Rainbow Cycles in Flip Graphs

Linda Kleist
joint work with

Stefan Felsner, Torsten Mütze, Leon Sering

Flip graph of triangulations

flip graph G_{n}^{T}
vertices: triangulations of a convex n-gon edges: flip a diagonal of the triangulation associahedron

Flip graph of triangulations

flip graph G_{n}^{T}
vertices: triangulations of a convex n-gon edges: flip a diagonal of the triangulation associahedron

Properties of G_{n}^{T}

- diameter
$2 n-10$ for sufficiently large $n \quad$ [Sleater, Tarjan, Thurston 88]
$2 n-10$ for $n>12$, combinatorial [Pournin 14]
- many realizations as a convex polytope [Ceballos, Santos, Ziegler 15]
- vertex-connectivity, chromatic number, ...
- Hamiltonicity/Gray Codes
[Lucas 87, Hurtado \& Noy 99]

Hamilton cycle:
cyclic listing of objects such that each object appears 1 time

Rainbow cycles

Hamilton cycle:
cyclic listing of objects such that each object appears 1 time
Rainbow cycle:
cyclic listing of objects such that each flip type appears 1 time

Rainbow cycles

Rainbow cycle:
color
cyclic listing of objects such that each flip type appears 1 time

Rainbow cycles

Rainbow cycle:
cyclic listing of objects such that each flip type appears 1 time vertices: triangulations of a convex n-gon arcs: flip a diagonal of the triangulation arc color: the new edge

Rainbow cycles

Rainbow cycle:
cyclic listing of objects such that each flip type appears 1 time vertices: triangulations of a convex n-gon arcs: flip a diagonal of the triangulation arc color: the new edge

Rainbow cycles

Rainbow cycle:
cyclic listing of objects such that each flip type appears 1 time vertices: triangulations of a convex n-gon arcs: flip a diagonal of the triangulation arc color: the new edge

Rainbow cycles

r-Rainbow cycle:
color
r times
cyclic listing of objects such that each flip type appears 1 time vertices: triangulations of a convex n-gon arcs: flip a diagonal of the triangulation arc color: the new edge

Motivation

- binary Gray codes [Frank Gray 53] generate all 2^{n} bitstrings of length n by flippling a single bit per step
$\underline{000}$
001
011
$01 \underline{0}$
110
111
$1 \underline{1} \underline{1}$
$\frac{100}{224}$

Motivation

- binary Gray codes [Frank Gray 53]
generate all 2^{n} bitstrings of length n by flippling a single bit per step

$$
\begin{array}{ll}
\text { balanced Cray code: } & \underline{000} \\
\text { - each bit is flipped equally often }\left(2^{n} / n\right. \text { times) } & 001 \\
\text { [Tootill 35, Bhat \&Savage 96] } & 0 \underline{1} 1 \\
- \text { is a } r \text {-rainbow cycle for } r=2^{n} / n & \underline{110} \\
& 111 \\
& \underline{101} \\
& \underline{100}
\end{array}
$$

Motivation

- binary Gray codes [Frank Gray 53]
generate all 2^{n} bitstrings of length n by flippling a single bit per step
balanced Gray code: $\underline{0} 00$
- each bit is flipped equally often ($2^{n} / n$ times) 001
[Tootill 35, Bhat \&Savage 96] 011
- is a r-rainbow cycle for $r=2^{n} / n$
- Our work: step towards $1 \underline{0} 1$
balanced Gray codes for other classes $\underline{\underline{0100}}$
- known Gray codes 224
- plane spanning trees [Hernando, Hurtado, Noy 02]
- non-crossing perfect matchings [Aichholzer et al. 07]
- non-crossing partitions, dissections of convex polygons [Huemer et al. 09]

