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Abstract

When can a polyomino piece of paper be folded into a unit cube? Prior work stud-
ied tree-like polyominoes, but polyominoes with holes remain an intriguing open
problem. We present sufficient conditions for a polyomino with one or several
holes to fold into a cube, and conditions under which cube folding is impossible.
In particular, we show that all but five special simple holes guarantee foldability.

Keywords: folding, origami folding, cube, polyomino, polyomino with holes,
non-simple polyomino

1. Introduction1

Given a piece of paper in the shape of a polyomino, i.e., a polygon in the plane2

formed by unit squares on the square lattice that are connected edge-to-edge, does3

it have a folded state in the shape of a unit cube? The standard rules of origami4

apply; in particular, we allow each unit square face to be covered by multiple5

layers of paper. Examples of this decision problem are given by the three puzzles6

?A preliminary extended abstract appears in the Proceedings of the 31st Canadian Conference
on Computational Geometry [1].
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Figure 1: Three polyominoes that fold along grid lines into a unit cube, from puzzles by Nikolai
Beluhov [2].

by Nikolai Beluhov [2] shown in Figure 1. We encourage the reader to print out7

the puzzles and try folding them.8

Prior work [3] studied this decision problem extensively, introducing and solv-9

ing several different models of folding. This gave rise to a model that matches the10

puzzles in Figure 1: Fold only along grid lines of the polyomino; allow only or-11

thogonal folding angles (±90◦ and ±180◦); and forbid folding material strictly12

interior to the cube. In this model, the prior work [3] characterizes which tree-13

shaped polyominoes lying within a 3 × n strip can fold into a unit cube.14

Notably, however, the polyominoes in Figure 1 are not tree-shaped or even15

simple: One puzzle has a hole, another puzzle has two holes, and a third puzzle has16

a degenerate hole, namely a slit. Arguably, these holes are what makes the puzzles17

fun and challenging. Therefore, in this paper, we embark on characterizing which18

polyominoes with hole(s) fold into a unit cube in this model. Although we do19

not obtain a complete characterization, we give many interesting conditions under20

which a polyomino does or does not fold into a unit cube.21

The problem is sensitive to the choice of model. In the more flexible model22

allowing half-grid folds and 45◦ diagonal folds between grid points, the prior work23

[3] shows that all polyominoes of at least ten unit squares can fold into a unit cube,24

and lists all smaller polyominoes that fold into a cube. Thus this model already25

has a complete characterization of polyominoes that fold into a cube, including26

those with holes. Therefore, we focus on the grid-fold model described above.27

Specific to polyominoes and polycubes, there is extensive work in this model28

on finding polyominoes that fold into many different polycubes [4] and into mul-29

tiple different boxes [5, 6, 7, 8, 9].30

Our Results31

1. We show that all but five simple holes always guarantee that a polyomino32

containing the hole folds into a cube; see Theorem 1, Section 3.1. Four33

of the five remaining holes only sometimes allow for foldability, and we34

conjecture that one hole never helps for foldability.35
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2. We identify combinations of two (of the remaining five) holes that allow the36

polyomino to fold into a cube; see Section 3.2.37

3. We show that certain of the remaining five simple holes or their combina-38

tions do not allow a foldable polyomino; see Section 4.39

4. We present an algorithm that checks a necessary local condition for fold-40

ability; see Section 4.3.41

2. Notation42

A polyomino is a polygon P in the plane formed by a union of |P| = n unit43

squares on the square lattice that are connected edge-to-edge. We do not require44

a connection between every pair of adjacent squares; that is, we allow slits along45

the edges of the lattice subject to the condition that the polyomino is connected.46

We call a maximal set h of connected missing squares and slits a hole if the47

dual has a cycle containing h in its interior. We call a hole of a polyomino simple48

if it is one of the following: a unit square, a slit of size 1, slits of size 2 (L- or49

straight), or a U-slit of size 3, see Figure 2 for an illustration.50

A unit cube C is a three-dimensional polyhedron with six unit-square faces51

and volume of 1.52

In this paper, we study the problem of folding a given polyomino P with holes53

to form C, allowing only 90◦ and 180◦ folds along the lattice. We illustrate moun-54

tain folds in red, and valley folds in blue. Whenever we show numbers on faces55

in crease patterns these refer to a “real” die, i.e., opposite faces sum up to 7.56

Figure 2: The five simple holes: a unit square, a slit of size 1, a straight slit of size 2, a L-slit of
size 2, and a U-slit of size 3.

