Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D

Linda Kleist \& Benjamin Rahman
Technische Universität Berlin

UPCR with regular polygons

■ vertices: congruent regular polygons, interiorly disjoint
■ edges: $(d-1)$-dimensional intersections

UPCR with regular polygons

$$
(d-1) \text {-dimens. intersection }
$$

■ vertices: congruent regular polygons, interiorly disjoint
■ edges: ($d-1$)-dimensional intersections

UPCR with regular polygons

$\Longleftrightarrow(u, v) \in E$

congruent
$(d-1)$-dimens. intersection
■ vertices: congruent regular polygons, interiorly disjoint
■ edges: ($d-1$)-dimensional intersections

Basic properties of UPCR

- low maximal degree

■ volume constraints

$\Longrightarrow \quad$ Let \mathbb{G} be a grid. Does every subgraph $G \subseteq \mathbb{G}$ has a UPCR (with a particular object type)?

■ NP-hard recognition

- unit disks [Breu, Kirkpatrick, 1996]
- unit cubes [Bremner, Evans, Frati, Heyer, Kobourov, Lenhart, Liotta, Rappaport, Whitesides, 2013]
- squares, (triangles, hexagons, $6 k$-gons, ...) [k., Rahman, 2014]

Previous Work and Questions

Theorem (Aam, Chapici,k, Fija, Kaumman, Kobourov, Pupyyer, 2013)
Every subgraph of the square grid allows for a UPCR with cubes.
Open:
■ Do subgraphs of the triangular grid allow for UPCR with cubes?

Results with strategy

Every subgraph of

has a UPCR with

square grid

d-dimen. grid

triangular grid

hexagonal grid

squares

d-cubes

cubes

triangles

pseudo-triangles

$3 k$-gons

Strategy

Strategy

■ start with UPCR $\hat{\phi}$ of the grid \mathbb{G}
■ remove unwanted contacts one by one

- moving set
- direction vector

USqPCR

Square grid \mathbb{S}_{n}

Theorem

Let G be a subgraph of \mathbb{S}_{n}. Then G has a USqPCR.

USqPCR

Theorem

Let G be a subgraph of \mathbb{S}_{n}. Then G has a USqPCR.
USqPCR $\hat{\phi}$ of \mathbb{S}_{n} with $\varepsilon \in(0,1)$

USqPCR

Theorem

Let G be a subgraph of \mathbb{S}_{n}. Then G has a USqPCR.

$E=E_{1} \cup E_{2}$ (column and row edges) direction vectors $d(e)$

USqPCR

Theorem

Let G be a subgraph of \mathbb{S}_{n}. Then G has a USqPCR.

$E=E_{1} \cup E_{2}$ (column and row edges) moving sets $M(e)$

Construction- more formal

$\varepsilon \in(0,1), \quad \delta<\frac{1}{n} \min \{\varepsilon, 1-\varepsilon\}$

$$
\begin{gathered}
\phi: V \rightarrow \mathcal{P}\left(\mathbb{R}^{2}\right) \\
\phi(v)=\hat{\phi}(v)+\sum_{i} r_{i}(v) \cdot \delta d_{i}
\end{gathered}
$$

Properties

- $c s(\hat{\phi})=1-\boldsymbol{\varepsilon}$
- $s p_{\hat{\phi}}(M(e), d(e)) \geq \varepsilon$
- $c s(\phi) \geq 1-\varepsilon-n \delta$
- $r_{i}(u)=r_{i}(v) \Longleftrightarrow(u, v) \in E \cap E_{i}$

■ interiorly disjoint ($->$ space)

- correct contacts ($->$ contact size)
- correct non-contacts ($->$ translation)

Generalization to all dimensions

Theorem

Let G be a subgraph of \mathbb{S}_{n}^{d}. Then G has a UPCR with d-cubes.