Settings \& Results

flip graph			existence of r-rainbow cycle		
	vertices	arcs/edges	r	Yes	No
	triangulations of convex	edge flip	1	$n \geq 4$	
	n-gon		2	$n \geq 7$	
	plane spanning trees on point set X in general position	edge flip		$\|X\| \geq 3$	
	non-crossing perfect matchings on $2 m$ points in convex position	two edge flip	1	$m \in\{2,4\}$ $m \in\{6,8\}$	odd m, $m \in\{6,8,10\}$
	in convex position		2	$m \in\{6,8\}$	
	permutations of $[n]$	transposition	1	$\lfloor n / 2\rfloor$ even	$\lfloor n / 2\rfloor$ odd
	$\frac{k \text {-subsets of }[n] \text {, }}{2 \leq k \leq\|n / 2\|}$	element exchange	1	odd n and $k<n / 3$	even n
	2-subsets of $[n]$ for odd n		1	two edge- disjoint 1-rainbow Ham. cycles	

Settings \& Results

Triangulations

Thm: For $n \geq 7, G_{n}^{T}$ has a 2-rainbow cycle.

Triangulations

Thm: For $n \geq 7, G_{n}^{T}$ has a 2-rainbow cycle.

Triangulations

Thm: For $n \geq 7, G_{n}^{T}$ has a 2-rainbow cycle.

Triangulations

Thm: For $n \geq 7, G_{n}^{T}$ has a 2-rainbow cycle.

Triangulations

Thm: For $n \geq 7, G_{n}^{T}$ has a 2-rainbow cycle.

Triangulations

Thm: For $n \geq 7, G_{n}^{T}$ has a 2-rainbow cycle.

Triangulations

Thm: For $n \geq 7, G_{n}^{T}$ has a 2-rainbow cycle.

Triangulations

Thm: For $n \geq 7, G_{n}^{T}$ has a 2-rainbow cycle.

Claim:
$S_{1} \rightarrow S_{2} \rightarrow \ldots \rightarrow S_{n} \rightarrow S_{1}$
is a 2-rainbow cycle.

- $\{i, j\}$ appears twice
- triangulations are unique

Settings \& Results

Matchings

Thm: For $m \in\{2,4\}, G_{m}^{M}$ has a 1 -rainbow cycle. For $m \in\{6,8,10\}, G_{m}^{M}$ has no 1-rainbow cycle.
flip graph G_{m}^{M}
vertices: crossing-free matchings arcs: 2-edge exchange arc color: the 2 new edges

$$
m=4
$$

Matchings

Thm: For $m \in\{2,4\}, G_{m}^{M}$ has a 1 -rainbow cycle. For $m \in\{6,8,10\}, G_{m}^{M}$ has no 1-rainbow cycle.
flip graph G_{m}^{M}
vertices: crossing-free matchings arcs: 2-edge exchange arc color: the 2 new edges

Matchings

Thm: For $m \in\{2,4\}, G_{m}^{M}$ has a 1 -rainbow cycle. For $m \in\{6,8,10\}, G_{m}^{M}$ has no 1 -rainbow cycle.
length of an edge $=\min \#$ points on either side, divided by 2
centered flip:= edge length of quadrilateral is $m-2$

centered

not centered

Obs: A flip is centered iff the quadrilateral contains origin.

Lemma: rainbow cycles use only centered flips.

Matchings

Thm: For $m \in\{2,4\}, G_{m}^{M}$ has a 1 -rainbow cycle. For $m \in\{6,8,10\}, G_{m}^{M}$ has no 1 -rainbow cycle.

Lemma: rainbow cycles use only centered flips.

- the length of matching edges are equi-distributed
...and range from 0 to $\frac{m-2}{2}$
- average in rainbow cycle $\quad=\frac{m-2}{4}$
- average of centered flips $=\frac{m-2}{4}$
- average of non-centered flips $<\frac{m-2}{4}$

Matchings

Thm: For $m \in\{2,4\}, G_{m}^{M}$ has a 1 -rainbow cycle.
For $m \in\{6,8,10\}, G_{m}^{M}$ has no 1 -rainbow cycle.
Lemma: rainbow cycles use only centered flips. \rightarrow restricted flip graph

Settings \& Results

| | flip graph | | | existence of r-rainbow cycle | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | vertices | arcs/edges | r | Yes | No |