3. Polyominoes That Do Fold57

In this section, we present polyominoes that fold. We start with polyominoes58

that contain a hole guaranteeing foldability.59
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3.1. Polyominoes with Single Holes60

In this section, we show that all holes different from a simple hole guarantee61

foldability.62

Theorem 1. If a polyomino P contains a hole h that is not simple, then P folds63

into a cube.64

Proof. It is easy to see that because the hole h is non-simple, it must be a superset65

of one of the holes in Figure 4, that is, we distinguish the cases where h contains66

• two unit squares sharing an edge,67

• two unit squares sharing a vertex,68

• a unit square and an incident slit,69

• a slit of length at least 3 (straight, zigzagged, L-shaped, or T-shaped).70

In a first step, we show that if h contains one of the four above holes, we may71

assume that it contains exactly this hole. Let h be a hole containing a hole h′ of the72

above type. By definition of a hole, h needs to be enclosed by solid squares. Thus73

we can sequentially fold the squares of P in columns to the left and right of h′74

on top of the columns directly left and right of h′, respectively, as illustrated in75

Figure 3. Afterwards, we fold the squares of P in rows to the top and bottom of h′76

on top of the rows directly top and bottom of h′, respectively. We call the resulting77

polyomino P′. Note that because h is a hole of P, all neighbouring squares of h′78

exist in P′. Thus we may assume that we are given one of the seven polyominoes79

depicted in Figure 4, where striped squares may or may not be present.80

Secondly, we present folding strategies. Note that the case if h′ consists of two81

squares sharing only a vertex, we can fold the top row on its neighboring row and82

obtain the case where h′ consist of a square and an incident slit. For an illustration83

of the folding strategies for the remaining six cases consider Figure 5.84

Figure 3: Folding strategy to reduce to seven cases.
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Figure 4: Any polyomino with a hole that is not simple can be reduced to one of the seven illus-
trated cases; striped squares may or may not be present.
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Are simple holes ever helpful?85

In fact, four of the five simple holes sometimes allow foldability, as illustrated86

in Figure 6. Note that the U-slit of size 3 reduces to the square hole.87

In Theorem 15, we show that the slit of size 1 never helps to fold a rectangular88

polyomino. In fact, we conjecture that the slit of size 1 never helps to fold a89

polyomino into C. Corollary 1 implies that the polyominoes without the holes90

cannot be folded.91

3.2. Combinations of Two Simple Holes92

In this section we consider combinations of two simple holes that fold.93

Theorem 2. A polyomino with two vertical straight size-2 slits with at least two94

columns and an odd number of rows between them folds.95

Proof. As in the previous section, we first fold all rows between the slits together96

to one row; this is possible because there is an odd number of rows between the97

slits. Then, all the surrounding rows and columns are folded towards the slits.98

Finally, we fold the columns between the slits to reduce their number to two or99

three. Depending on whether the number of columns between the slits was even100

or odd, this yields a shape as shown in Figure 7 (a) and (b), respectively, where101

the striped squares may be (partially) present. In all cases, the two shapes fold as102

indicated by the illustrated crease pattern. Note that in Figure 7 (b) the polyomino103

is of course connected, which implies that at least one square of the central column104

is part of the polyomino, i.e., a square with label 6 is used.105

If the two slits have only one or no column between them, then the shape can-106

not be folded as can be verified by the algorithm of Section 4.3. In the following107

theorems we call a U-slit which has the open part at the bottom an A-slit. If the108

orientation of the U-slit is not relevant, then we call it a C-slit.109

Theorem 3. A polyomino with an A-slit and a unit square hole/C-slit in the same110

