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Drawings of planar graphs



Linda Kleist | WG 2016

Planar graphs and areas

Cartograms

- weights on the vertices
- contact representations

rectangular dualrectilinear dual

- complexity of polygons
- restricted shapes
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Planar graphs and areas

octahedron graph icosahedron graph

- weights on the faces
- straight-line drawings

[Ringel, 1990] Octahedron and icosahedron are equi-areal.

planar straight-line drawing of G s.t.
every inner face has the same area.

equi-arealA planar graph G is if there exists
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G plane graph, F ′ set of inner faces
area-universal if

area(f ) = A(f ) ∀f ∈ F ′.

G is

planar straight-line drawing of G s.t.
for all A:F ′ → R+ there exists
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G plane graph, F ′ set of inner faces
area-universal if

area(f ) = A(f ) ∀f ∈ F ′.

G is

planar straight-line drawing of G s.t.

Planar 3-trees/stacked triangulations are area-universal.

for all A:F ′ → R+ there exists

[Thomassen, 1992] Plane cubic graphs are area-universal.
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Area-Universality

G plane graph, F ′ set of inner faces
area-universal if

area(f ) = A(f ) ∀f ∈ F ′.

G is

planar straight-line drawing of G s.t.

Planar 3-trees/stacked triangulations are area-universal.

for all A:F ′ → R+ there exists

[Thomassen, 1992] Plane cubic graphs are area-universal.

[Ringel, 1990] Octahedron graph is not area-universal.
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Today’s agenda

2 directions

non-area-universality

- a combinatorial proof

- large class

Realizing all faces areas

→ Drawings with bends
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Every Eulerian plane triangulation is not area-universal.
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Non-area-universality

Every Eulerian plane triangulation is not area-universal.

Properties of a realizing drawing:
- each white face has flat angle
- each inner vertex has at most one flat angle

Proof-Sketch:

→ area-assignment =
0 white face
1 gray face

number of white faces > inner vertices

T Eulerian plane triangulation

- has 2-face coloring, |W | > |G |
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G plane graph, F’ inner face set
A:F ′ → R+
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Realizing all face areas

G plane graph, F’ inner face set
A:F ′ → R+

How many bends are sufficient?

 allow bends
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G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

One bend per edge is enough!



Linda Kleist | WG 2016

G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

One bend per edge is enough!

proof:



Linda Kleist | WG 2016

G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

Schnyder wood

outer vertex inner vertex

coloring
orientation

of inner edges

One bend per edge is enough!

proof:



Linda Kleist | WG 2016

G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

Schnyder wood

outer vertex inner vertex

coloring
orientation

of inner edges

has a Schnyder wood.
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[Schnyder, 1990]: Every triangulation
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G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

Triangulation
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One bend per edge is enough!

proof:
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G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

→ rectangular layout LTriangulation
with
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proof:
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G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

→ rectangular layout LTriangulation
with

One bend per edge is enough!

realized areas

T-contact

weak equivalent L′

proof:

3 2

1

representation

[Eppstein et al., 2009]
∀L and ∀w :
∃ weak-eq L′ realizing w .

Schnyder Wood
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G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

→ rectangular layout LTriangulation
with

One bend per edge is enough!

realized areas

T-contact

weak equivalent L′

proof:

3 2

1

representation

[Eppstein et al., 2009]
∀L and ∀w :
∃ weak-eq L′ realizing w .

Schnyder Wood



Linda Kleist | WG 2016

realizing areas

G plane graph, F ′ set of inner faces
A:F ′ → R+ face-area assignment
∃ 1-bend-drawing of G s.t. area(f ) = A(f ) ∀ f ∈ F ′

Triangulation
with

One bend per edge is enough!

T-contact

proof:
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Summary & Questions

Eulerian triangulations are All planar graphs have

realizing 1-bend-drawings.

How many bends are really necessary and sufficient?

Are bipartite graphs area-universal?

How hard is testing the realizability of an area-assignment?

1
12 |E | ≤#bends ≤ |E |

not area-universal.

Open Questions:


