

Rainbow Cycles in Flip Graphs

Linda Kleist

joint work with

Stefan Felsner, Torsten Mütze, Leon Sering

Flip graph of triangulations

flip graph G_n^T

vertices: triangulations of a convex n-gon

edges: flip a diagonal of the triangulation

associahedron

Flip graph of triangulations

flip graph G_n^T vertices: triangulations of a convex *n*-gon edges: flip a diagonal of the triangulation associahedron

Properties of G_n^T

• diameter

2n - 10 for sufficiently large n [Sleater, Tarjan, Thurston 88] 2n - 10 for n > 12, combinatorial [Pournin 14]

- many realizations as a convex polytope [Ceballos, Santos, Ziegler 15]
- vertex-connectivity, chromatic number, ...
- Hamiltonicity/Gray Codes [Lucas 87, Hurtado & Noy 99]

Hamilton cycle: cyclic listing of objects such that each object appears 1 time

Hamilton cycle: cyclic listing of objects such that each object appears 1 time

dual Rainbow cycle:

cyclic listing of objects such that each flip type appears 1 time

Rainbow cycle: c o l o r cyclic listing of objects such that each flip type appears 1 time

Rainbow cycle: color cyclic listing of objects such that each flip type appears 1 time vertices: triangulations of a convex *n*-gon arcs: flip a diagonal of the triangulation arc color: the new edge

Rainbow cycle: color cyclic listing of objects such that each flip type appears 1 time vertices: triangulations of a convex *n*-gon arcs: flip a diagonal of the triangulation arc color: the new edge

Rainbow cycle: color cyclic listing of objects such that each flip type appears 1 time vertices: triangulations of a convex *n*-gon arcs: flip a diagonal of the triangulation arc color: the new edge

r-Rainbow cycle: color *r* times cyclic listing of objects such that each flip type appears 1 time vertices: triangulations of a convex *n*-gon arcs: flip a diagonal of the triangulation arc color: the new edge

Motivation

binary Gray codes [Frank Gray 53]
 generate all 2ⁿ bitstrings of length n by flippling a single bit per step

 $\begin{array}{c} \underline{0}00\\ 00\underline{1}\\ 0\underline{1}1\\ 0\underline{1}0\\ \underline{1}10\\ 111\\ 1\underline{0}1\\ \underline{100}\\ 224 \end{array}$

Motivation

binary Gray codes [Frank Gray 53]
 generate all 2ⁿ bitstrings of length n by flippling a single bit per step

<mark>balanced</mark> Gray code:	<u>0</u> 00
 – each bit is flipped equally often (2ⁿ/n times) 	00 <u>1</u>
[Tootill 35, Bhat &Savage 96]	0 <u>1</u> 1
i_{α} , μ we improve a scale for μ $2\pi/\mu$	01 <u>0</u>
- is a <i>r</i> -rainbow cycle for $r = 2^n/n$	<u>1</u> 10
	11 <u>1</u>
	1 <u>0</u> 1
	<u>100</u>
	224

Motivation

binary Gray codes [Frank Gray 53]
 generate all 2ⁿ bitstrings of length n by flippling a single bit per step

balanced Gray code:	<u>000</u>
 – each bit is flipped equally often (2ⁿ/n times) 	00 <u>1</u>
[Tootill 35, Bhat &Savage 96]	0 <u>1</u> 1
is a r rainbow cuclo for $r = 2^{n}/n$	01 <u>0</u>
- is a <i>r</i> -rating we type for <i>r</i> = 2 / <i>n</i>	<u>1</u> 10
	11 <u>1</u>
 Our work: step towards 	101
balanced Gray codes for other classes	100
• known Gray codes	224
– plane spanning trees [Hernando, Hurtado, Noy 02]	
 non-crossing perfect matchings [Aichholzer et al. 07] 	
 non-crossing partitions, dissections of convex polygons 	
[Huemer et al. 09]	

Settings & Results

flip graph			existence of r -rainbow cycle			
		vertices	$\operatorname{arcs/edges}$	r	Yes	No
	$G_n^{\mathtt{T}}$	triangulations of convex	edge flip	1	$n \ge 4$	
		<i>n</i> -gon		2	$n \ge 7$	
OMETRIC	$G_X^{\tt S}$	$\frac{\text{plane spanning trees}}{\text{point set } X \text{ in general}}$ $\frac{1}{\text{position}}$	edge flip	1,, X -2	$ X \ge 3$	
IJ	$G_m^{\rm M}$	non-crossing perfect	two edge	1	$m \in \{2,4\}$	odd m ,
		<u>matchings</u> on $2m$ points	flip			$m \in \{6, 8, 10\}$
		in convex position		2	$m \in \{6,8\}$	
	$\overline{G_n^{P}}^-$	permutations of $[n]$	transposition	1	$\lfloor n/2 \rfloor$ even	$\lfloor n/2 \rfloor$ odd
ACT	$G_{n,k}^{\rm C}$	$\frac{k\text{-subsets}}{2 \le k \le \lfloor n/2 \rfloor} \text{ of } [n],$	element exchange	1	odd n and $k < n/3$	even <i>n</i>
STF		2-subsets of $[n]$		1	two edge-	
AB		for odd n			disjoint	
					1-rambow Ham cycles	

Settings & Results

flip graph			existence of r -rainbow cycle			
		vertices	$\operatorname{arcs/edges}$	r	Yes	No
	$G_n^{\mathtt{T}}$	triangulations of convex	edge flip	1	$n \ge 4$	
		<i>n</i> -gon		2	$n \ge 7$	
IOMETRIC	$G_X^{\tt S}$	plane spanning trees on point set X in general position	edge flip	1,, X -2	$ X \ge 3$	
GE	$G_m^{\tt M}$	non-crossing perfect	two edge	1	$m \in \{2,4\}$	odd m ,
		<u>matchings</u> on $2m$ points	flip			$m \in \{6, 8, 10\}$
		in convex position		2	$m \in \{6,8\}$	
	$\overline{G}_n^{\mathbf{P}}$	permutations of $[n]$	transposition	1	$\lfloor n/2 \rfloor$ even	$\lfloor n/2 \rfloor$ odd
H	$G_{n,k}^{\mathtt{C}}$	<u>k-subsets</u> of $[n]$,	element	1	odd n and	even n
ABSTRAC	,	$2 \leq k \leq \lfloor n/2 \rfloor$	exchange		k < n/3	
		2-subsets of $[n]$		1	two edge-	
		for odd n			disjoint	
					1-rainbow	
					Ham. cycles	

Thm: For $n \ge 7$, G_n^T has a 2-rainbow cycle.

Thm: For $n \ge 7$, G_n^T has a 2-rainbow cycle.

Thm: For $n \ge 7$, G_n^T has a 2-rainbow cycle.

Settings & Results

flip graph			existence of r -rainbow cycle			
		vertices	$\operatorname{arcs/edges}$	r	Yes	No
	$G_n^{\mathtt{T}}$	triangulations of convex	edge flip	1	$n \ge 4$	
		<i>n</i> -gon		2	$n \ge 7$	
EOMETRIC	G_X^{S}	$\frac{\text{plane spanning trees}}{\text{point set } X \text{ in general}}$ $\frac{1}{\text{position}}$	edge flip	1,, X -2	$ X \ge 3$	
G	$G_m^{\tt M}$	non-crossing perfect	two edge	1	$m \in \{2,4\}$	odd m ,
		$\underline{\text{matchings}}_{i} \text{ on } 2m \text{ points}$	flip			$m \in \{6, 8, 10\}$
		in convex position		2	$m \in \{6, 8\}$	
	$\overline{G_n^{P}}^-$	permutations of $[n]$	transposition	1	$\lfloor n/2 \rfloor$ even	$\lfloor n/2 \rfloor$ odd
Г	$G_{n,k}^{C}$	<u>k-subsets</u> of $[n]$,	element	1	odd n and	even n
ABSTRAC	70,00	$2 \le k \le \lfloor n/2 \rfloor$	exchange		k < n/3	
		2-subsets of $[n]$		1	two edge-	
		for odd n			disjoint	
					1-rainbow	
					Ham. cycles	

Thm: For $m \in \{2, 4\}$, G_m^M has a 1-rainbow cycle. For $m \in \{6, 8, 10\}$, G_m^M has no 1-rainbow cycle.

centered flip:= edge length of quadrilateral is m - 2

Obs: A flip is centered iff the quadrilateral contains origin.

Lemma: rainbow cycles use only centered flips.

Thm: For $m \in \{2, 4\}$, G_m^M has a 1-rainbow cycle. For $m \in \{6, 8, 10\}$, G_m^M has no 1-rainbow cycle.

Lemma: rainbow cycles use only centered flips.

- the length of matching edges are equi-distributed
 - ...and range from 0 to $\frac{m-2}{2}$
- average in rainbow cycle $=\frac{m-2}{4}$
- average of centered flips $=\frac{m-2}{4}$
- average of non-centered flips $< \frac{m-2}{4}$

Settings & Results

flip graph			existence of r -rainbow cycle				
		vertices	$\operatorname{arcs/edges}$	r	Yes	No	
	G_n^{T}	triangulations of convex	edge flip	1	$n \ge 4$		
		<i>n</i> -gon		2	$n \ge 7$		
EOMETRIC	$G_X^{\tt S}$	$\frac{\text{plane spanning trees}}{\text{point set } X \text{ in general}}$ $\frac{1}{\text{position}}$	edge flip	1,, X -2	$ X \ge 3$		
GI	$G_m^{\tt M}$	non-crossing perfect	two edge	1	$m \in \{2,4\}$	odd m ,	
		<u>matchings</u> on $2m$ points	flip			$m \in \{6,8,10$	0}
		in convex position		2	$m\in\{6,8\}$		
	$\overline{G_n^{P}}^-$	permutations of $[n]$	transposition	1	$\lfloor n/2 \rfloor$ even	$\lfloor n/2 \rfloor$ odd	
H	$G_{n,k}^{C}$	k-subsets of $[n]$,	element	1	odd n and	even n	
STRAC'	,	$2 \leq k \leq \lfloor n/2 \rfloor$	exchange		k < n/3		
		2-subsets of $[n]$		1	two edge-		
AB		for odd n			disjoint		
					1-rainbow		
					nam. cycles		

Thm: For odd *n* and k = 2, $G_{n,k}^{C}$ has a 1-rainbow Hamilton cycle.

Thm: For odd *n* and k = 2, $G_{n,k}^{C}$ has a 1-rainbow Hamilton cycle.

rainbow blocks $n = 2\ell + 1$

 $B = (B_1, B_2, ..., B_\ell)$ with $B_i \in C_{n,k}$ is a rainbow block if $C(B) := (B, \sigma(B), ..., \sigma^{2\ell}(B))$ is a rainbow cycle

Bi	1	2	3	4	5
B_1	×				×
B ₂	×		×		
$\sigma(B_1)$	×	×			
$\sigma(B_2)$		×		×	
•					
			•		
$\sigma^4(B_1)$				×	×
$\sigma^4(B_2)$		×			×

Thm: For odd *n* and k = 2, $G_{n,k}^{C}$ has a 1-rainbow Hamilton cycle.

Thm: For odd *n* and k = 2, $G_{n,k}^{C}$ has a 1-rainbow Hamilton cycle.

Proof:

Use special rainbow blocks:

- (a) $B_i = \{1, b_i\}$ for $i \in [\ell]$ with $3 \le b_i \le n$ and $b_1 = n$,
- (b) $\{ \text{dist}(B_i) \mid i \in [\ell] \} = [\ell]$
- (c) $\{ \operatorname{dist}(B_i \triangle B_{i+1}) \mid i \in [\ell 1] \}$ $\cup \{ \operatorname{dist}(B_\ell \triangle B_1) \} = [\ell]$
- (a) start at vertex *n*, skip vertex 1
- (b) visit each level once
- (c) use all edge length once

Thm: For odd *n* and k = 2, $G_{n,k}^{C}$ has a 1-rainbow Hamilton cycle.

Proof:

Use special rainbow blocks:

- (a) $B_i = \{1, b_i\}$ for $i \in [\ell]$ with $3 \le b_i \le n$ and $b_1 = n$,
- (b) $\{ dist(B_i) \mid i \in [\ell] \} = [\ell]$
- (c) $\{ \operatorname{dist}(B_i \triangle B_{i+1}) \mid i \in [\ell 1] \}$ $\cup \{ \operatorname{dist}(B_\ell \triangle B_1) \} = [\ell]$
- (a) start at vertex *n*, skip vertex 1
- (b) visit each level once
- (c) use all edge length once

A rainbow block and its partner ("mirror image") yield two edge disjoint rainbow Hamilton cycles.

Open Problems

Open Problems