column above it, having an even number of rows between them, folds.111

Proof. We can assume that the upper hole is a unit square, as the flaps generated112

by a C-slit can always be folded away. Similar to before we fold away all sur-113

rounding rows and columns and reduce the number of rows between the A-slit114

and the unit square hole to two. This yields the shape of Figure 7 (c), which can115

be folded as indicated by the crease pattern.116
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Note that if the bottom slit is a U-slit, then the shape of Figure 7 (c) does not117

fold, again verified by the algorithm of Section 4.3.118

Theorem 4. A polyomino with an A-slit and a unit square hole/C-slit below it and119

separated by an odd number of rows, folds, regardless in which columns they are.120

Proof. As before, we assume that the lower hole is a unit square, fold away the121

surrounding rows and columns, and reduce the number of rows between the two122

slits/holes to one. Furthermore, we fold the columns between the slits/holes such123

that most two columns remain between the two slits/holes. Consequently, we124

obtain one of the shapes shown in Figure 7 (d) to (g). All of them fold, with or125

without the striped region. Note that the upper unit square holes in Figure 7 (d)126

and (e) can be replaced by an A-slit which can be folded away.127

Note that if the two holes are in the same or neighboured column(s) (Fig-128

ure 7 (d) and (e)), then independent of the orientation of the U-slits or whether129
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Figure 7: Combinations of two simple holes that are foldable with and without (part of) the striped
region. Mountain folds are shown in solid red, valley folds in dashed blue.
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they are unit square holes, any combination folds, yielding the following fact. In130

the other cases, the unit square incident to all three slit edges constitutes the only131

unit square that covers the face ’1’ in the unit cube.132

Theorem 5. A polyomino with two unit square holes which are in the same or in133

neighboured column(s) and have an odd number of rows between them folds.134

4. Polyominoes That Do Not Fold135

In this section, we identify simple holes and combinations of simple holes that136

do not allow the polyomino to fold. First, we present some results that show how137

the paper is constrained around an interior vertex.138

Lemma 6. Four faces around a polyomino vertex v for which the dual graph is139

connected cannot cover more than three faces of C.140

Proof. The vertex v is incident to four faces in P. As vertices of P are mapped to141

vertices of C and all vertices of C are incident to 3 faces, v is incident to only 3142

faces in C.143

Lemma 7. Four faces around a vertex v not in the boundary of P cannot cover144

more than two faces of C. In particular, at least two collinear incident creases are145

folded by 180◦.146

Proof. Let A, B, C, and D be the faces around v in circular order, see the left of147

Figure 8. By Lemma 6, A, B, C, and D cover at most three faces of C. Hence, at148

least two faces map to the same face of C; these can be edge-adjacent or diagonal.149

In the first case, let without loss of generality A and B map to the same face.150

Hence, the crease between them must be folded by 180◦. Then C and D must also151

map to the same face of C to maintain the paper connected. Consequently, the152

crease between C and D is folded by 180◦.153

In the latter case, let without loss of generality A and C map to the same face154

of C. As they are both incident to v, only two options of folding those two faces155

on top of each other exist. Either the edge between A and B gets folded on top156

of the edge between B and C, this leaves a diagonal fold on B, a contradiction, or157

the edge between A and D gets folded on top of the edge between B and C, which158

results in D being mapped to C, and those are two adjacent faces, in which case159

we already argued that two collinear incident creases must be folded by 180◦.160
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v vvA

B C

D v vva b =⇒

Figure 8: Illustration of Lemmas 7 and 8. 180◦ creases are illustrated in orange; they could be
mountain or valley folds.

