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Abstract

Remote computation has numerous use cases such as cloud comput-
ing, client-side web applications or volunteer computing. Typically,
these computations are executed inside a sandboxed environment
for two reasons: first, to isolate the execution in order to protect the
host environment from unauthorised access, and second to control
and restrict resource usage. Often, there is mutual distrust between
entities providing the code and the ones executing it, owing to
concerns over three potential problems: (i) loss of control over code
and data by the providing entity, (ii) uncertainty of the integrity
of the execution environment for customers, and (iii) a missing
mutually trusted accounting of resource usage.

In this paper we present AccTEE, a two-way sandbox that of-
fers remote computation with resource accounting trusted by con-
sumers and providers. AcCTEE leverages two recent technologies:
hardware-protected trusted execution environments, and Web-
Assembly, a novel platform independent byte-code format. We show
how AccTEE uses automated code instrumentation for fine-grained
resource accounting while maintaining confidentiality and integrity
of code and data. Our evaluation of AccTEE in three scenarios - vol-
unteer computing, serverless computing, and pay-by-computation
for the web — shows a maximum accounting overhead of 10%.
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1 Introduction

Offloading computation to remote infrastructure has many use
cases with cloud computing, client-side web applications and vol-
unteer computing systems being the most prominent examples.
Utilising resources that are not available locally and bringing the
computation closer to customers are the main drivers for this ev-
erlasting trend. Since the beginning of remote execution of code,
infrastructure providers distrust workload providers and guard their
host environments from unauthorised access while also implement-
ing measures to control and log resource usage by utilising sandbox
mechanisms. So far, workload providers have to trust infrastructure
providers to not take advantage of the provided code and data,
to not tamper with the performed computation, and to actually
provide and accurately account the resources that were utilised. In
the context of cloud computing, trust is established through the
reputation of well-known providers; however the absence of trust
was often seen as a major obstacle, preventing more wide-spread
use of cloud computing. For web-based applications the issue of
missing trust is usually overcome by simply avoiding offloading
sensitive code and data to the client or by re-validating important
user inputs at server side. To summarise, the entities involved in
remote computation (workload provider and infrastructure provider)
generally mistrust each other, which inhibits broader application.
With the advent of novel trusted execution technologies, this
situation changig. Taking ARM® TrustZone® [1] as the first widely-
available implementation and more recently Intel® Software Guard
Extensions (Intel® SGX) [2], it has become possible to guard compu-
tations on a remote machine from unauthorised access and tamper-
ing. This has been explored for cloud computing by systems such as
Haven [3], SCONE [4] and Ryoan [5] but also in the context of web
applications by securing computations inside a browser [6]. How-
ever, none of these efforts offer mechanisms for resource accounting
trusted by both customers as well as infrastructure providers. Also,
CPU time or runtime is usually used as a metric for resource usage;
an approach which is not compatible with technologies such as
Intel® SGX (see § 2.2). Research has also shown performance in
cloud architectures to have a high time-dependent variability, i.e. re-
sources costing customers the same have different performance [7].
Additionally, cloud providers implement different pricing models,
which makes offerings hard to compare for customers. Therefore,
from the workload providers’ perspective, we see the need for a
more comparable and accurate accounting of resources. Providing
such a functionality would improve the trustworthiness of cloud
computing but more importantly strengthen existing and enable
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new remote computation use cases, where fine-grained computa-
tions are outsourced to a dynamic set of infrastructure providers.

In cloud computing we see a trend towards "serverless com-
puting", with Function-as-a-Service (FaaS) [8] as the main driver,
where customers provide functions that can be executed highly
scalable. Customers are usually billed by the runtime of the de-
ployed functions, while the price per time increases, if customers
choose a higher upper limit of usable memory for the function. The
runtime of a function can vary due to the underlying software and
hardware stack and other effects [7]. In the extreme, a FaaS provider
that has a cheaper price per runtime unit could be actually more
expensive because of a slower infrastructure. All these aspects are
more or less invisible to the user and hardly comprehensible. The
demand for a trustworthy execution and accounting will even rise
once serverless computing is used in the context of fog and edge
cloud computing where highly distributed and possibly diverse
infrastructure providers are utilised.

Trusted execution and accounting might be even more important
in the context of volunteer computing systems such as BOINC [9]
and Folding@home [10]. These projects assemble large amounts of
donated computational power to solve problems like genome anal-
ysis. However, they face the issue of untrustworthy infrastructure
providers: Participants may resubmit existing or outright bogus re-
sults either to sabotage the project or to improve their leader board
ranking. Here, trusted execution combined with trusted accounting
could substantially improve the situation as workloads do not have
to be executed multiple times to verify results which is currently
best practice [9].

As mentioned before, the use of trusted execution has also been
proposed in web-applications [6]. If additionally equipped with
trusted accounting, web-application providers and users could im-
plement a new form of micro-payments where donated computing
resources can be traded for ad-free web pages or access to digi-
tal assets such as news articles or other digital goods. However,
if resource accounting is not protected, users will cheat to gain
advantages without investing resources.

In this paper we present ACCTEE, a two-way sandbox that offers ac-
counting of resource usage trusted by workload and infrastructure
providers in remote computation scenarios. To help protect the exe-
cution and data from unauthorised access by the resource provider,
AccTEE utilises trusted execution as offered by Intel® SGX. To
help prevent unauthorised access to the infrastructure providers
machine, AccTEE takes WebAssembly [11] as a sandboxing mech-
anism. Thereby, the WebAssembly execution environment is oper-
ated under the protection of trusted execution. This way, infrastruc-
ture providers and workload providers can validate the integrity
of the sandbox that cannot be altered by either side without be-
ing detected. AccTEE tracks resource usage inside this execution
environment by counting WebAssembly instructions, memory al-
location and I/O operations. Taking this two-way sandbox as a
basis, AccTEE’s core contribution is a fine-grained, platform in-
dependent and trusted accounting infrastructure supported by an
automated instrumentation of WebAssembly. To our knowledge,
AcCTEE is the first system that realises a two-way sandbox based
on the two novel technologies SGX and WebAssembly. We illustrate
both the need and practicality of trusted resource accounting across
client and server workloads. Finally, we evaluate the performance
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impact of trusted resource accounting using representative micro-
benchmarks and real-world applications from three scenarios: vol-
unteer computing, serverless computing, and pay-by-computation
for the web.

2 Background

This section further motivates the need for trustworthy resource
accounting by describing four use case scenarios (§ 2.1). We give
details on Intel® SGX, which AccTEE uses to help protect the
confidentiality and integrity of code and data (§ 2.2). Also, we
describe WebAssembly, which AccTEE employs to sandbox exe-
cutable code (§ 2.3) and which is instrumented for resource account-
ing. The background section concludes by detailing our assumed
threat model (§ 2.4).

2.1 Use Case Scenarios

We describe four use case scenarios that would benefit from trusted
resource accounting as offered by AccTEE. They consist of client
and server workloads, illustrating AccTEE’s applicability in a range
of computing environments.

