
Institute of Operating Systems
and Computer Networks

TrustScript: Language Support for
Partitioning Trusted Web Applications
David Goltzsche, Tim Siebels, Rüdiger Kapitza | TU Braunschweig, Germany
goltzsche@ibr.cs.tu-bs.de, siebels@ibr.cs.tu-bs.de, rrkapitz@ibr.cs.tu-bs.de

Problem Statement
Previous work TrustJS achieves trusted client-side execution of
JavaScript using trusted execution environments (TEEs)
Partionining of JavaScript code is necessary

! No existing development tools for TrustJS
! Time-consuming and error-prone development

Goal: first-class language support for partitioning web applications
Approach: Extend TypeScript language to support partitioning

TypeScript
Syntactical superset of JavaScript
Added features: types, namespaces, interfaces, ...
Type checking in compilation step
Transcompiles to pure JavaScript
Compiler itself written in TypeScript
Type definitions for interfacing TypeScript and JavaScript

TrustScript Features
Single keyword added to TypeScript language: trusted
New namespace type: trusted namespace

Other possible approaches: annotations, trusted functions
Compilation from a single file into separate files: trusted and untrusted
Existing export keyword used for exposing functions to untrusted side

Only explicitly exposed functions are callable from untrusted side
Name mangling for elements in trusted namespaces

Preventing name clashes due to different trusted namespaces
Diagnostics: compiler warnings and errors

Exporting other elements than functions from trusted namespaces
DOM access from trusted side
Calling an untrusted function from within trusted namespace

IDE support for Visual Studio Code

TrustJS published1 at EuroSec’17

TrustJS enables trusted, client-side execution of JavaScript
Protected JavaScript engine integrated into web browsers for
securely offloading JS applications
Enclave implementation based on Intel SGX

! Partitioning of JavaScript code is necessary

TEE

JSJS

TrustJS

B
ro
w
se
r

1Goltzsche et al. "TrustJS: Trusted Client-side Execution of JavaScript." Proceedings
of the 10th European Workshop on Systems Security. ACM, 2017.

Written Code
// File: counter.ts

trusted namespace inside {
let count = 0;
export function counter(): number
{

return ++count;
}

}

namespace outside {
async function printCounter()
{

console.log("Counter: " +

(await inside.counter())

);

}

}

Emitted Code
// File: counter_trusted.js

/* @exposed

__tsNSinsideFcounter 0;*/

var __tsNSinsideFcount = 0;
function __tsNSinsideFcounter() {
return ++__tsNSinsideFcount;

}

// File: counter.js

var outside;
(function (outside) {
async function printCounter() {
console.log("Counter: " +

(await __tsNSinsideFcounter())

);

}

})(outside || (outside = {}));

Future Work
Currently, only local TEEs possible
Extend our approach for enclaves in
remote browsers
Based on WebRTC

TEE

JSJS

B
ro
w
se
r

B
ro
w
se
r

TrustJS

B
ro
w
se
r