Lemma 8. Consider a vertex v that is not in the boundary of a polyomino P that161

folds into C. If one crease of v is folded by 180◦, then the incident collinear crease162

is also folded by 180◦.163

Proof. Without loss of generality, we show that if the left horizontal crease of v is164

folded by 180◦, the same holds for the right horizontal crease. We denote the left165

and right adjacent vertices of v by a and b, respectively, as indicated in Figure 8,166

right.167

Suppose for a contradiction, that the right crease is not folded by 180◦. Then,168

by Lemma 7, both vertical creases are folded by 180◦. In particular, a and b are169

mapped to the same vertex of C and thus the edges av and bv coincide. Hence,170

since av is folded by 180◦, bv is also folded by 180◦.171

Lemmas 7 and 8 imply that:172

Corollary 1. Let k, n ≥ 2 and let P be polyomino containing a rectangular k × n-173

subpolyomino P′ whose interior does not contain any boundary of P. Then, in174

every folding of P into C, all collinear creases of P′ are either folded by 90◦ or175

by 180◦. Moreover, either all horizontal or all vertical creases of P′ are folded by176

180◦, see Figure 9.177

Proof. First, suppose for a contradiction that there exist two collinear creases,178

one of which is folded by 90◦ and the other by 180◦. Then there also exists an179

interior vertex of P′ where the crease type of the two collinear edges changes180

from 90◦ to 180◦. However, by Lemma 8, if one is folded by 180◦, then both are.181

A contradiction.182

Second, suppose that not all horizontal creases are folded by 180◦. Then, by183

the first statement, there exists a row in which no vertex has a horizontal edge that184

is folded by 180◦. By Lemma 7, all vertical creases incident to the vertices of this185

row are folded by 180◦. Since all collinear edges behave alike, it follows that all186

vertical creases are folded by 180◦.187
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Figure 9: Illustration of Corollary 1.

4.1. Polyominoes with Unit Square, L-Shaped, and U-Shaped Holes188

We begin by examining the possible foldings of a polyomino containing a unit189

square hole. Suppose that a given polyomino P with a unit square hole h folds into190

a cube. Furthermore, let the shape of h no longer be a square in the folded state.191

That is, the hole h is folded in a non-trivial way. Then, in the folded state, either192

all edges of h are mapped to the same edge of C, or two pairs of edges are glued193

forming an L-shape. In the following, we show that if P folds into C, the first case194

is impossible, while the second produces a specific crease pattern around h.195

Lemma 9. The four edges of a unit square hole h of a polyomino P that folds196

into C are not mapped to the same edge of C in the folded state.197

Proof. We denote the four faces of the polyomino edge-adjacent to h by A, B, C,198

and D, and the four faces vertex-adjacent to h be F1, F2, F3, and F4, as illustrated199

in Figure 10. Assume for a contradiction that all edges of h are mapped to the same200

edge of C. Consider A, F1, and B in the folded state. As the two corresponding201

edges of h are glued together, the three faces must be pairwise perpendicular. The202

similar statement holds for the triples {B, F2,C}, {C, F3,D}, and {D, F4, A}. This203

results in a configuration as illustrated in the right of Figure 10.204

DA
B CA C

B

DF4

F1 F2

F3

Figure 10: Four edges of a square hole glued together.

Since the faces A, B,C share an edge of C in the folded state such that A and B,205

as well as B and C are perpendicular, A and C must cover the same face of C.206

Likewise, B and D cover the same face of C. If P folds into C, then F1 and F3,207
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as well as F2 and F4 are mapped to same faces of C. Suppose, without loss of208

generality, that in the folded state A lies in a more outer layer than C. Then,209

F1 and F4 are in a more outer layer than F3 and F2, respectively. Thus, face B210

connects the more inner layer of F2 to the more outer layer of F1, and at the same211

time D connects the inner layer of F3 to the outer layer of F4. Hence, faces B and212

D intersect, which is impossible. Therefore, if the polyomino folds into a cube,213

the four edges of a square hole cannot all be mapped to the same edge of C.214

It follows that the only non-trivial way to glue the edges of a square hole h of215

a polyomino folded into a cube is to form an L-shape. We use this to show the216

following fact:217

Lemma 10. Let P be a polyomino with a unit square hole that folds into C. In218

every folding of P into C where h is folded non-trivially (i.e., h is not a square),219

the crease pattern of the faces incident to h is as illustrated in the right image of220