Volunteer Computing. Mainstream volunteer computing sys-
tems like BOINC [9] and Folding@home [10] attract millions of
participants to donate TeraFLOPS of computing power to a wide
range of research projects [12, 13]. However, today’s volunteer
computing systems suffer from the following shortcomings: First,
accounting is done by logging donated CPU time, e.g. the result is
not necessarily trustworthy and does not include other resources
such as memory or I/O. Additionally, as participants are expected to
own vastly different CPU generations, it is impossible to fairly com-
pare the CPU times donated. Second, these systems waste resources
by executing each task multiple times to ensure result integrity in
case a particular client misbehaves (either unintentionally due to
a bug or intentionally to cheat). Finally, volunteers have access to
the code and data which restricts the eligible workloads to domains
where this is acceptable.

AccTEE addresses the points raised above. It provides a platform
independent and therefore comparable resource accounting and
helps protect integrity of results by executing the workload inside
a trusted execution environment (TEE), thereby saving resources
otherwise wasted on multiple workload executions. At the same
time AccTEE also tracks resource usage through its accountable
sandbox to prevent cheaters from advancing on the score board
without actually expending the resources. AccTEE’s TEE also helps
keep the data (and optionally code) confidential to enable a wider
range of use cases. In summary, while no computing system can
be absolutely secure, ACCTEE can serve as a platform for trusted
volunteer computing.

Reimbursed Computing. Reimbursed computing [14-16] can be
seen as the commercialisation of volunteer computing. Instead of
donating computational resources for a worthwhile cause, partici-
pants offer spare resources of their private machines and are reim-
bursed for it in, for example, cryptocurrency tokens. This approach
solves an additional drawback of today’s volunteer computing sys-
tems: low incentive. Typically, credit systems with leader boards
are implemented, which help to keep participants engaged through
gamification. However, many participants abandon the volunteer
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computing platform quickly, which results in surprisingly low num-
bers of active users (BOINC: 3.1 %[12], Folding@home: 1.3 %[13]). A
way to reimburse participants for the work would of course shift the
paradigm of volunteer computing systems, but open up new fields
of application. This would enable anyone with spare resources to
sell them whenever their hardware is underutilised. While anyone
can participate and become an infrastructure provider, this model
suffers from a lack of trust, as infrastructure providers are unknown
to workload providers. Also, a model like this would certainly at-
tract malicious infrastructure providers who will try to cheat and
wrongfully collect reimbursements.

With AccTEE and its trusted execution environment, the work-
load provider has the ability to protect their workload independent
of the underlying infrastructure and infrastructure provider. The
mutually trusted accounting within AccTEE correctly determines a
workload’s resource usage. This prevents attempts of infrastructure
providers to receive reimbursements for unassigned resources and
attempts of workload providers to underpay their counterparts.

Serverless Computing. A recent trend in cloud computing is
serverless computing, with Function-as-a-Service (FaaS) being the
main driver. Instead of managing servers, developers write and
submit code the size of a single function. The cloud provider sets
up the function’s execution context, scales the number of parallel
function instances and connects the function’s in- and outputs.
Out of necessity, the workload provider trusts the infrastructure
provider with its code and data in traditional FaaS implementations.
In addition, the infrastructure provider is also trusted to honestly
account the resources consumed by the workload provider. When a
TEE protects the workload provider’s code and data, the infrastruc-
ture provider can only track resources used within the TEE from
the outside. In a model where the workload provider only trusts the
TEE, the metrics collected outside of it are by definition untrusted.
Similarly, any resource tracking happening inside the TEE is invisi-
ble to the infrastructure provider and hence untrusted. Additionally,
performance in cloud architectures varies [7], which makes it near
impossible for workload providers to compare different providers.

AccTEE solves these issues by executing code and data inside
a TEE. In addition, AccTEE’s resource accounting is comparable
across providers and is trusted by both the workload provider and
infrastructure provider. While the infrastructure provider cannot
track resources within the TEE, it trusts the TEE to correctly do
so for accounting purposes, and to attest to this fact. Within the
TEE, language-based software fault isolation prevents the workload
provider from interfering with the accounting. Interestingly, large
companies recently started to investigate in this direction as well.
Like AccTEE, Cloudflare Workers [17] use the same software fault
isolation based on WebAssembly, illustrating the growing maturity
of the technology.

Pay-by-Computation. Today, web content providers rely pri-
marily on online advertising to finance their operations. On the
other hand, content consumers go to great lengths to remove ad-
vertisements from websites as they are perceived as annoying,
intrusive, detrimental to the user experience, and even compromise
security [18]. Browser vendors even started to build the blocking
technology right into their browsers [19]. Considering the overall
negative sentiments towards online advertisement, the need of an
alternative, less intrusive mechanism to compensate the content
provider is obvious.
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An accountable sandbox such as AcCTEE can help address this
problem. Instead of displaying advertisements, the user implicitly
or explicitly agrees to run short-lived tasks in exchange for access-
ing the web page. The tasks execute in the background, utilizing
otherwise idle resources and without disturbing the visual user
experience. ACCTEE’s two-way sandbox protects the task’s con-
fidentiality and integrity. The browser’s integrity and security is
provided by the language-based isolation of AccTEE. The two-
way sandbox limits the overall resource consumption and provides
periodic feedback to the content provider on the task’s progress.

2.2 Intel® Software Guard Extensions

Recent 6th generation Intel® CPUs support a versatile and per-
formant TEE in the form of Intel® Software Guard Extensions
(Intel® SGX). It helps protect the integrity and confidentiality of
code and data through compartments called enclaves. Computations
performed inside an enclave are isolated from potentially malicious
privileged software, including the operating system, hypervisor
and system management code. This is achieved by adding new
instructions to create and manage enclaves. Code executing in the
enclave is integrity-protected, i.e. it cannot be altered without de-
tection; an important feature for AccTEE. Code and data occupy
an isolated logical memory range inside the address space of a
process. Off-chip enclave memory is stored in a system-reserved
memory range called enclave page cache (EPC). Data moved be-
tween the CPU caches and the EPC is transparently en-/decrypted
with a negligible performance overhead [20]. Intel® SGX helps pro-
tect the integrity, confidentiality and freshness of this range with
checksums, memory encryption and versioning.

In addition to providing those protection mechanisms for code
and data, Intel® SGX can authenticate enclaves through local and
remote attestation: With local attestation, two enclaves on the same
platform can authenticate each other. The authentication is based
on an enclave identity that includes the enclave’s code, creator and
other supplemental attributes. Optionally, the attestation report
may contain arbitrary user-defined data, e.g., to cryptographically
bind a public key to a specific enclave instance. Remote attestation
allows a challenger to gain trust in a remote enclave [21]. The attes-
tation report is signed by the platform’s quoting enclave. The signed
report (quote) in combination with either the Intel® Attestation
Service (IAS) [22] or alternate attestation infrastructure [23] allows
a remote challenger to assess the trustworthiness of an enclave, i.e.
whether the enclave runs on a genuine Intel® SGX-capable CPU
and whether the platform software is up-to-date.