Subsets

Thm: For odd n and $k=2, G_{n, k}^{C}$ has a 1-rainbow Hamilton cycle.
flip graph $G_{n, 2}^{C}$
vertices: 2-subsets of [n] edges: element exchange/ transposition edge color: the transposition

Subsets

Thm: For odd n and $k=2, G_{n, k}^{C}$ has a 1-rainbow Hamilton cycle.
rainbow blocks $n=2 \ell+1$

$$
B=\left(B_{1}, B_{2}, \ldots, B_{\ell}\right) \text { with } B_{i} \in C_{n, k}
$$ is a rainbow block if $C(B):=\left(B, \sigma(B), \ldots, \sigma^{2 \ell}(B)\right)$ is a rainbow cycle

B_{i}	1	2	3	4	5
B_{1}	\times				\times
B_{2}	\times		\times		
$\sigma\left(B_{1}\right)$	\times	\times			
$\sigma\left(B_{2}\right)$		\times		\times	
\cdot			\cdot		
\cdot			\cdot		
$\sigma^{4}\left(B_{1}\right)$				\times	\times
$\sigma^{4}\left(B_{2}\right)$		\times			\times

Subsets

Thm: For odd n and $k=2, G_{n, k}^{C}$ has a 1-rainbow Hamilton cycle.

Proof:

Use special rainbow blocks:
(a) $B_{i}=\left\{1, b_{i}\right\}$ for $i \in[\ell]$ with $3 \leq b_{i} \leq n$ and $b_{1}=n$,
(b) $\left\{\operatorname{dist}\left(B_{i}\right) \mid i \in[\ell]\right\}=[\ell]$
(c) $\left\{\operatorname{dist}\left(B_{i} \triangle B_{i+1}\right) \mid i \in[\ell-1]\right\}$
$\cup\left\{\operatorname{dist}\left(B_{\ell} \triangle B_{1}\right\}=[\ell]\right.$

Rainbow Cycles in Flip Graphs

Subsets

Thm: For odd n and $k=2, G_{n, k}^{C}$ has a 1-rainbow Hamilton cycle.

Proof:

Use special rainbow blocks:
(a) $B_{i}=\left\{1, b_{i}\right\}$ for $i \in[\ell]$ with $3 \leq b_{i} \leq n$ and $b_{1}=n$,
(b) $\left\{\operatorname{dist}\left(B_{i}\right) \mid i \in[\ell]\right\}=[\ell]$
(c) $\left\{\operatorname{dist}\left(B_{i} \triangle B_{i+1}\right) \mid i \in[\ell-1]\right\}$
$\cup\left\{\operatorname{dist}\left(B_{\ell} \triangle B_{1}\right\}=[\ell]\right.$
(a) start at vertex n, skip vertex 1
(b) visit each level once
(c) use all edge length once

Definition of b_{i}

Subsets

Thm: For odd n and $k=2, G_{n, k}^{C}$ has a 1-rainbow Hamilton cycle.

Proof:

Use special rainbow blocks:
(a) $B_{i}=\left\{1, b_{i}\right\}$ for $i \in[\ell]$ with $3 \leq b_{i} \leq n$ and $b_{1}=n$,
(b) $\left\{\operatorname{dist}\left(B_{i}\right) \mid i \in[\ell]\right\}=[\ell]$
(c) $\left\{\operatorname{dist}\left(B_{i} \triangle B_{i+1}\right) \mid i \in[\ell-1]\right\}$
$\cup\left\{\operatorname{dist}\left(B_{\ell} \triangle B_{1}\right\}=[\ell]\right.$
(a) start at vertex n, skip vertex 1
(b) visit each level once
(c) use all edge length once

> A rainbow block and its partner ("mirror image") yield two edge disjoint rainbow Hamilton cycles.

Definition of b_{i}

Open Problems

- r-rainbow cycles for larger r ?
- other classes?
- matchings: non-existence of 1-rainbow cycles for $m>4$
- subsets: 1-rainbow cycles for all k

Open Problems

- r-rainbow cycles for larger r ?
- other classes?
- matchings: non-existence of 1-rainbow cycles for $m>4$
- subsets: 1-rainbow cycles for all k

