
AccTEE: A WebAssembly-based Two-way
Sandbox for Trusted Resource Accounting
MIDDLEWARE 2019, UC Davis

David Goltzsche,1 Manuel Nieke,1 Thomas Knauth,2 and Rüdiger Kapitza1

goltzsche@ibr.cs.tu-bs.de
@d_goltzsche

1TU Braunschweig, Germany
2Intel, United States

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Offloading Computations

Offloading computations to
remote infrastructure

Cloud Computing
Volunteer Computing
Client-side Web applications

Reasons:
Remotely available resources
Moving computations closer to customers

Usually two entities:
Workload provider
Infrastructure provider

Accounting of consumed resources in some cases

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 2

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Offloading Computations

Offloading computations to
remote infrastructure

Cloud Computing
Volunteer Computing
Client-side Web applications

Reasons:
Remotely available resources
Moving computations closer to customers

Usually two entities:
Workload provider
Infrastructure provider

Accounting of consumed resources in some cases

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 2

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Offloading Computations

Offloading computations to
remote infrastructure

Cloud Computing
Volunteer Computing
Client-side Web applications

Reasons:
Remotely available resources
Moving computations closer to customers

Usually two entities:
Workload provider
Infrastructure provider

Accounting of consumed resources in some cases

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 2

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Resource Accounting

Cloud Computing
CPU and memory usage, I/O operations

Volunteer Computing
Logging of donated CPU time

Client-side Web applications
No accounting in practice

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 3

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Resource Accounting in Practice

Accounting on different levels
Task level (e.g. for completed tasks)
Hardware level (e.g. CPU usage)

Resources always accounted by
infrastructure provider

Current approaches of resource accounting require trust
in the infrastructure provider

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 4

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Resource Accounting in Practice

Accounting on different levels
Task level (e.g. for completed tasks)
Hardware level (e.g. CPU usage)

Resources always accounted by
infrastructure provider

Current approaches of resource accounting require trust
in the infrastructure provider

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 4

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Trust Relationship

Malicious infrastructure provider can …
Spy on provided code or data
Fake accounting results (overbilling)

Malicious workload provider can …
Provide crafted workload to destroy
execution environment
Trick resource accounting

Problem: Limited trust between infrastructure and workload provider

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 5

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Trust Relationship

Malicious infrastructure provider can …
Spy on provided code or data
Fake accounting results (overbilling)

Malicious workload provider can …
Provide crafted workload to destroy
execution environment
Trick resource accounting

Problem: Limited trust between infrastructure and workload provider

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 5

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Outline

Design of AccTEE

Evaluation of AccTEE

Related Work

Conclusion

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 6

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Approach of AccTEE

workload
provider

infrastructure
provider

1. Workload provider provides workload
2. Infrastructure provider executes workload in sandbox
3. Sandbox produces mutually trusted resource usage log

How do we get an sandbox with mutually trusted resource accounting?

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 7

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Approach of AccTEE

provides workload

workload
provider

infrastructure
provider

1. Workload provider provides workload
2. Infrastructure provider executes workload in sandbox
3. Sandbox produces mutually trusted resource usage log

How do we get an sandbox with mutually trusted resource accounting?

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 7

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Approach of AccTEE

sandbox
provides workload

workload
provider

infrastructure
provider

1. Workload provider provides workload
2. Infrastructure provider executes workload in sandbox
3. Sandbox produces mutually trusted resource usage log

How do we get an sandbox with mutually trusted resource accounting?

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 7

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Approach of AccTEE

resource
usage log

produces
log

sandbox
provides workload

workload
provider

infrastructure
provider

1. Workload provider provides workload
2. Infrastructure provider executes workload in sandbox
3. Sandbox produces mutually trusted resource usage log

How do we get an sandbox with mutually trusted resource accounting?

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 7

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Approach of AccTEE

resource
usage log

produces
log

sandbox
provides workload

workload
provider

infrastructure
provider

1. Workload provider provides workload
2. Infrastructure provider executes workload in sandbox
3. Sandbox produces mutually trusted resource usage log

How do we get an sandbox with mutually trusted resource accounting?