While Intel® SGX offers a performant and versatile TEE, some
restrictions apply. Since Intel® SGX isolates the enclave from the
untrusted environment, operations that could compromise this
isolation are disallowed. For example, to issue a system call the
processors needs to switch into supervisor mode, but mode switches
are disallowed while in the enclave. Besides certain instructions
being unavailable inside the enclave, a second limitation is the
restricted EPC size of 128 MB per machine, with only 93 MB being
usable. Larger enclaves are possible, but securely swapping EPC
pages to and from unprotected memory incurs a potentially hefty
performance penalty which highly depends on the application’s
memory access pattern [4, 24].

Also, the trusted time source of Intel® SGX has limitations: It can
only be used as a lower bound, as calls traverse untrusted code and
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thus can be withheld by an attacker. Some systems have proposed
to approximate a trusted timer using a dedicated thread in a busy-
loop [25-27]. However, this workaround needs fine-tuning for each
hardware-platform and wastes an entire core to count CPU cycles.

AccTEE builds on Intel® SGX to help protect the confidentiality
and integrity of programs. The ability to gain confidence in an
enclave’s identity through remote attestation enables a remote
party to trust the resource accounting, making Intel® SGX a good
choice for implementing the our AccTEE prototype.

2.3 WebAssembly

WebAssembly [11, 28] (abbreviated WASM) is a novel, platform
independent binary instruction format. Its major goal is a safe,
fast and portable low-level code format. While WebAssembly’s
first main use case was for client-side execution of web applica-
tions within browsers, its design is independent of this initial use
case: stand-alone execution of backend services is already possible
with Node.js [29] and other lightweight JavaScript-independent
WebAssembly runtimes [30-33] are under active development.

Attempting to create a safe and performant execution environ-
ment in browsers for untrusted code has a long history. Predeces-
sor technologies include Microsoft’s ActiveX [34] on Windows,
Native Client (NaCl) [35] and Portable Native Client (PNaCl) [36]
in Google’s Chrome browser, and Mozilla’s asm.js [37]. As opposed
to these previous efforts, WebAssembly is developed by a consor-
tium of companies. As such, support to execute WebAssembly is
already present on all major platforms and browsers.

WebAssembly itself is platform independent and serves as a
portable compilation target for higher-level languages. A growing
list of toolchains already support WebAssembly as a compilation
target for different source languages, including mature support
for C/C++ and Rust based on Emscripten [38]. Support for other
programming languages is actively being developed, including C#,
Java, Go, Python, TypeScript and many more [39]. The front-end
language is compiled to WebAssembly which is translated to ma-
chine code for the target platform before execution. At a technical
level, WebAssembly represents a one-way sandbox based on soft-
ware fault isolation. WebAssembly modules are isolated from each
other by disjoint memory spaces: the memory space for code, exe-
cution stack, execution environment data structures, and heap are
separated, thereby preventing arbitrary code execution as well as
data corruption outside the WebAssembly module’s own data. To
provide isolation while preserving close to native performance, all
memory accesses to the contiguous linear memory are protected by
simple bounds checks which can typically be performed directly
in hardware [11]. Besides memory isolation, WebAssembly pro-
vides a protected call stack, which only contains variables of fixed
size. More complex structures are moved to a stack in the linear
memory. This protects the control-flow by eliminating the possibil-
ity of buffer overflow exploits. WebAssembly modules are usually
shipped as binaries, but WebAssembly offers the human-readable
WebAssembly text format (WAT), which is equivalent to the bi-
nary format. AcCTEE builds on WebAssembly’s built-in software
fault isolation to prevent the program from interfering with the
accounting system itself.
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Figure 1. The accountable two-way sandbox of AccTEE gener-
ates a resource log trusted by the two mutually distrusting parties:
infrastructure provider and workload provider.

2.4 Threat Model

Generally, all resources provided by the infrastructure provider are
not trustworthy, as they elude the control of the workload provider.
In contrast, from the infrastructure provider’s point of view, all
input provided by the workload provider is untrusted, as it might
contain malicious code. Therefore, we assume both the infrastruc-
ture provider and workload provider as powerful attackers, that can
behave arbitrarily and all participating execution platforms as un-
trusted. However, we do trust the Intel® SGX implementation and
associated services, e.g., the platform services (PSW), architectural
enclaves and attestation service. We are aware of reports of side-
channel attacks [40-43] that may affect Intel® SGX. In addition to
workarounds like disabling hyper-threading, researchers [25, 26, 44]
and hardware companies [45] are working on mitigations, which
we assume will eventually succeed. Therefore, we acknowledge
potential side-channel attacks as a concern, but ultimately we con-
sider them outside the scope of this work. Finally, we do also not
consider denial-of-service attacks.

3 Design

According to the threat model (see § 2.4), we define two parties
that interact with each other in a deployment of AccTEE, as shown
in Fig. 1: the infrastructure provider performs executions on his
platform for the workload provider inside an accountable two-way
sandbox. While the workload provider distrusts the software on
the machine of the infrastructure provider, he trusts the hardware-
protected sandbox running on it. Both parties mutually trust the
resource usage log produced by the trusted sandbox. We start this
section by outlining the desired qualities of a trusted resource
accounting mechanism.

3.1 System Requirements

A trusted accountable execution system should fulfil the following
six requirements:

R1: Polyglot input. The system has to support a variety of high-
level programming languages. Workload providers should not be
restricted in their choice of programming language and be able to
use a language they are comfortable with. Also, supporting a range
of languages allows for running a variety of existing workloads
without much effort.

R2: Platform independence. To enable a diverse class of platforms,
the results of the accounting should be independent of the platform.
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Besides translating the workload code into executable instructions
for the target platform, there should be no other target-specific
adaptation required.

R3: Two-way isolation. The execution must be isolated in two
directions, as the infrastructure provider and workload provider do
not trust each other: on the one hand, the workload must be isolated
from the infrastructure provider’s environment, on the other hand
the infrastructure provider should not be able to interfere with the
workload execution.

R4: Trusted Resource Accounting. The system should ensure that
resources consumed by a workload are accounted in a trustworthy
manner: the accounting mechanism must be trusted by the infras-
tructure provider and the workload provider. This requires that
neither party is able to interfere with the accounting mechanism,
e.g. manipulate the accounting to their own advantage.

R5: Workload integrity and confidentiality. The system must pre-
vent the infrastructure provider from violating the workload’s in-
tegrity. This allows the workload provider to rely on results ob-
tained without trusting the underlying infrastructure. Optionally,
the system should be able to keep the workload confidential, which
includes code and data.

R6: Low performance overhead. To be practical, the system should
induce a relatively low performance overhead compared to the
unaccounted execution.

