Bounding the tripartite-circle crossing number of complete tripartite graphs

In a tripartite-circle drawing of $K_{m, n, p}$, each part of the vertex partition is placed on one of three disjoint circles in the plane and the edges do not cross the circles. The tripartite-circle crossing number $\mathrm{cr}_{(3)}\left(K_{m, n, p}\right)$ is the minimum number of crossings among all tripartite-circle drawings of $K_{m, n, p}$.
Results
$\text { General case: } \sum_{\substack{\{x, y\} \in\{\{m, n, p\} \\ z \in\{m, n, p\} \backslash\{x, y\}}}\left[\operatorname{cr}_{(2}\left(K_{x, y}\right)+x y\left\lfloor\frac{z}{2}\right\rfloor\left\lfloor\frac{z-1}{2}\right\rfloor\right] \leq \operatorname{cr}_{(3)}\left(K_{m, n, p}\right) \leq \sum_{\substack{\{x, y\} \in(\{m, n, n, p\} \\ z \in\{m, n, p\} \backslash\{x, y\}}}\left[\binom{x}{2}\binom{y}{2}+x y\left\lfloor\frac{z}{2}\right\rfloor\left\lfloor\frac{z-1}{2}\right\rfloor\right]$
$\begin{array}{cc} \text { Balanced case: } \quad & 3 n\binom{n}{3}+3 n^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor \leq \mathrm{cr}_{(3}\left(K_{n, n, n}\right) \leq 3\binom{n}{2}\binom{n}{2}+3 n^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor \\ =\frac{5}{4} n^{4}+O\left(n^{3}\right) & =\frac{3}{2} n^{4}+O\left(n^{3}\right) \end{array}$

Crossing-minimal drawings are good:

Counting crossings I

For each vertex i on circle A, we identify two special neighbors on circle B: In a good drawing, the edges of i with B partition the exterior of B. The region containing A is enclosed by two edges of i and an arc of B ; the clockwise first vertex on B is $x_{i}(\mathrm{~A}, \mathrm{~B})$.
Similarly, one region contains circle C and $y_{i}(\mathrm{~A}, \mathrm{~B})$ is the cw first vertex on B.

Counting crossings II

In a good drawing where the circles A, B, C have a, b, c vertices, respectively. Richter and Thomassen [1] show that the number of crossings of type $\mathrm{AB} / \mathrm{AB}$ is

$$
\sum_{1 \leq i<j \leq a}\binom{d_{i j}}{2}+\binom{n-d_{i j}}{2}
$$

for $d_{i j}:=x_{i}(\mathrm{~A}, \mathrm{~B})-x_{j}(\mathrm{~A}, \mathrm{~B})(\bmod b)$.

We show that the number of crossings of type $\mathrm{AB} / \mathrm{BC}$ can be expressed with $d_{i j}:=y_{i}(\mathrm{~A}, \mathrm{~B})-y_{j}(\mathrm{~B}, \mathrm{C})(\bmod b)$ as

$$
\sum_{\substack{1 \leq i \leq a \\ 1 \leq j \leq c}}\binom{d_{i j}}{2}+\binom{n-d_{i j}}{2} .
$$

1-circle drawing

Motivation

The Harary-Hill Conjecture states that the crossing number of K_{n} is $\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor=: H(n)$. In the 1950s, Harary and Hill showed that a crossing optimal 2-circle drawing of $K_{\frac{n}{2}, \frac{n}{2}}$ together with all straight line segments joining the vertices on the same circle has $H(n)$ crossings.
In the 1960s, Blažek and Koman presented a 1-circle drawing of K_{n} with $H(n)$ crossings. Therefore, it has been asked whether a 3 -circle drawing of $K_{\frac{n}{3}, \frac{n}{3}, \frac{n}{3}}$ together with all segments between vertices on the same circle can achieve $H(n)$ crossings. Our results prove that such a drawing does not exist.

[^0]
[^0]: 2-circle drawing

