

Technische Universität Braunschweig

ENDBOX: Scalable Middlebox Functions Using Client-Side Trusted Execution

Image CC-BY-SA Victorgrigas

David Goltzsche,¹ Signe Rüsch,¹ Manuel Nieke,¹ Sébastien Vaucher,² Nico Weichbrodt,¹ Valerio Schiavoni,² Pierre-Louis Aublin,³ Paolo Costa,⁴ Christof Fetzer,⁵ Pascal Felber,² Peter Pietzuch³ and Rüdiger Kapitza¹

¹TU Braunschweig goltzsche@ibr.cs.tu-bs.de ♥@d_goltzsche ²University of Neuchâtel ³Imperial College London ⁴Microsoft Research ⁵TU Dresden

What Are Middleboxes?

- Middleboxes are essential parts of large networks
 - Example: enterprise networks
- Functions related to security or performance
- Current best practice: central deployment as physical boxes

Braunschweig

- High infrastructure and management costs (Sherry et al. SIGCOMM'12)
- Scalability issues with growing client numbers

What Are Middleboxes?

- Middleboxes are essential parts of large networks
 - Example: enterprise networks
- Functions related to security or performance
- Current best practice: central deployment as physical boxes
 - High infrastructure and management costs (Sherry et al. SIGCOMM'12)
 - Scalability issues with growing client numbers

Problem: Middleboxes are necessary for large networks, but come at **high costs** and **do not scale** well with number of clients.

Outline

- Introduction to Middleboxes
- Design of ENDBox
- Evaluation of ENDBOX
- Related Work
- Conclusion

Approach of ENDBOX

- Untrusted clients can manipulate or circumvent traffic analysis
 Client traffic routed through trusted execution environments (TEEs)
- Inside TEE, packets are processed, signed and encrypted
- Unsigned outgoing traffic dropped by firewall/gateway (FW/GW)
- Encrypted incoming traffic cannot be encrypted outside of TEE

Approach of ENDBOX

- Untrusted clients can manipulate or circumvent traffic analysis
 Client traffic routed through trusted execution environments (TEEs)
- Inside TEE, packets are processed, signed and encrypted
- Unsigned outgoing traffic dropped by firewall/gateway (FW/GW)
- Encrypted incoming traffic cannot be encrypted outside of TEE

Approach of ENDBOX

- Untrusted clients can manipulate or circumvent traffic analysis
 Client traffic routed through trusted execution environments (TEEs)
- Inside TEE, packets are processed, signed and encrypted
- Unsigned outgoing traffic dropped by firewall/gateway (FW/GW)
- Encrypted incoming traffic cannot be encrypted outside of TEE

ENDBOX enforces the routing of application traffic through TEEs deployed on untrusted client machines.

TEE: Intel SGX in a Nutshell

- x86 instruction set extension introduced with Skylake architecture
- Creation of trusted execution environments (TEEs) → enclaves
- Execution and data inside enclaves protected from privileged software
- Hardware-based memory integrity protection and encryption
- Remote attestation of enclaves
- Only CPU is trusted

Application
TEE / Enclave
Operating System
Hardware
СРО

TEE: Intel SGX in a Nutshell

- x86 instruction set extension introduced with Skylake architecture
- Creation of trusted execution environments (TEEs) → enclaves
- Execution and data inside enclaves protected from privileged software
- Hardware-based memory integrity protection and encryption
- Remote attestation of enclaves
- Only CPU is trusted

Intel SGX allows the creation of **enclaves**, trusted execution environments (TEEs) protected by hardware.

① Packet copied into enclave

- 1) Packet copied into enclave
- Execute middlebox function(s)

- Packet copied into enclave
 -) Execute middlebox function(s)
- ③ Packet accepted/discarded

- \bigcirc Packet copied into enclave
 - Execute middlebox function(s)
- ③ Packet accepted/discarded
- ④ Packet signed, encrypted and copied out of enclave

- \bigcirc Packet copied into enclave
 - 2) Execute middlebox function(s)
- ③ Packet accepted/discarded
- ④ Packet signed, encrypted and copied out of enclave
- Integration of enclaves into OpenVPN client
- Utilise Click modular router (Kohler et al. TOCS'00) for arbitrary middlebox functions
- TaLoS library (Aublin et al. technical report '17) for in-enclave TLS termination

- \bigcirc Packet copied into enclave
 - 2) Execute middlebox function(s)
- ③ Packet accepted/discarded
- ④ Packet signed, encrypted and copied out of enclave
- Integration of enclaves into OpenVPN client
- Utilise Click modular router (Kohler et al. TOCS'00) for arbitrary middlebox functions
- TaLoS library (Aublin et al. technical report '17) for in-enclave TLS termination

ENDBOX executes middlebox functions inside **trusted SGX enclaves** embedded into a **VPN client** and uses the **Click modular router**.