3.2 Accounting on Different Abstraction Levels

In general, resource accounting can be performed at different ab-
straction levels: (i) at the task level, where completed results of cer-
tain computations get accounted; (ii) at the hardware level, where
resources consumed by the actual machine are accounted (e.g. CPU
usage); and, in between those (iii) at the level of executed code,
e.g. by instrumenting the code for accounting. Although easy to
implement, accounting at the task level is only useful if tasks have
homogeneous resource usage profiles. Otherwise, accounting tasks
is too coarse-grained to track the resource expenditure because
each task’s complexity depends on the task itself as well as the
actual inputs — both of which can vary widely. Unless only similar
tasks with similar inputs are executed, task-level accounting is sim-
ply not a useful metric to track resource usage in the general case.
Accounting based on hardware utilisation is the predominant way,
with recording CPU usage being a common practice. While this
seems fair and a pragmatic choice, the user is confronted with the
issue that different CPUs provide different performance. Thus, the
same task executed on an older or cheaper CPU likely takes longer
than on the flagship CPU of the latest generation. Therefore, cloud
providers account usage of virtual CPUs (vCPUs) — where vCPU is
a normalised metric. While at the first glance appealing, the con-
version factor is under the control of the provider and hidden from
the user. Additionally, each cloud provider has its own definition of
vCPU and associated conversion factor. Thus, cost per CPU usage
is only a rough estimator to compare cloud providers. Also, trust-
worthy measurement of CPU usage from within an Intel® SGX
enclave incurs a substantial overhead. Since the counters reporting
CPU usage may be manipulated by the untrusted environment, a
trustworthy measurement has to track CPU usage through other
means (see §6). To summarise, accounting raw hardware utilisation
is not sensible for and cannot be applied in AccTEE.
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Figure 2. Architecture of AccTEE: combining the accounting en-
clave with an execution sandbox creates a two-way sandbox isolat-
ing the workload from the host and vice versa.

This leaves the instrumentation of code to enable a fine-grained
accounting. In principle this can be introduced at intermediate or
native code level. AcCTEE instruments intermediate code to gain
platform independence, specifically, we use WebAssembly to sup-
port a growing number of languages. For the same (deterministic)
task and input parameters, the number of executed WebAssem-
bly instructions will be the same across different hardware plat-
forms and even across different WebAssembly runtimes. Thus, a
per instruction pricing model enables users the fair comparison
of offerings. Nevertheless, the infrastructure provider has still the
opportunity to implement an internal pricing model that takes all
relevant cost factors (e.g. costs for management, energy, hardware)
into account. The following chapter explains how AccTEE'’s code
instrumentation is done on a technical level.

3.3 Resource Accounting in ACCTEE

Here, we describe how resource accounting works in AccTEE and
how this satisfies the requirements laid out above. AccTEE com-
bines two sandboxing mechanisms to achieve trusted resource
accounting. As shown in Fig. 2, an execution sandbox helps pre-
vent the untrusted workload from interfering with the resource
accounting and with the host while an accounting enclave helps
prevent untrusted host software from spying on the workload or
manipulating the accounting. To realise the accounting enclave,
our AccTEE prototype uses language-based isolation provided by
WebAssembly (R1, R2).

Additionally, AccTEE leverages recently introduced TEE tech-
nology to implement the execution sandbox. In particular, our pro-
totype uses Intel® SGX enclaves (see § 2.2) to help protect the work-
load’s confidentiality and integrity from an otherwise untrusted
system (R5). The hardware-enforced isolation helps protect the en-
clave even from privileged execution modes such as the operating
system or system management mode. Although other security co-
processors, such as Trusted Platform Modules (TPMs), also allow to
verify the software stack running on a machine, they typically do
not allow to run arbitrary code on them. While TPMs can measure
the system state and provide a standard API to securely carry out
common cryptographic operations, workloads are still unprotected
and susceptible to all the usual attacks hardware TEEs are designed
to protect against.

The workload provider and infrastructure provider have the com-
mon goal of ensuring that the workload is correctly instrumented.
AccTEE achieves this by enabling both parties to trust two enclaves:
the instrumentation enclave (IE) and the accounting enclave (AE).
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Figure 3. AccTEE’s conceptual workflow from original application
to obtaining a trusted resource accounting log.

The code of both enclaves needs to be publicly available and can
therefore be audited, i.e. each party can verify the correctnes of
the enclaves and then calculate the enclave measurement, a hash
identifying the enclave code, independently. Through the attesta-
tion process, the workload provider and infrastructure provider
both gain confidence that the intended enclave is running and has
not been tampered with (R4). The combination of Intel® SGX and
WebAssembly, AcCTEE creates the desired two-way isolation (R3).
Here, we call this combination, a two-way sandbox.

Even though our initial prototype focuses on Intel® SGX, Acc-
TEE’s principles are platform independent and therefore portable
to other architectures. While the WebAssembly-based accounting
enclave is platform-agnostic by design, the choice of TEE varies be-
tween target platforms. For example in case of ARM-based systems
one would use TrustZone® [1], while in case of AMD the SEV [46]
extension is an option.

AccTEE tracks three resource types: CPU usage, memory as
well as I/O usage. Thereby, we use the number of executed We-
bAssembly instructions as a metric for CPU usage. To this end,
the WebAssembly code is instrumented prior to execution. Simi-
larly, AccTEE tracks I/O operations by accumulating the number
of bytes sent and received via various I/O channels. Our prototype
primarily tracks resources consumed within one WebAssembly
module. Resources consumed outside of a WebAssembly module,
e.g. in the WebAssembly runtime or operating system, are currently
not tracked; an exception are I/O operations. We assume that the
majority of resources is consumed within WebAssembly modules,
which is certainly true for self contained and compute intensive
workloads. In fact this applies to all our targeted usage scenarios.

The overall workflow is illustrated in Fig. 3. The application is
first compiled to WebAssembly. The next step is to instrument the
WebAssembly code for accounting purposes. This functionality is
encapsulated in a separate enclave independent of the account-
ing enclave. The instrumentation enclave analyses the input We-
bAssembly and instruments it to perform resource accounting. It
outputs the instrumented WebAssembly together with a crypto-
graphic evidence (e.g. a signed statement) attesting that the instru-
mentation enclave produced this output. The accounting enclave
is instantiated at the infrastructure provider and receives as input
the instrumentation evidence and the WebAssembly code. After
verifying that the WebAssembly code was indeed produced by the
instrumentation enclave, it commences execution of the workload.
During execution, the accounting enclave either periodically or
upon request produces a resource accounting log detailing the
workload’s resource utilisation.

Disaggregating the instrumentation from the execution is ben-
eficial in many respects. The code only needs to be instrumented
once. A cached copy of the instrumented code can be re-used across
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many invocations. As a further optimisation, the instrumented code
may even be translated to native code ahead of time. This saves the
accounting enclave from translating the WebAssembly code into
native code, also reducing its complexity in terms of code running
inside the sandbox.

3.4 I/0 Operations in a Two-way Sandbox

The two technologies combined by AccTEE- WebAssembly and
Intel® SGX - both impose restrictions on I/O operations. WebAssem-
bly does not specify an interface for I/O operations, therefore We-
bAssembly code is expected to be embedded within a runtime
system that exposes the necessary primitives as functions that can
be invoked from WebAssembly code. WebAssembly code executed
within a web browser or Node.js utilises the existing JavaScript
runtime to interface with the outside world, i.e. WebAssembly can
perform all I/O operations that are offered by the browser or Node.js
API, such as issuing HTTP requests.

In SGX enclaves, system calls are disallowed (see § 2.2); the en-
clave has to be explicitly exited to perform untrusted I/O operations.
However, ACCTEE relies on SGX-LKL [47] to execute legacy bina-
ries. SGX-LKL utilizes the Linux Kernel Library (LKL) to provide
user-level threading, signal handling, and paging within the en-
clave. Wherever possible, SGX-LKL handles system calls inside the
enclave, however, system calls requiring direct access to external
resources (e.g. I/O operations) are handled by the host operating
system and are therefore untrusted. To help maintain integrity and
confidentiality of transmitted data, AccTEE’s workloads can use
encryption layers either on system or platform level: for example,
LKL provides block device encryption, while Node.js offers support
for HTTPS. AccTEE is also able to account these I/O operations, as
described in the following section.

