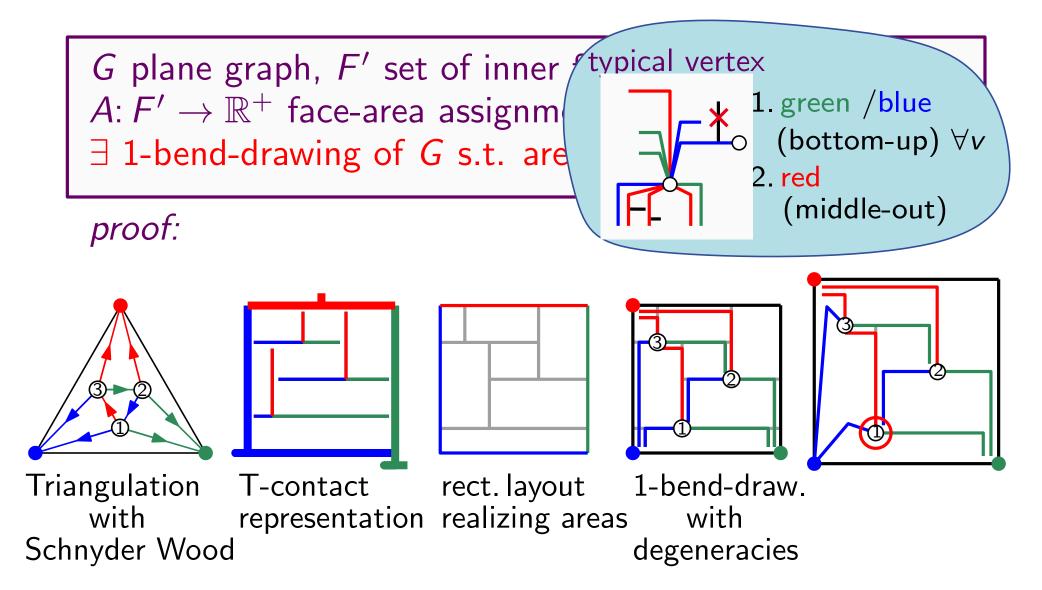


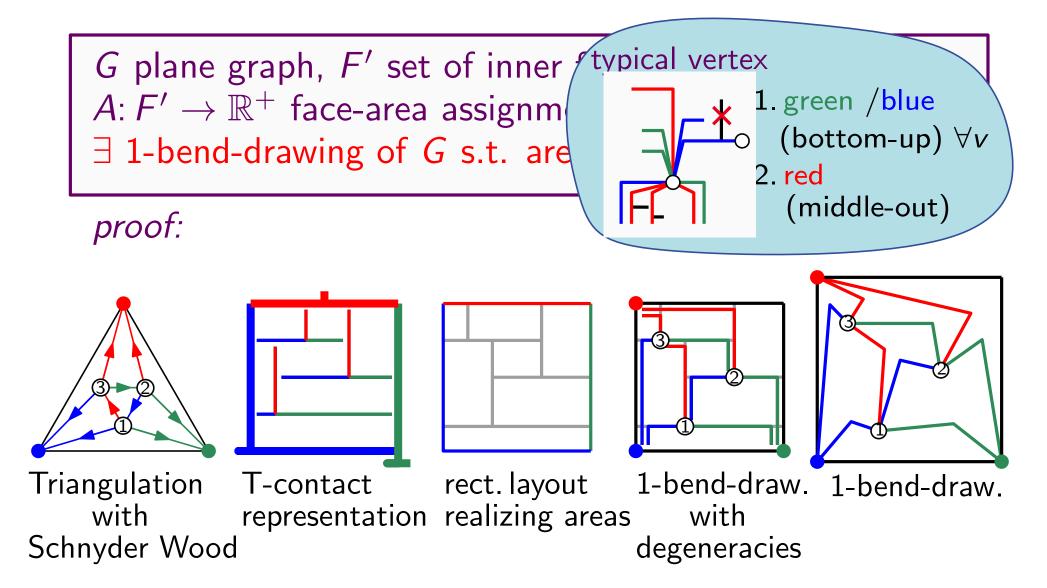


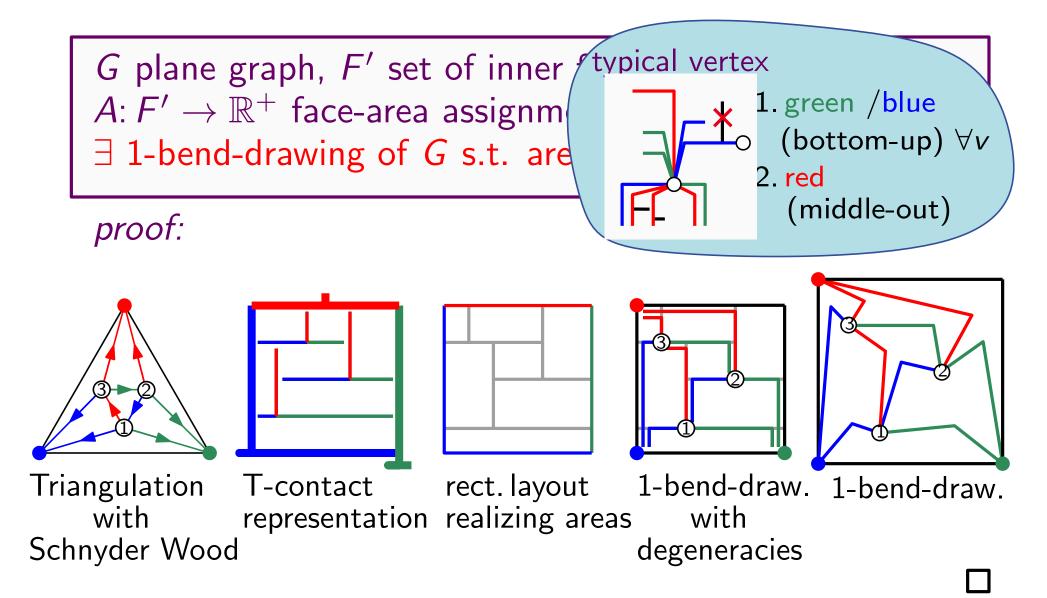




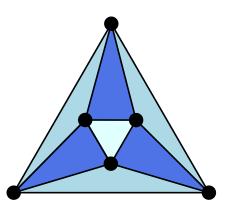






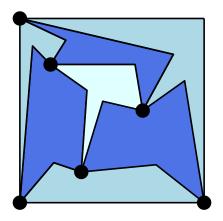


Eulerian triangulations are All planar graphs have not area-universal.



realizing 1-bend-drawings.

Technische Universitä Berlin



Open Questions:

- How many bends are really necessary and sufficient? $\frac{1}{12}|E| \leq \#$ bends $\leq |E|$
- ► Are bipartite graphs area-universal?
- How hard is testing the realizability of an area-assignment?