Generalization to all dimensions

Theorem

Let G be a subgraph of \mathbb{S}_{n}^{d}. Then G has a UPCR with d-cubes.

$$
\begin{aligned}
\hat{\phi}: V & \rightarrow \mathcal{P}\left(\mathbb{R}^{d}\right) \\
\hat{\phi}\left(v_{x}\right) & =Q(A \cdot x)
\end{aligned}
$$

$$
A:=\left(\begin{array}{cccc}
1 & \varepsilon & \ldots & \varepsilon \\
-\varepsilon & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
-\varepsilon & \ldots & -\varepsilon & 1
\end{array}\right)
$$

Generalization to all dimensions

Theorem

Let G be a subgraph of \mathbb{S}_{n}^{d}. Then G has a UPCR with d-cubes.
d types of edges: $E=E_{1} \cup \cdots \cup E_{d}$

Generalization to all dimensions

Theorem

Let G be a subgraph of \mathbb{S}_{n}^{d}. Then G has a UPCR with d-cubes.
d types of edges: $E=E_{1} \cup \cdots \cup E_{d}$

Generalization to all dimensions

Theorem

Let G be a subgraph of \mathbb{S}_{n}^{d}. Then G has a UPCR with d-cubes.
d types of edges: $E=E_{1} \cup \cdots \cup E_{d}$

Generalization to all dimensions

Theorem

Let G be a subgraph of \mathbb{S}_{n}^{d}. Then G has a UPCR with d-cubes.

$$
\begin{aligned}
\phi: V & \rightarrow \mathcal{P}\left(\mathbb{R}^{d}\right) \\
\phi(v) & =\hat{\phi}(v)+\sum_{k=1}^{d} r_{k}(v) \cdot \delta d_{k}
\end{aligned}
$$

Triangular grid

Theorem

Let G be a subgraph of $\mathbb{T}_{n, m}$. Then G has a UCuPCR.

Triangular grid

Theorem

Let G be a subgraph of $\mathbb{T}_{n, m}$. Then G has a UCuPCR.

More regular polygons

Pseudo-polygons

Lemma

Let G be a graph with a UPCR ϕ with regular k-gons and $c s(\phi)>1-s$. Then, G has a UPCR with pseudo k-gons with side length $\geq s$.

More regular polygons

Lemma

Let G be a graph with a UPCR ϕ with regular k-gons and $c s(\phi)>1-s$. Then, G has a UPCR with pseudo k-gons with side length $\geq s$.

More regular polygons

Lemma

Let G be a graph with a UPCR ϕ with regular k-gons and $c s(\phi)>1-s$. Then, G has a UPCR with pseudo k-gons with side length $\geq s$.

More regular polygons

Lemma

Let G be a graph with a UPCR ϕ with regular k-gons and $c s(\phi)>1-s$. Then, G has a UPCR with pseudo k-gons with side length $\geq s$.

Corollary

Let G be a subgraph of \mathbb{S}_{n}. Then G has a UPCR with $4 k$-gons (pseudo-squares).

More regular polygons: $3 k$-gons

Theorem

Let G be a subgraph of $\mathbb{H}_{n, m}$. Then G has a UPCR with $3 k$-gons (pseudo-triangles).

Triangles+Lemma

Open problems

1 Characterization of graphs with USqPCRs?
2 Or with other polygons?
3 Is it NP-hard to recognize graphs admitting UPCRs with regular $(2 k+1)$-gons?
4 Is it NP-hard to recognize graphs admitting UPCRs with d-cubes?
5 USqPCR for trihexagonal and truncated trihexagonal grid?
6 USqPCR for dual of snubsquare grid?
7 UCuPCR for duals of Archimedean grids not containing $K_{1,9}$?

Open problems

1 Characterization of graphs with USqPCRs?
2 Or with other polygons?
3 Is it NP-hard to recognize graphs admitting UPCRs with regular $(2 k+1)$-gons?
4 Is it NP-hard to recognize graphs admitting UPCRs with d-cubes?
5 USqPCR for trihexagonal and truncated trihexagonal grid?
6 USqPCR for dual of snubsquare grid?
7 UCuPCR for duals of Archimedean grids not containing $K_{1,9}$?

$$
\text { Thanks! } ;
$$

USqPCR of Archimeadian grids

rhombi-

truncated square

truncated hexagonal

snub hexagonal

truncated

trihexagonal