3.5 Accounting enclave

AccTEE’s accounting enclave tracks three principal resources: CPU,
memory and I/O. Next, we detail how AccTEE tracks each of these
resources to produce a trustworthy resource accounting log.

Processor. Today, CPU time or runtime is usually used as a metric
for CPU usage. Beside the outlined issue that this metric is hard
to compare between different platforms or cloud providers, for
AccTEE, this requires a special trusted time source. In the case of
Intel® SGX, this source does not have the desired properties for
resource usage tracking: (i) trusted time can only be measured in
seconds, which is insufficient for accounting shorter workloads;
and (ii) determining the time spent in an enclave is impossible, as
the measured time can be inflated by an attacker (see § 2.2).

To solve these issues, AcCTEE tracks CPU usage by maintaining
a counter (referred-to as instruction counter) and incrementing it
for every executed WebAssembly instruction. We support different
optimisations to reduce the actual number of counter increments
(see § 3.6). Also, AcCTEE supports weights for WebAssembly in-
structions to account for different complexities (see § 3.7). Therefore,
we use the term weighted instruction counter. Counting WebAssem-
bly instructions makes the accounting platform independent since
the same WebAssembly instructions are executed on every plat-
form - after translation to native code. Additionally, the approach
is independent of the WebAssembly runtime, as it does not need to
be modified.
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Before workload execution, AccTEE instruments the original
WebAssembly code to count the number of executed WebAssembly
instructions. AccTEE adds a global counter variable to the original
code. At runtime, the counter is initialised to zero and represents
the weighted number of executed WebAssembly instructions so
far. AccTEE also adds WebAssembly instructions to increment the
counter at appropriate points. Since WebAssembly code is struc-
tured into basic blocks, AcCTEE adds a sequence of instructions to
increment the instruction counter at the end of each basic block
(see Fig. 4 on the left). The counter is incremented based on the
number of WebAssembly instructions contained in the basic block
(excluding the counting instruction). By definition it is only possible
to enter a basic block at the first instruction and leave it through
the last instruction. Hence, incrementing the counter at the end of
the basic block ensures the correctness of our instruction counting.

To prevent the untrusted WebAssembly code from modifying the
instruction counter, ACCTEE scans the code and chooses a previ-
ously unused variable name to refer to the counter. The instruction
counter is stored in a module global variable. Since operations on
global variables must identify the operand at compile time, it is
impossible to modify the counter other than with the injected code.

Memory. Each WebAssembly module has access to a contiguous
block of memory called linear memory (see § 2.3). Linear memory
is similar to traditional heap memory but with a few important
constraints. While linear memory is initialised with a specific size
defined by the module, it can grow dynamically up to a certain
maximum. By design, linear memory can only grow: WebAssembly
does not provide instructions to reduce the size of a module’s linear
memory. Thus, AcCTEE can use the linear memory size for the
accounting of memory consumed by the workload.

Based on this, two policies can be implemented: either AccTEE
reports the peak memory usage by adding the size of all linear
memories at the end of a workload. Or, as an alternative, a fine-
grained memory accounting is possible by combining AccTEE’s
executed instruction counter with the linear memory size. This
allows AccTEE to calculate the integral of the linear memory usage
over the execution time, which is approximated by the instruction
counter. ACCTEE leaves it as a policy decision to the workload and
infrastructure providers to agree on which policy to use to track
memory usage. If shrinking of linear memory becomes possible
in the future, AccTEE can be adapted to accommodate for this as
well. Using the first policy, we evaluated the cost of WebAssembly
instructions in dependence of memory access ranges (see § 5.2).

Accounting of I/0 Operations. As described in § 3.4, WebAssem-
bly runtimes expose primitives to WebAssembly code for perform-
ing I/O operations. In the context of AcCTEE, the WebAssembly
runtime is part of the trusted execution sandbox. Thus, it is possible
to instrument the runtime’s existing I/O functions for accounting
purposes. AcCTEE has an additional counter to accumulate how
many bytes flow in and out of the WebAssembly module through
I/O functions. Today’s cloud providers do similar tracking to bill
users for network or disk I/O. Our evaluation in § 5.3 shows this
accounting mechanism to have a negligible overhead.
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Figure 4. Example of f1ow-based optimisation. In this case, 2
out of 4 increments can be eliminated.

3.6 Reducing Counter Increments

The naive accounting of executed WebAssembly described in the
previous section is straightforward. However, if the program’s con-
trol flow is amenable to it, fewer accounting instructions may be
required while maintaining correctness. We present two optimisa-
tions that reduce the runtime accounting overhead by performing
static program analysis when instrumenting the code (R6). Essen-
tially, through control flow analysis we can elide weighted instruc-
tion counter increments on certain code paths.

The key insight is that instead of incrementing the counter in
each basic block, for some control flows it is sufficient to increment
the counter at the end of a common path. More formally, if a basic
block B dominates an immediate successor block S, it is sufficient to
only update the weighted instruction counter at the end of block S.
In this case, basic block S will increment the counter by the number
of instructions contained in B and S. Fig. 4 gives an example. Here,
node A’s update is combined with that of nodes B and C because A
dominates B and C, i.e., each control flow reaching either B or C
must pass through A.

Another observation concerns nodes with multiple predecessors.
Consider a node N with predecessors Py, Py, . . ., Py. The following
transformation is possible. Let Ip,,;, be the minimum number of in-
structions in Py, Py, . .., Py and Iy is the number of WebAssembly
instructions in block N. At the end of block N update the counter
by IN + Ipmin While incrementing the counter in each predeces-
sor by Ip, — Ipmin. The predecessor with the minimum number
of instructions increments the counter by zero, i.e. the pass can
remove the additional incrementation code. Fig. 4 gives an example.
Node D has two predecessors B and C. Traversing either B or C
increases the counter by at least 5. Hence, the transformation adds
this minimum increment to node D’s update, pushing it to 9. At
the same time, the update for node C is adjusted to 3 = 8 — 5. Node
B no longer requires an extra update. Only a single pass through
the control flow graph is required to perform the transformations.
Even though they are two distinct transformations, we always per-
form them together. In the evaluation we refer to this group of
transformations as £1ow-based optimisation.

Our second optimisation, referred to as 1oop—based, moves
instruction counter increments out of loop bodies. This optimisation
only applies to control-flow independent instructions inside the
loop body. Instead of incrementing the instruction counter on each
iteration, the counter is incremented only once after exiting the loop.
The optimisation pass uses a heuristic to identify aloop variable that
is incremented or decremented by a constant value on each iteration.
If a loop variable is identified, the optimiser injects code to calculate
the number of iterations based on the variable’s value before and
after the loop. The instruction counter is then incremented by
the number of instructions in the loop’s body times the number
of iterations. Attackers could try to exploit this optimisation by
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Figure 5. Components of AccTEE: inside the accounting enclave,
we utilise SGX-LKL to run an instance of the V8 JavaScript/We-
bAssembly engine to execute workloads.

decreasing the loop variable in the last loop operation. AccTEE
helps prevent this by only allowing one single write access to the
loop variable which has to be executed in every loop iteration.
If the loop variable is written more than once per iteration, this
optimisation is not applied.