Figure 10 (up to rotation and reflection).221

Proof. Suppose the four edges of h are not mapped to distinct edges of C. Then,222

by Lemma 9, the four edges are not mapped to the same edge, but to two edges223

forming an L-shape. This effectively amounts to gluing a pair of diagonal vertices224

of the hole.225

Let a, b, c, and d be the four vertices of h, and suppose a and c are mapped to226

the same vertex of C when folding P into C, see also the left image of Figure 11.227

Consider the crease pattern around h. We shall only focus on the angles of the228

creases and not the type of the fold, as there may be (and will be) other creases in229

P affecting the type of the creases under our consideration. Observe that the three230

faces incident to each of the vertices b and d are pairwise perpendicular, they form231

a corner of a cube. Thus, the creases emanating from b and d are all 90◦. Further232

a

cb

d
1

11

2

2

3

3

5

4

Figure 11: Left: crease pattern around a unit square hole folding into an L-shape when vertices
a and c are mapped to the same vertex of C; 90◦ creases are shown in green, and 180◦ creases in
orange. Right: numbers indicate the face of the cube in the folded state; mountain folds are shown
in solid, and valley folds as dashed lines.
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observe that the three faces around each of the vertices a and c fold into two faces233

of a cube, thus leading to one of the creases being 90◦ and the other 180◦. Finally,234

the two 180◦ creases are parallel to each other. Indeed, consider the right side235

of Figure 10. For a crease to form an L-shape one of the two dashed blue lines236

must fold to 180◦, which corresponds to two parallel creases in the unfolded state.237

Therefore, the crease pattern in Figure 11 (left) is the only pattern of creases (up238

to rotation and reflection) around a non-trivially folded square hole. Figure 11239

(right) shows the faces of the corresponding crease pattern.240

With the help of Lemma 10, we can show that several types of polyominoes241

with unit square holes do not fold into C.242

Theorem 11. If P is a rectangle with a square hole h, then P does not fold into C.243

Proof. First note that h is folded non-trivially, otherwise P corresponds to a rect-244

angle which does not fold into C. Therefore, by Lemma 10, the crease pattern245

around h is as depicted in Figure 11. Note that on each side of h, there exists a 90◦246

fold.247

Consider the rectangle R obtained by cutting P by the top edge of h and delet-248

ing the part below. If R has a height of at least 2, then by Corollary 1, either all249

vertical or all horizontal creases are folded by 180◦. In the first case, in particular250

the creases incident to h are folded by 180◦. However, this is a contradiction to251

the crease pattern around h in which each side of h has 90◦ fold. Consequently, all252

horizontal edges are folded by 180◦. This corresponds to folding R on top of the253

row above h. In particular, we may assume that if P is foldable into C then only254

this row exists.255

Likewise, we treat all other sides of P and obtain the polyomino P′ consisting256

of a 3 × 3-rectangle with a central unit square hole, see also Figure 11 (right). In257

particular, P is foldable (if and) only if P′ is foldable into C.258

Since h is folded non-trivially, the crease pattern of P′ is given by Figure 11.259

Note that in the folded state P′ covers only 5 faces and hence, P′ does not fold260

into C.261

A similar result holds for rectangular polyominoes with two unit square holes.262

Theorem 12. A rectangle with two unit square holes in the same row does not263

fold into C if the number of columns between the holes is even.264

Proof. Note that if the polyomino can be folded into C, both holes must be folded265

non-trivially: If one hole behaves as a square in the folded state, i.e., is folded266
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Figure 12: A polyomino that does not fold into a cube.

trivially, the polyomino is effectively reduced to a rectangle with one simple hole.267

However, by Theorem 11, this does not fold into C. Consequently, both holes are268

folded non-trivially.269

Therefore, by Lemma 10, the crease pattern around the two holes is as depicted270

in Figure 11. Consider the 3× 2k-rectangle R between the two holes (with k ≥ 1).271

