Institute of Operating Systems and Computer Networks

On the Experiences with Testbeds and Applications in Precision Farming

Robert Hartung, Ulf Kulau, Stephan Rottmann, Björn Gernert, Lars Wolf

Motivation by Research

Research on outdoor (W)SNs

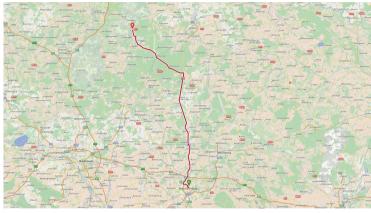
- How to achieve robustness and availability (rough environmental conditions)?
- Deal with constrained energy resources
- How to deal with limited connectivity?

Motivation by Application

Smart Farming – sensor networks in agriculture

- Consequential challenges:
 - Limited maintainability:
 - ightarrow Robustness and Energy Efficiency
 - Limited connectivity:
 - \rightarrow Limited Infrastructure (Opportunistic Networks)

Cooperation with potato research station


Potato research station

- Contact due to begin neighbors
- Possibility for a long-term outdoor testbed
- Additionally sensors for requirements of the research station
 - Temperature, Humidity, Light, ...
- Constraints:
 - Limited height of hardware of approx. one meter
 - Cables have to be burrowed >= 20 cm

Challenges (1)

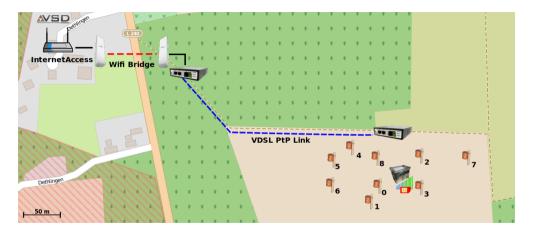
1.5 h by car (single distance)

Challenges (2)

Regular farming activities

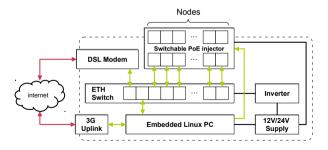
- Tractor
- Watering
- Field syringe
- Limited remote access
- Harsh conditions: Rain, Temperature, Snow
- Fixed time window for deploying the network:

J	F	М	А	М	J	J	Α	S	0	Ν	D	
---	---	---	---	---	---	---	---	---	---	---	---	--

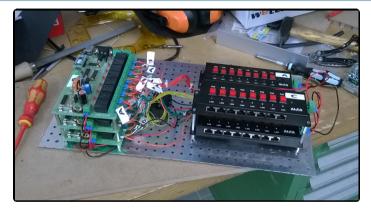

PotatoNet – Infrastructure

- Permanent power supply
- WiFi bridge

PotatoNet – Setup



Central Box – Architecture


Components in central box

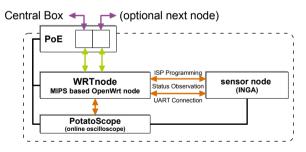
- Linux IPC (24V powered)
- Ethernet Switch and controllable, passive PoE Injectors
- 24V PSU, Inverter for Ethernet Switch



Central Box – Impressions

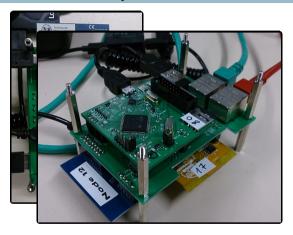
Central Box – Impressions

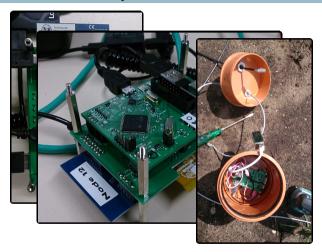
Central Box – Impressions



Field Node – Architecture

Components of the field node


- WRTnode (OpenWRT Linux Board)
- INGA (Wireless Sensor Node)
- Powered via $PoE \rightarrow Concatenation of nodes possible$



PotatoMesh – Setup

- Deployment on a different field
- No WiFi bridge, but LTE
- Area of interested for the research station far away

PotatoMesh – Setup

- Deployment on a different field
- No WiFi bridge, but LTE
- Area of interested for the research station far away

PotatoMesh – Setup

- Deployment on a different field
- No WiFi bridge, but LTE
- Area of interested for the research station far away

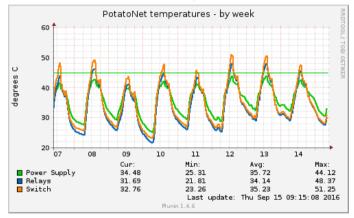
Network setup

500m

Lesson #1: Farming Activities (1)

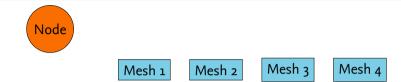
Lesson #1: Farming Activities (1)

Lesson #1: Farming Activities (2)