3.7 WebAssembly Instruction Weights

WebAssembly instructions have different complexities, as they per-
form various calculations ranging from cheap arithmetic floor op-
erations to more expensive divisions (see Fig. 7). Additionally, the
cost of instructions performing memory accesses depend on the
memory access pattern and memory range because of caching:
while linear accesses are cheap, random accesses are expensive (see
Fig. 8). To account for that, AcCTEE introduces weights for every
WebAssembly instruction. These weights are used to increment
the weighted instruction counter accordingly, leading to a more
accurate accounting result. In practice, we expect the weights to
have minor differences for different processors. In AccTEE, run-
time adjustments are possible, allowing weight adjustment without
requiring the release of new enclaves. In § 5.2, we show measure-
ments that obtain the weights for most WebAssembly instructions.
However, the cost of instructions that access memory (Load and
store) cannot be predicted. This because it is impossible to foresee
the memory access pattern of non-trivial workloads: the resource
demand of these instructions not only depends on their input val-
ues, but mostly on the memory access pattern, which is a unique
characteristic of every workload (and other system activity). There-
fore, we resort to the common de facto standard of using the peak
memory usage for estimating the cost for memory accesses using
the results shown in § 5.2.

Infrastructure providers have to find a middle ground between
linear and random accesses when designing their cost model for
billing memory usage. To summarise, both workload provider and
infrastructure provider have to accept the instruction weights pro-
vided by AccTEE; they are part of the mutually trusted, attested
execution environment.

4 Implementation

A concrete realisation of AccTEE with its major components is
depicted in Fig. 5. At the bottom AccTEE relies on an SGX-capable
CPU. Several layers of software are running on top of trusted hard-
ware to provide AccTEE’s trusted accounting enclave. In our pro-
totype, ACcCTEE uses a single Intel® SGX enclave to help protect
the workload and its execution from the untrusted infrastructure
provider. We refrained from implementing the instrumentation
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in an enclave, as the instrumentation is only executed once and
the process itself is not evaluated. AccTEE uses SGX-LKL [47] to
run unmodified Linux binaries on Intel® SGX. We chose SGX-LKL
over alternatives such as Haven [3], SCONE [4], Graphene [48],
and Panoply [49] because we are most familiar with it. In princi-
ple, AccTEE is compatible with any of these systems and could be
ported with low effort. In contrast, adapting AccTEE to non-x86
platforms requires the use of a different TEE technology and an
associated, non-trivial engineering effort.

Since the WebAssembly text format (see § 2.3) is easier to parse,
analyze and manipulate, we refrain from resorting to more complex
tool chains like LLVM or similar. The current prototype implements
the instrumentation pass in 605 lines of JavaScript code. We rely on
JavaScript, as it integrates easily with the existing WebAssembly
workflow, as instantiation and runtime support for WebAssembly
all happens within the existing JavaScript runtime.

4.1 WebAssembly Execution

Since WebAssembly only specifies a binary instruction format,
it requires an execution context into which it is embedded. Be-
cause the initial deployment of WebAssembly targets the web,
currently available execution contexts are more or less tied to
web browsers. Currently, alternative standalone execution envi-
ronments like WAVM [30] or wasmi [31] are being developed. Be-
cause of their early stage, our AccTEE prototype uses the ma-
ture Node.js [29] JavaScript runtime. Underneath, it uses Chrome’s
JavaScript engine V8 to execute JavaScript and WebAssembly.

To execute WebAssembly modules, V8, like other major engines,
requires “glue code” to bridge between the JavaScript engine and the
WebAssembly execution context. In V8, the glue code compiles and
instantiates a WebAssembly module within the JavaScript engine.
Depending on the application, the glue code also needs to expose
an interface for functionalities which are not directly accessible to
the WebAssembly code, such as I/O. The glue code is, therefore,
usually specifically tailored for and generated together with the
corresponding WebAssembly code.

However, accepting and executing such JavaScript code together
with its WebAssembly module poses a security risk, as it can di-
rectly interfere with the operation of AccTEE, like analysing other
WebAssembly modules or falsifying the accounting. In order to mit-
igate this risk, we chose a different approach which is based on the
separation of main- and side-modules, provided by Emscripten [38].
The main module provides an interface comprising all standard
library functions it imports and produces all necessary JavaScript
glue code. Each additional module, also called side module, only im-
ports the required standard library functions from the main module.
No additional glue code is required when loading a side module. In
our framework we simply statically include a main module which
provides all standard library functions together with its glue code,
while each dynamically loaded module is a side module which im-
ports required functionality from the main module. The code for
compiling and instantiating each side module is integrated directly
into the framework.

5 Evaluation

We begin the evaluation with a set of micro-benchmarks to assess
the overhead of WebAssembly over native execution. While We-
bAssembly is designed to be lightweight and compiles to native
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Figure 6. Mean overhead of runtimes of WebAssembly execution in Node.js without SGX, with simulated SGX, SGX in hardware mode and
additional instrumentation normalised to native execution time for the PolyBench/C benchmark suite.

code, we still expect overheads due to the isolation enforcement and
the embedding context. Next, we evaluate the performance impact
of AccTEE on programs from domains we believe can benefit from
a trusted resource accounting solution. The programs stem from
the domains of volunteer/reimbursed computing, serverless/FaaS,
and pay-by-computation. We separate the overheads due to the ac-
counting instrumentation from the WebAssembly and TEE-related
overheads (see § 3.3). Throughout this section, each data point is the
average of 10 runs, unless noted otherwise. We report the standard
deviation whenever it exceeds 5%.

Our evaluation setup consists of two identical machines, used
as client and server. Each machine has an SGX-capable Xeon E3-
1230 v5 CPU and 32 GB of RAM and is connected to a switched
10 Gbps network. We use clang v3.8.0, rustc v1.30.0 and go v1.11.1
to compile C/C++, Rust and Go code, respectively. To translate C
to WebAssembly, we use Emscripten [38] v1.38.16. WebAssembly
compilation from Rust and Go is provided the official compilers.
We use Node.js v10.11 on top SGX-LKL (commit 5fb6d120) to
instantiate and run WebAssembly code. Exclusively for cycle mea-
surements (see § 5.2), we additionally use the WAVM runtime [30]
(commit 6c5d2465).

5.1 Sandboxing Overhead

To assess the impact of the various sandboxing techniques as well
as the instrumentation across a range of programs we use the Poly-
Bench/C [50] benchmark suite (version 4.2.1). The suite consists

of 29 programs performing various compute-intensive tasks like
matrix multiplication, Gaussian filters and image processing. An
earlier version of the same benchmark suite was used in the original
WebAssembly paper [11] to demonstrate the competitiveness of
WebAssembly over native code. We compile the code with the high-
est optimisations level (flag —03). The times reported only include
the actual program runtime excluding VM startup and compilation
of WebAssembly to native code.