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 7

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

AccTEE’s Sandbox

Accountable sandbox is a
combination of two sandboxes

Execution sandbox
Shields host from workload
Shields accounting from workload

Accounting sandbox
Shields workload from host
Shields accounting from host

untrusted
host

accounting sandbox

execution sandbox

workload

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 8

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Background: WebAssembly (WASM)

A platform independent binary instruction format

Initially designed for computations in browsers
Standalone execution emerging

Goal: a safe, fast and portable low-level code

Application code is compiled to WASM

WebAssembly code executed in sandboxes
Based on software fault isolation

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 9

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Background: Intel SGX

x86 instruction set extension

Creation of trusted execution environments
(TEEs)→ enclaves

Execution and data inside enclaves
protected from privileged software

Hardware-based memory integrity
protection and encryption

Only CPU is trusted

Remote attestation of enclaves

Limitation: enclave page cache (EPC) size

application

enclave

operating system

hardware
CPU

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 10

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

AccTEE’s Two-way Sandbox

AccTEE combines two sandboxes
Execution sandbox

Based on WebAssembly

Accounting sandbox
Based on Intel SGX
Code instrumentation for resource
accounting

AccTEE combines SGX and WebAssembly to create a two-way sandbox

AccTEE instruments WebAssembly code
for mutually trusted resource accounting

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 11

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

AccTEE’s Two-way Sandbox

AccTEE combines two sandboxes
Execution sandbox

Based on WebAssembly

Accounting sandbox
Based on Intel SGX
Code instrumentation for resource
accounting

AccTEE combines SGX and WebAssembly to create a two-way sandbox

AccTEE instruments WebAssembly code
for mutually trusted resource accounting

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 11

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

AccTEE’s Two-way Sandbox

AccTEE combines two sandboxes
Execution sandbox

Based on WebAssembly

Accounting sandbox
Based on Intel SGX
Code instrumentation for resource
accounting

AccTEE combines SGX and WebAssembly to create a two-way sandbox

AccTEE instruments WebAssembly code
for mutually trusted resource accounting

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 11

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

WebAssembly Code Instrumentation
Goal: Count WebAssembly instructions

naive instrumentation
Based on basic blocks
Counter incremented at end of block

flow-based optimization
Increment by minimum instruction count
Update counter based on control flow

loop-based optimization
Identify loop iterators with constant increments
Increment counter once after loop

Different instruction costs
AccTEE uses a weighted instruction counter

get_global 12

set_local 3

i32.lt_s

i f (r e s u l t i 3 2)

get_local 0

i32.load offset=4

e l s e

get_local 4

i32.const 255

i32.and

end

tee_local 4

get_local 1

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 12

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

WebAssembly Code Instrumentation
Goal: Count WebAssembly instructions

naive instrumentation
Based on basic blocks
Counter incremented at end of block

flow-based optimization
Increment by minimum instruction count
Update counter based on control flow

loop-based optimization
Identify loop iterators with constant increments
Increment counter once after loop

Different instruction costs
AccTEE uses a weighted instruction counter

get_global 12

set_local 3

i32.lt_s
<Increment counter by 3>
i f (r e s u l t i 3 2)

get_local 0

i32.load offset=4
<Increment counter by 2>

e l s e

get_local 4

i32.const 255

i32.and
<Increment counter by 3>

end

tee_local 4

get_local 1

<Increment counter by 2>

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 12

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

WebAssembly Code Instrumentation
Goal: Count WebAssembly instructions

naive instrumentation
Based on basic blocks
Counter incremented at end of block

flow-based optimization
Increment by minimum instruction count
Update counter based on control flow

loop-based optimization
Identify loop iterators with constant increments
Increment counter once after loop

Different instruction costs
AccTEE uses a weighted instruction counter

get_global 12

set_local 3

i32.lt_s

i f (r e s u l t i 3 2)

get_local 0

i32.load offset=4

e l s e

get_local 4

i32.const 255

i32.and
<Increment counter by 1>

end

tee_local 4

get_local 1

<Increment counter by 7>

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 12

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

AccTEE’s Workflow

Application code
(C, C++, Rust, …)

WebAssembly Instrumentation
Enclave (IE)

Instrumented
WebAssembly

Instrumentation
Evidence

Accounting
Enclave (AE)

Resource
Usage Log

1. Workload provider compiles application to WebAssembly
2. WebAssembly is instrumented inside Instrumentation Enclave

Instrumentation evidence
Instrumented WebAssembly code

3. Accounting Enclave verifies evidence and executes WebAssembly code

4. Result: mutually trusted resource usage log

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 13

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Example Use Cases

Function-as-a-Service
Trusted resource accounting in data centers

Volunteer Computing
Trusted resource accounting at clients

Client-side web applications
Trusted resource accounting in browsers
e.g. for replacing micro payments