By the above observation, at least one horizontal edge of R is folded by 90◦.272

Consequently, Corollary 1 implies that all vertical edges are folded by 180◦. In273

particular, every square of R is mapped to the same face of C as the leftmost (or274

rightmost) square in the same row of R. This reduces the polyomino to one with R275

being a 3 × 2-rectangle. We will show that the squares of P neighbouring the two276

holes are not able to cover C, that is, it remains to show that the polyomino P,277

depicted in Figure 12, does not fold into C.278

Consider the left 3 × 3 block of P. If the two parallel 90◦ creases of it are279

vertical, then the right 3 × 3 block will also have the two parallel 90◦ creases run280

vertical, see Figure 12 (left). Then, the four faces above and below the two holes281

match to the same face on C. Denote it as ‘1’. Observe that the rest of the faces282

share a vertex with ‘1’ and thus cannot cover the face on C opposite to ‘1’.283

In the second case, when the two parallel 90◦ creases of the left block are284

horizontal, then they extend into the right 3 × 3 block by Corollary 1. Refer to285

Figure 12 (right). Then, the four faces to the left and to the right of the two holes286

match to the same face on C, which we denote by ‘1’. As before, every square287

of P shares a vertex with ‘1’ and thus the face opposite to ‘1’ on C cannot be288

covered.289

Remark. Note that the arguments of Lemma 10 and Theorems 11 and 12 extend290

to an L-slit of size 2, and a U-slit of size 3. The resulting crease patterns are291

illustrated in Figure 13.292

These insights help to obtain the following result:293

Theorem 13. Let P be polyomino with two holes, which are both either a unit294

square, or an L-slit of size 2, or a U-slit of size 3, such that (1) P contains all the295
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Figure 13: Crease pattern around an L-slit (left) and a U-slit (right). Numbers indicate the face
of the cube in the folded state; 90◦ creases are shown in green, 180◦ creases in orange, mountain
folds are shown in solid, and valley folds as dashed lines.

other cells of the bounding box of the two holes and (2) the number of rows and296

the number of columns between the holes is at least 1. In every folding of P into C,297

the two holes are not both folded non-trivially.298

Proof. If P contains a unit square holes that is not folded non-trivially, then, by299

Lemma 10, the crease pattern in the neighborhood the hole is as depicted in Fig-300

ure 11. Likewise, if P contains an L-slit of size 2 or a U-slit of size 3 that is folded301

non-trivially, the crease pattern in the neighborhood the hole is as depicted in Fig-302

ure 13. Note that on each side of the crease patterns in the neighborhood of the303

holes, there exists a 90◦ crease304

We turn the paper such that the left hole is above the right hole as in Figure 14305

and consider the rectangular region R to the right of the left hole and above the306

right hole.307

R

Figure 14: Two unit square holes with at least one row and column in between, if folded non-
trivially imply two perpendicular 90◦ creases (in green).

Since on each side of the crease patterns in the neighborhood of the holes,308

there exists a 90◦ crease, R contains a vertical and a horizontal 90◦ crease. By309

Corollary 1, all collinear creases are also folded by 90◦. Hence, there exists a ver-310

tex in R for which all incident creases are folded by 90◦, yielding a contradiction311

to Lemma 7.312
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4.2. Polyominoes with a Single Slit of Size 1313

In the following, we show that a slit hole of size 1 does not help in folding a314

rectangular polyomino into C. We start with a lemma:315

Lemma 14. In every folding of a polyomino P with a slit hole of size 1, the crease316

pattern behaves as if the slit hole was nonexistent.317

Proof. Consider the six faces A, B, C, D, E and F of P that are incident to the slit318

hole of size 1 as illustrated in Figure 15. We distinguish two cases: The crease319

between A and F is of 90◦ or of 180◦.320

F

A B C

DE

Figure 15: A polyomino with a slit hole of size one.

