

Drawings of planar graphs

 with prescribed face areaLinda Kleist | WG 2016

Planar graphs and areas

Cartograms

- contact representations
- weights on the vertices
- complexity of polygons
- restricted shapes

rectilinear dual

rectangular dual

Planar graphs and areas

- weights on the faces
- straight-line drawings

Planar graphs and areas

- weights on the faces
- straight-line drawings

A planar graph G is equi-areal if there exists

- planar straight-line drawing of G s.t.
- every inner face has the same area.

Planar graphs and areas

- weights on the faces
- straight-line drawings

A planar graph G is equi-areal if there exists

- planar straight-line drawing of G s.t.
- every inner face has the same area.
[Ringel, 1990] Octahedron and icosahedron are equi-areal

octahedron graph

icosahedron graph

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.
[Thomassen, 1992] Plane cubic graphs are area-universal.

Area-Universality

G plane graph, F^{\prime} set of inner faces
G is area-universal if

- for all $A: F^{\prime} \rightarrow \mathbb{R}^{+}$there exists
- planar straight-line drawing of G s.t.
$-\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$.
Planar 3-trees/stacked triangulations are area-universal.
[Thomassen, 1992] Plane cubic graphs are area-universal.
[Ringel, 1990] Octahedron graph is not area-universal.

Today's agenda

2 directions

Today's agenda

2 directions

- non-area-universality
- a combinatorial proof
- large class

Today's agenda

2 directions

- non-area-universality
- a combinatorial proof
- large class

- Realizing all faces areas
\rightarrow Drawings with bends

Every Eulerian plane triangulation is not area-universal.

Every Eulerian plane triangulation is not area-universal.
Proof-Sketch:
T Eulerian plane triangulation

Every Eulerian plane triangulation is not area-universal.
Proof-Sketch:
T Eulerian plane triangulation

- has 2-face coloring, $|W|>|G|$

Every Eulerian plane triangulation is not area-universal.
Proof-Sketch:
T Eulerian plane triangulation

- has 2-face coloring, $|W|>|G|$
\rightarrow area-assignment $=\left\{\begin{array}{l}0 \text { white face } \\ 1 \text { gray face }\end{array}\right.$

Non-area-universality

Every Eulerian plane triangulation is not area-universal.
Proof-Sketch:
T Eulerian plane triangulation

- has 2-face coloring, $|W|>|G|$
\rightarrow area-assignment $=\left\{\begin{array}{l}0 \text { white face } \\ 1 \text { gray face }\end{array}\right.$

Properties of a realizing drawing:

- each white face has flat angle

Non-area-universality

Every Eulerian plane triangulation is not area-universal.
Proof-Sketch:
T Eulerian plane triangulation

- has 2-face coloring, $|W|>|G|$
\rightarrow area-assignment $=\left\{\begin{array}{l}0 \text { white face } \\ 1 \text { gray face }\end{array}\right.$

Properties of a realizing drawing:

- each white face has flat angle

- each inner vertex has at most one flat angle \Longrightarrow

Non-area-universality

Every Eulerian plane triangulation is not area-universal.
Proof-Sketch:
T Eulerian plane triangulation

- has 2-face coloring, $|W|>|G|$
\rightarrow area-assignment $=\left\{\begin{array}{l}0 \text { white face } \\ 1 \text { gray face }\end{array}\right.$

Properties of a realizing drawing:

- each white face has flat angle

- each inner vertex has at most one flat angle \Longrightarrow
number of white faces $>$ inner vertices $\$$

Realizing all face areas

G plane graph, F^{\prime} inner face set
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$

G plane graph, F^{\prime} inner face set
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$

\rightsquigarrow allow bends

Realizing all face areas

G plane graph, F^{\prime} inner face set
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$

\rightsquigarrow allow bends

How many bends are sufficient?

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. area $(f)=A(f) \forall f \in F^{\prime}$
proof:

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Schnyder wood coloring
orientation

outer vertex inner vertex
[Schnyder, 1990]: Every triangulation has a Schnyder wood.

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Schnyder wood coloring
orientation

outer vertex inner vertex
[Schnyder, 1990]: Every triangulation has a Schnyder wood.

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:
Schnyder wood coloring
orientation

outer vertex inner vertex
[Schnyder, 1990]: Every triangulation has a Schnyder wood.

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:
Schnyder wood coloring
orientation of inner edges

outer vertex inner vertex
[Schnyder, 1990]: Every triangulation has a Schnyder wood.

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with
Schnyder Wood

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with
Schnyder Wood

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with
Schnyder Wood

representation

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with
Schnyder Wood
representation

T-contact

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with
Schnyder Wood

$$
\begin{aligned}
& \bar{\vdots}-3 \\
& -2 \\
& -1
\end{aligned}
$$

T-contact representation

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Schnyder Wood

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Schnyder Wood

One bend per edge

G plane graph, F^{\prime} set of $A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area asss \exists 1-bend-drawing of G s.t.

[Eppstein et al., 2009]

 $\forall \mathcal{L}$ and $\forall w$:

Triangulation with
Schnyder Wood
 T-contact
representation

\rightarrow rectangular layout \mathcal{L}
realized areas weak equivalent \mathcal{L}^{\prime}

One bend per edge

G plane graph, F^{\prime} set of $A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area asss \exists 1-bend-drawing of G s.t.

[Eppstein et al., 2009]

 $\forall \mathcal{L}$ and $\forall w$:

Triangulation with
Schnyder Wood
 T-contact
representation

\rightarrow rectangular layout \mathcal{L}
realized areas weak equivalent \mathcal{L}^{\prime}

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with

T-contact representation realizing areas
Schnyder Wood

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with

T-contact representation realizing areas
rect. layout

Schnyder Wood

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. area $(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with

T-contact representation realizing areas
rect. layout

Schnyder Wood

One bend per edge is enough!

G plane graph, F^{\prime} set of inner faces
$A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignment
\exists 1-bend-drawing of G s.t. $\operatorname{area}(f)=A(f) \forall f \in F^{\prime}$
proof:

Triangulation with Schnyder Wood

rect. layout
1-bend-draw. with degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex $A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm ${ }^{*}$ 1. green /blue \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

T-contact representation realizing areas
rect. layout
realizing areas
degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex $A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

T-contact representation realizing areas
rect. layout
realizing areas
degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex A: $F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

T-contact representation realizing areas
rect. layout
realizing areas
degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex $A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

T-contact representation realizing areas
rect. layout
realizing areas
degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex $A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

T-contact representation realizing areas
rect. layout
realizing areas
degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner $/$ typical vertex A: $F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

rect. layout

1-bend-draw.
with
degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex $A: F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

T-contact representation realizing areas
rect. layout
realizing areas
degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex A: $F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

T-contact representation realizing areas
rect. layout
realizing areas
degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex A: $F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

rect. layout

1-bend-draw. 1-bend-draw. representation realizing areas with degeneracies

One bend per edge is enough!

G plane graph, F^{\prime} set of inner /typical vertex A: $F^{\prime} \rightarrow \mathbb{R}^{+}$face-area assignm \exists 1-bend-drawing of G s.t. are proof:

Triangulation with Schnyder Wood

rect. layout

1-bend-draw. 1-bend-draw. representation realizing areas with degeneracies

Summary \& Questions

Eulerian triangulations are not area-universal.

All planar graphs have realizing 1-bend-drawings.

Open Questions:

- How many bends are really necessary and sufficient? $\frac{1}{12}|E| \leq \#$ bends $\leq|E|$
- Are bipartite graphs area-universal?
- How hard is testing the realizability of an area-assignment?