• Configuration updates are **challenging** with distributed middleboxes

1 Admin uploads **encrypted configuration** and starts grace period timer

• Configuration updates are **challenging** with distributed middleboxes

Admin uploads encrypted configuration and starts grace period timer
 New version number piggybacked on OpenVPN ping messages

- \bigcirc Admin uploads **encrypted configuration** and starts grace period timer
- 2) New version number piggybacked on **OpenVPN ping messages**
- ③ If necessary, client obtains new configuration file

- \bigcirc Admin uploads **encrypted configuration** and starts grace period timer
- 2 New version number piggybacked on **OpenVPN ping messages**
- ③ If necessary, client obtains new configuration file
- ④ Configuration is **decrypted and applied**

- \bigcirc Admin uploads **encrypted configuration** and starts grace period timer
- 2 New version number piggybacked on **OpenVPN ping messages**
- ③ If necessary, client obtains new configuration file
- ④ Configuration is **decrypted and applied**
- 5 Ping server with piggybacked version number to **prove application**

• Configuration updates are **challenging** with distributed middleboxes

- \bigcirc Admin uploads **encrypted configuration** and starts grace period timer
- 2 New version number piggybacked on **OpenVPN ping messages**
- ③ If necessary, client obtains new configuration file
- ④ Configuration is **decrypted and applied**
- 5) Ping server with piggybacked version number to **prove application**

ENDBox configurations are **centrally controlled and enforced**.

Outline

- Introduction to Middleboxes
- Design of ENDBox
- Evaluation of ENDBOX
- Related Work
- Conclusion

Evaluation of ENDBOX

- 5 client machines for executing many clients
 - SGX-capable 4-core Xeon v5 CPUs, 32GB RAM
- 2 server machines as OpenVPN servers
 - non-SGX 4-core Xeon v2 CPUs, 16GB RAM
- 10 Gbps interconnection (switched network)
- Research questions:
 - What is ENDBox's impact on latency?
 - What throughput can ENDBox achieve?
 - Does ENDBox improve scalability?

Latency Depending on Middlebox Placement

Latency Depending on Middlebox Placement

<u>Throughput</u> for Different Middlebox Use cases

Technische Universität Braunschweig

<u>Throughput</u> for Different Middlebox Use cases

Technische Universität Braunschweig

ENDBOX scales linearly with the number of clients.

ENDBOX scales linearly with the number of clients.

ENDBox has no server-side performance penalty.

ENDBOX scales linearly with the number of clients.

ENDBox has no server-side performance penalty.

ENDBOX has a $3.8 \times$ higher throughput compared to a traditional deployment.

ENDBOX scales linearly with the number of clients.

ENDBox has no server-side performance penalty.

ENDBOX has a $3.8 \times$ higher throughput compared to a traditional deployment.

ENDBOX **saves resources** on server-side.

Technische Universität Braunschweig

Outline

- Introduction to Middleboxes
- Design of ENDBox
- Evaluation of ENDBOX
- Related Work
- Conclusion

Related Work

- Moving middlebox functions to clients has been proposed before
- Trusted clients assumed, exception: ETTM (Dixon et al. NSDI'11)
 - Based on Trusted Platform Module (TPM)
 - Large trusted computing base (TCB) includes hypervisor
 - **Paxos** applied for consensus \rightarrow bad scalability
- Recent work uses SGX, but target cloud-based trusted middleboxes
 - ShieldBox (Trach et al. SOSR'18)
 - SafeBricks (Poddar et al. NSDI'18)

Related Work

- Moving middlebox functions to clients has been proposed before
- Trusted clients assumed, exception: ETTM (Dixon et al. NSDI'11)
 - Based on Trusted Platform Module (TPM)
 - Large trusted computing base (TCB) includes hypervisor
 - Paxos applied for consensus \rightarrow bad scalability
- Recent work uses SGX, but target cloud-based trusted middleboxes
 - ShieldBox (Trach et al. SOSR'18)
 - SafeBricks (Poddar et al. NSDI'18)

ENDBOX is the first approach exploring the deployment of **client-side middleboxes** with recent hardware trends like Intel SGX

Outline

- Introduction to Middleboxes
- Design of ENDBox
- Evaluation of ENDBOX
- Related Work
- Conclusion

Conclusion

ENDBox's contributions:

- Secure deployment and execution of middlebox functions on untrusted client machines
- Scales linearly with number of clients
- Up to 3.8× higher throughput
- Centrally controlled and enforced configuration
- Secure analysis of encrypted traffic (see paper!)
- Additional scenario: ISP (see paper!)

Conclusion

ENDBox's contributions:

- Secure deployment and execution of middlebox functions on untrusted client machines
- Scales linearly with number of clients
- Up to 3.8× higher throughput
- Centrally controlled and enforced configuration
- Secure analysis of encrypted traffic (see paper!)
- Additional scenario: ISP (see paper!)

Thank you for your time! Questions? goltzsche@ibr.cs.tu-bs.de \$\Vert @github.com/ibr-ds