If the AF-crease is of 90◦, we must further distinguish if the EF-crease is of321

90◦ or of 180◦. If the EF-crease is of 180◦, then the slit edge is mapped to the322

edge between AF, fixing that B maps to A. Hence, this corresponds to a 90◦ crease323

of the slit-edge.324

By symmetry, we may assume that both the AB-crease and the EF-crease is325

of 180◦. This implies that B and E cover the same face in such a way that the top326

edge of B is mapped to the left edge of E. However, then the bottom left corner of327

D is also mapped to the top left corner of E. A contradiction. Consequently, this328

is impossible.329

If the AF-crease is of 180◦, then A and F cover the same face and in particular,330

their left edges are mapped to the same edge such that the top edge of F and the331

bottom edge of A coincide. This implies that the left edge of E and the left edge332

of B also coincide such that the top edge of E and the bottom edge of B coincide.333

This corresponds to a 180◦ crease of the slit-edge.334

This shows that the slit edge is a crease of 90◦ or of 180◦. Hence, the crease335

pattern behaves as if the slit hole was nonexistent.336

Theorem 15. If P is a rectangle with a slit of size 1, then P does not fold into C.337

Proof. By Lemma 14, the crease pattern behaves as if the slit was nonexistent,338

i.e., as if P was a rectangle. By Corollary 1, all horizontal or vertical creases are339

folded by 180◦, reducing P to a rectangle of height or width 1, which does not340

fold into C.341
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Furthermore, we conjecture that the slit of size 1 never is the deciding factor342

for foldability.343

Conjecture 1. Let polyomino P′ be obtained from a polyomino P by adding a344

slit s of size 1. If P′ folds into C, then P folds into C as well.345

4.3. An Algorithm to Check a Necessary Local Condition for Foldability346

Consider the following local condition: let s be a square in a polyomino P347

such that the mapping between vertices of s and vertices of a face of C has been348

fixed. Then, for every adjacent square s′ of s, there are two possibilities how to349

map its four vertices onto C: the two vertices shared by s and s′ must be mapped350

consistently and for the other two vertices there are two options depending on351

whether s′ is folded at 90◦ angle to an adjacent face of C, or whether it is folded352

at 180◦ to the same face of C.353

The algorithm below checks whether there exists a mapping between all ver-354

tices of squares of P to vertices of C such that the above condition holds for every355

pair of adjacent polyomino squares of P.356

1. Run a breadth-first-search on the polyomino squares, starting with the left-357

most square in the top row of P and continue via adjacent squares. This pro-358

duces a numbering of polyomino squares in which each but the first square359

is adjacent to at least one square with smaller number.360

2. Map vertices of the first square to the bottom face of C. Extend the map-361

ping one square at a time according to the numbering, respecting the local362

condition (that is, in up to two ways). Track all such partial mappings.363

The algorithm is exponential, because unless inconsistencies are produced, the364

number of possible partial mappings doubles with every polyomino square. Nev-365

ertheless, it can be used to show non-foldability for small polyominoes: if no366

consistent mapping exists for a polyomino, then the polyomino cannot be folded367

onto C. On the other hand, any consistent vertex mapping covering all faces of C368

obtained by the algorithm that we tried could in practice be turned into a folding.369

However, we have not been able to prove that this is always the case.370

The algorithm above was used to prove that polyominoes in Figure 16 do371

not fold, as well as it aided us to find the foldings of polyominoes in Figure 7.372

An implementation of the algorithm is available at the following site http://373

github.com/zuzana-masarova/cube-folding.374
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Figure 16: These polyominoes with single L-, U- and straight size-2 slits do not fold.

5. Conclusion and Open Problems375

We showed that, if a polyomino P does contain a non-simple hole, then P folds376

into C. Moreover, we showed that a unit square hole, size 2 slits (straight or L),377

and a size-3 U-slit sometimes allow for foldability.378

Based on the presented results, we created a font of 26 polyominoes with slits379

that look like each letter of the alphabet, and each fold into C. See Figure 17, and380

http://erikdemaine.org/fonts/cubefolding/ for a web app.381

We conclude with a list of interesting open problems:382

• Does a consistent vertex mapping output by the algorithm in Section 4.3383

imply that the polyomino is foldable? If so, is the folding uniquely deter-384

mined?385

• Is any rectangular polyomino with one L-slit, U-slit or straight slit of size 2386

foldable? Currently, we only know that the small polyominoes in Figure 16387

do not fold.388
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Figure 17: Cube-folding font: the slits representing each letter enable each rectangular puzzle to
fold into a cube.
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