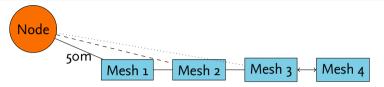

- Field Syringe was too low
- Scratch on one of our PotatoMesh nodes

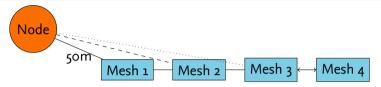
Lesson #2: Temperature

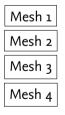
- High temperatures in summer: fan was damaged

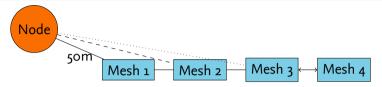


Lesson #2: Temperature

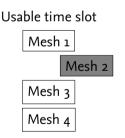

• Umbrella on top of the central box to reduce heat

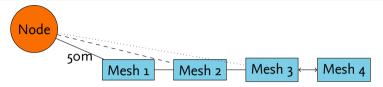


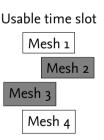

 PotatoMesh is a WiFi-based mesh network



- PotatoMesh is a WiFi-based mesh network
- Duty cycling of high-power node to reduce energy consumption


Usable time slot

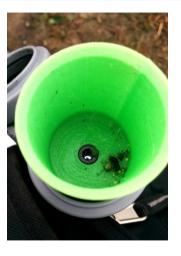



- PotatoMesh is a WiFi-based mesh network
- Duty cycling of high-power node to reduce energy consumption
- Time-drift reduced usable time window

- PotatoMesh is a WiFi-based mesh network
- Duty cycling of high-power node to reduce energy consumption
- Time-drift reduced usable time window

Lesson #3: Animals

- Use infrared sensor to measure surface temperature
- Requires direct line-of-sight

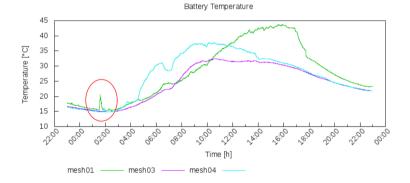


Lesson #3: Animals

- Use infrared sensor to measure surface temperature
- Requires direct line-of-sight
- Spider in one of the housings

Lesson #3: Animals (2)

Bucket used to cover battery



Lesson #3: Animals (2)

Temperature increase during night time

Lesson #3: Animals (2)

Nibbled cable

Lesson #3: Animals (2)

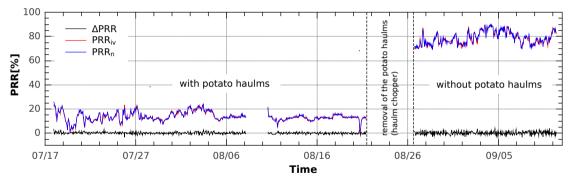
Additional slab below the battery

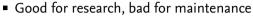
Lesson #4: Vandalism

PotatoMesh node was stolen

Lesson #4: Vandalism

Cable was cut


Lesson #4: Vandalism


• Cable moved by a human or an animal?

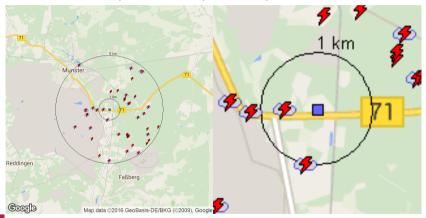
Lesson #5: RF Shadowing

Lesson #5: RF Shadowing

Problem: Potato plants grew larger than we were told

Lesson #6: Weather

unreachable nodes (including mesh network)


$$C \xrightarrow{15} \leftarrow - \times - \times 16 \xleftarrow{17} \leftarrow 18$$

$$Mesh o1 \longleftarrow Mesh o2$$

Lesson #6: Weather

- Heavy thunderstorm the day before, data provided by Siemens BLIDS service

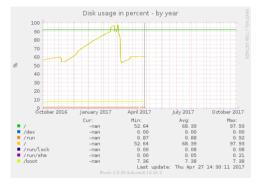
Lesson #6: Weather

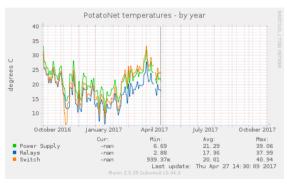
Electromagnetic field couplying in ethernet cable's shield

Concepts

Initial Requirements

- well known (from own and other related work)
- awareness of long distance and remote access
- this heavily influenced the system design


Unexpected Causes


- Many "fails" were unexpected and could not have been prevented easily
- But: We learned from them!

Concept #1: Monitoring

System and process monitoring (e.g. munin, supervisord, ...)

Concept #1: Monitoring

Installation of a webcam

Time lapse Video

Concept #2: Take everything with you!

Conclusion

Despite all provisions we experienced a few fails

- Animals
- Plowing
- Lightning Strike

Many Success Stories

- So far 18 significant publications
 - e.g. at DCoSS, SECON, Senseapp, Chants, ...
- More than 14 student thesis
- Cooperation with other research groups

hartung@ibr.cs.tu-bs.de, https://www.ibr.cs.tu-bs.de/projects/potatonet