We compare four setups: execution of WebAssembly in Node.js
(WASM) to measure WebAssembly-related overhead. Next, we run
Node.js on SGX-LKL in simulation (RASM-SGX SIM) and hard-
ware mode (WASM—SGX HW). This allows us to evaluate the impact
of SGX and SGX-LKL separately. Finally, we measure the instru-
mented WebAssembly code (using loop-based) executing in
Node.js on top of SGX-LKL in hardware mode (WASM-SGX HW
instrumented).Fig. 6 shows runtime of these setups normalised
to native code. The overhead of WASM is between —45% and 80%
which aligns with the numbers reported in the original WebAssem-
bly paper [11]. For WASM-SGX SIM the overheads range from
—41% to 60%, i.e. SGX and SGX-LKL do not add overhead by them-
selves. Only when running in SGX hardware mode do the overheads
change to between —18% and 244%. For programs with a large in-
crease in overhead when moving from simulated to hardware SGX
mode we identified EPC paging as the main contributor. If future
versions of SGX come with a significantly increased EPC, it will
mitigate the source of this overhead. AccTEE’s instrumentation
(loop—based) adds no overhead in the best case and 9% in the
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worst case over WASM-SGX HW. Averaged over all benchmarks,
the execution times for WASM and WASM—-SGX HW are 1.1X and
2.1x higher, respectively. The instrumentations, on average, add
4% over WASM—-SGX HW.

To summarize, WebAssembly inside Intel® SGX shows compet-
itive performance compared to the native execution. Only when
the workload exceeds the available EPC memory (currently 93 MB),
does the performance degrade noticeably. However, the overhead of
the accounting instrumentation is small compared to other sources
of overhead.

WebAssembly Overhead. The overhead of WebAssembly itself
has already been evaluated in several publications. The paper which
proposed WebAssembly in 2017 by Haas et al. [11] also uses the
PolyBench/C benchmark suite and reports an execution overhead
below 10% for 7 of all benchmarks and below 2x for nearly all of
them. We were able to reproduce these results in our own mea-
surements (see § 5.1). A more recent work by Jangda et al. [51]
proposes to use a more established benchmark suite of larger and
more diverse programs, namely the SPEC benchmark suite. How-
ever, the execution of these benchmark programs requires develop-
ment of system support, as the programs rely on system calls. For
this benchmark, the authors report average execution overheads
between 45% for Firefox and 55% for Chrome. According to the
authors, these higher overheads originate partly from design con-
straints of WebAssembly. However, other parts of the overheads
stem from missing optimizations or flaws in code generation and
can therefore be mitigated by using different compilers.

5.2 WebAssembly Instruction Weights

As described in § 3.7, AccTEE’s weighted instruction counter re-
lies on a list of weights for all WebAssembly instructions. These
weights are provided by AccTEE as part of the trusted execution
environment. Although the weights depend on CPU architecture,
CPU generation and the WebAssembly runtime, we expect them to
be comparable across different combinations thereof. To measure
the cost of WebAssembly instructions, we extended the WebAssem-
bly runtime by a function for reading the time stamp counter (TSC)
register to measure the CPU cycles to execute each WebAssembly in-
struction. For the following two measurements, we use WAVM [30]
as the WebAssembly runtime instead of Node.js. WAVM is less com-
plex and thus easier to extend for these specific micro benchmarks,
but does not yet offer the same functionality.

Specific Instruction Costs. For every WebAssembly instruction,
we generate WebAssembly code that executes the instruction n
times after pushing the correct number of necessary operands to
the stack. The number of cycles per instruction is then calculated
by dividing the total number of cycles by n. These values are then
used as weights for AccTEE’s resource accounting for the given
CPU/runtime combination. The results for n = 10.000 are depicted
in Fig. 7. It shows the cycles for 127 WebAssembly instructions,
which excludes 1oad and store instructions. We see that the ma-
jority of WebAssembly instructions (74%) are executed in less than
10 cycles. Fewer instructions (e.g. £32.floor and £64.ceil)
need up to 32 instructions. Only a few exceptions (e.g. 164 .div_s
and £32.sqrt) are especially expensive, needing more than 50
cycles. Please note that these numbers include a low benchmarking
overhead, but still give a good overview of the distribution of costs.
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Figure 8. Average cycles for memory accesses from WebAssembly
in dependence of memory size, comparing load and store operations
with linear and random access patterns.

Costs for Memory Accesses. We evaluate memory accesses sep-
arately, as their costs are dependent on the memory access pattern
and the size of the linear memory (see § 3.5). In WebAssembly,
memory accesses are performed using special load and store
instructions, which read or write variables from or to a given off-
set in the linear memory. These instructions exist for all available
data types in WebAssembly, e.g. £32, £64, 132, £64. To explore
the costs of these instructions, we perform the following bench-
mark: For memory sizes between 1 MB and 256 MB and for all We-
bAssembly types, we execute 10.000 1oad and st ore instructions
with different access patterns: linear and random access within the
given range. Fig. 8 shows the average cycles per load/store of this
benchmark. First, we see very similar results for the WebAssembly
types. The next insight is that random store instructions are up
to 1.8X more costly than random load instructions (at 256 MB),
which in turn are much more expensive (up to 1700x) than lin-
ear load/store instructions due to the increasing probability of
cache misses. These measurements show that the cost of instruc-
tions accessing memory does in fact depend on the size of the linear
memory and the memory access pattern as described in § 3.7.

5.3 Use Case Scenarios

Function-as-a-Service. To evaluate AccTEE in the FaaS domain,
we measure the request throughput of two FaaS functions: The
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Figure 9. Comparison of throughput of echo function (left) and resize function (right) deployed using OpenFaas or AccTEE.

echo function replies with its input. The resize function re-
turns the input JPG image scaled to 64 X 64 pixels. We gener-
ate random input images with sizes between 64 and 1024 pixels
(4 KB to 1 MB). We choose these two as representative functions:
resize is an example for a compute-heavy function, whereas
echo does not perform any computation itself. We induce load
with h2load [52] using 10 concurrent clients and compare six se-
tups: AccTEE behind a Node.js HTTP server, without SGX, with
SGX in simulation and hardware mode, instrumented WebAssem-
bly code (using 1oop-based) executed in an SGX enclave with
and without I/O accounting, and a pure JavaScript implementation
in a Docker container deployed on OpenFaaS [53]. These are re-
ferred to as WASM, WASM-SGX SIM, WASM-SGX HW, WASM-SGX
HW instr.,WASM-SGX HW I/Oand JS.To maintain isolation
between the functions, the HTTP Server instantiates a new We-
bAssembly module for every incoming request. The I/O accounting
is implemented in JavaScript and counts the number of bytes writ-
ten to and from the WebAssembly module. The implementations of
the image resize functions are based on JIMP [54] for JavaScript and
the zero-dependency library zupply [55] for WebAssembly. Fig. 9
shows the mean throughput of 10 runs targeting either the echo
or resize function for the aforementioned setups. We observe a
reduction in throughput of 2.1X up to 4.8x for echo when mov-
ing the workload to SGX-LKL. The additional performance drop
when using an actual SGX enclave is negligible for larger inputs
and up to 50% for small ones. The high overheads are due to the
echo function performing no computation. This benchmark is a
worst case scenario exposing the inefficiencies in the intermediate
software layers when moving WebAssembly to SGX-LKL. Because
the resize function is compute-heavy, the relative overheads of
moving the computation into SGX-LKL are less pronounced, they
are between 31% and 56%. Here, using an actual SGX enclave has an
additional performance penalty between 47% and 64%. Compared
to JavaScript, the throughput of the two functions deployed on Acc-
TEE is up to 16X higher. For both functions, the overheads of the
accounting instrumentation and the I/O accounting are nonexistent
or negligible. For all these measurements, there is no noteworthy
error to report.