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 14

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

PolyBench/C Benchmark Suite

2m
m
3m

m ad
i
ata

x
bic

g

ch
ole

sky

co
rre

lat
ion

cov
ari

an
ce

de
ric
he

do
itg

en
du

rb
in

fdt
d-2

d
ge
mm
ge
mv

er

ge
su
mmv

gra
msch

midt

he
at-

3d

jac
ob
i-1

d

jac
ob
i-2

d lu

lud
cm

p
mv

t

nu
ssi
no
v

sei
de
l-2

d
sym

m
syr

2k syr
k
tri
sol

v
trm

m

1

2

3

4

N
o
rm

a
li
se
d
ru

n
ti
m
e

J
lo
w
er

is
b
et
te
r

WASM WASM-SGX WASM-SGX instrumented

Overhead for WASM: 10%

Overhead for WASM-SGX: 2.1× (EPC exhaustion)

Instrumentation overhead over WASM-SGX: 4% on average

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 15

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

WebAssembly Instruction Weights

0 20 40 60 80 100
0

20

40

60

80

Percentage of WebAssembly Instructions [%]

C
y
cl
es

p
er

in
st
ru

ct
io
n

J
lo
w
er

is
b
et
te
r

WebAssembly Instruction

74% of instructions need < 10 cycles
2% of instructions (e.g. f32.sqrt) > 50 cycles

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 16

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

WebAssembly Instruction Weights

0 20 40 60 80 100
0

20

40

60

80

Percentage of WebAssembly Instructions [%]

C
y
cl
es

p
er

in
st
ru

ct
io
n

J
lo
w
er

is
b
et
te
r

WebAssembly Instruction

74% of instructions need < 10 cycles
2% of instructions (e.g. f32.sqrt) > 50 cycles

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 16

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

WebAssembly Instruction Weights

0 20 40 60 80 100
0

20

40

60

80

Percentage of WebAssembly Instructions [%]

C
y
cl
es

p
er

in
st
ru

ct
io
n

J
lo
w
er

is
b
et
te
r

WebAssembly Instruction

74% of instructions need < 10 cycles
2% of instructions (e.g. f32.sqrt) > 50 cycles

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 16

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Function-as-a-Service (FaaS) Use Case

64 128 512 1024

20

40 3
7
.7

3
6
.7

2
2
.3

9
.4

1
7
.5

1
7

1
0
.5

3
.7

1
7
.4

1
6
.9

1
0
.1

3
.4

2
.5

1
.9 2

1
.3

Square Image Size [pixel]

T
h
ro
u
g
h
p
u
t
[r
eq

/
s]

h
ig
h
er

is
b
et
te
rI

WASM WASM-SGX

WASM-SGX instr. JS

Benchmark: Image resize FaaS function
Accounting overhead is negligible
Between 3× and 9× faster than JavaScript baseline

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 17

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Related Work

Combination of Google Native Client (NaCl) and SGX enclaves
MiniBox (ATC’14), Ryoan (OSDI’16)
No platform independence
No resource accounting

S-FaaS (CCSW’19) Trustworthy and Accountable FaaS
Combines SGX and hyper-threading
CPU time measured by dedicated timer thread
Wastes an entire core to count CPU cycles

AccTEE is the first two-way sandbox based on SGX and WebAssembly
enabling mutually trusted resource accounting

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 18

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Related Work

Combination of Google Native Client (NaCl) and SGX enclaves
MiniBox (ATC’14), Ryoan (OSDI’16)
No platform independence
No resource accounting

S-FaaS (CCSW’19) Trustworthy and Accountable FaaS
Combines SGX and hyper-threading
CPU time measured by dedicated timer thread
Wastes an entire core to count CPU cycles

AccTEE is the first two-way sandbox based on SGX and WebAssembly
enabling mutually trusted resource accounting

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 18

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Conclusion

AccTEE’s contributions:
Implements two-way sandbox
Mutually trusted resource accounting

Instrumentation of WebAssembly code
Platform independent

More contributions in the paper
Volunteer Computing use case
Accounting of I/O and memory usage

Thank you for your time! Questions?
goltzsche@ibr.cs.tu-bs.de

@d_goltzsche

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 19

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Conclusion

AccTEE’s contributions:
Implements two-way sandbox
Mutually trusted resource accounting

Instrumentation of WebAssembly code
Platform independent

More contributions in the paper
Volunteer Computing use case
Accounting of I/O and memory usage

Thank you for your time! Questions?
goltzsche@ibr.cs.tu-bs.de

@d_goltzsche

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 19

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 20

Design of AccTEE Evaluation of AccTEE Related Work Conclusion

Side-channel Attacks against Intel SGX Enclaves

Side-channel attacks against SGX:

Spectre Attacks: Exploiting Speculative Execution (S&P’19)

Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution (USENIX Security’18)

ZombieLoad: Cross-Privilege-Boundary Data Sampling (2019)

All side-channels are not exclusive to SGX!

All fixed by microcode updates at cost of transition performance

2019-12-11 D. Goltzsche, TU Braunschweig, Germany AccTEE, D. Goltzsche et al. Page 21