Volunteer Computing. From the volunteer computing domain
(see § 2.1), we evaluate three BOINC programs. We adapted the
NFS@Home’s [56] MSieve program [57] where participants cal-
culated (the project is dormant since 2016) integer factorisations

[l WASM naive E WASM-SGX naive
BHWASM flow-based [] WASM-SGX flow-based
[AWASM loop-based [ WASM-SGX loop-based

<lower is better
J0.93

Normalised runtime
TSSSSSSSNNSSNNN]1.05
NaNAAAAASANANANNY 1.04

Darknet

SubsetSum

Figure 10. Overhead of instrumentation optimisations on volun-
teer computing and pay-by-computation use cases. Runtimes are
normalised to no instrumentation on WASM and WASM-SGX.

of large random numbers. The second use case is an implemen-
tation [58] of the PC algorithm (named after its inventors Peter
and Clark) [59], the core component of the still active gene@Home
project [60]. Our last use case is the ongoing SubsetSum@Home
project [61, 62], which examines the computation of subset sums
and aims to prove a hypothesis regarding the complexity class of
the problem. Fig. 10 shows the runtime overhead of these programs;
it ranges between —7% and 10%.

Pay-by-Computation. As an example for this domain, we use a
machine learning workload that classifies images. The motivation
is to replace advertisements when browsing the web with contribu-
tions of compute resources. For evaluation, we compiled the ma-
chine learning system Darknet [63] to WebAssembly and use its pre-
trained reference model for image classification. Fig. 10 highlights
the significance of our optimisations for this particular use case.
The unoptimised instrumentation (naive) increases the execu-
tion time by 34%. At the highest optimisation level (Loop-based)
the instrumentation’s impact is reduced to only 3% compared to
uninstrumented WebAssembly and to only 4% for WebAssembly
on SGX.

5.4 Binary Size Overhead

This experiment covers the impact of our code instrumentation
on the size of the WebAssembly binaries. We compare all 136 We-
bAssembly binaries used in the evaluation. Their non-instrumented
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code size ranges from 0.5 KB to 901 KB. The instrumented binaries
are between 4% and 39% larger without optimisations and between
4% and 27% after enabling all optimisations.

6 Related Work

Volunteer Computing and Remote Computation. In the area
of volunteer computing, several works have been published: Sar-
menta [64] and Kopal et al. [65] propose mechanisms to oppose
malicious computation nodes in volunteer computing systems.

Airtnt [66] outlines a system for reimbursing users for provided
computational resources based on a remote attestation-capable TEE
and smart contracts.

Ryoan [5] implements a distributed sandbox using WebAssem-
bly’s predecessor NaCl [35] and SGX enclaves, but does not address
accounting of resources.

Instead of producing a resource usage log like AccTEE, Lib-
SEAL [67] creates an audit log of service operations to verify the
integrity of Internet services. This audit log is trusted, as it is also
created within an SGX enclave.

Airbox [68] is similar to ACCTEE, as it considers trusted execution
of functions offloaded to remote, untrusted devices. Airbox targets
edge functions, that are moved closer to end users for reduction
of latency and bandwidth usage. By utilising Docker containers
containing SGX enclaves, Airbox protects the execution of edge
functions, which may process sensitive user data or business logic.
In contrast to AccTEE, Airbox does neither consider the case of
malicious functions, nor the accounting of resources consumed
during execution.

Brenner and Kapitza [69] present a generic and secure serverless
computing infrastructure based on the V8 engine an SGX enclaves.
In contrast to AccTEE, they focus on FaaS only and do not consider
resource accounting.

Similar to AccTEE, another approach Vrancken et al.[70] utilise
SGX enclaves to perform distributed computations on untrusted
workers. However, as incentive systems are explicitly out of scope,
the system does not take resource accounting into account, as
AccTEE does. In general, AcCTEE’s contributions could be applied
to that work.

Resource Accounting. VeriCount [71] proposes a verifiable ac-
counting system for resources consumed inside SGX enclaves in
a cloud computing scenario for billing purposes, benefiting both
client and cloud provider. They add accounting functions using a
special compiler and implement checks during execution. However,
the authors of VeriCount incorrectly use the trusted time function-
ality of SGX: as described in § 2.2, trusted time can only be used as
a lower bound. This can be exploited by a malicious cloud provider
to bill clients for artificially inflated CPU usage.

S-FaaS [27] offers accountability for trusted cloud functions.
The system is based on SGX for trusted execution and TSX for
transactional memory as well as hyper-threading. It utilises two
dedicated threads inside one SGX enclave: a timer and a worker
thread. The former executes a busy loop to measure how many CPU
cycles the worker thread executes. Enclave exits are synchronised
across both threads using TSX transactions. This approach performs
correct accounting on a fine-grained level, as actual CPU cycles
are measured. However, it consumes 2X CPU resources, as the
timer thread expends the same number of cycles as the worker.

D. Goltzsche, M. Nieke, T. Knauth and R. Kapitza

Additionally, the approach conceptually requires single-threaded
workloads. Finally, unlike AccTEE, the approach relies on multiple
hardware features and their interaction specific to Intel® CPUs:
SGX, TSX and hyper-threading.

Instrumentation. Resource accounting as a means for limiting
resource usage by instrumenting Java code [72, 73] has been pro-
posed before and could be adapted for AccTEE. However, none
of the these approaches considered trusted accounting based on a
two-way sandbox.

REM [74] proposes a less wasteful mining process for blockchains
based on code instrumentation and execution inside SGX enclaves.
Similar to our least optimised instrumentation approach, REM in-
crements an instruction counter for each executed basic block.
In contrast to AccTEE, REM does not guard itself against mali-
cious workloads and leaves the instruction counter vulnerable to
manipulation by the workload. While REM’s approach could in
principle be ported to other architectures, ACCTEE is inherently
platform independent because it builds on WebAssembly. Finally,
REM conceptually requires a single thread inside the enclave, while
multi-threaded workloads are possible with WebAssembly but at
this point are not supported in AccTEE.

Varys [25] attempts to detect side-channel attacks by determin-
ing the ratio of executed instructions to enclave exits. To this end,
it instruments code on a basic block level of the LLVM intermediate
representation, similar to our unoptimised instrumentation. The
resulting instruction count is then compared to a time calculated
using a timer thread, similar to S-FaaS, to detect unusually frequent
enclave exits. As the workload is assumed to be benign, however,
this approach would not work for our threat model, as a workload
provider could attempt to influence the accounting.

7 Conclusion

In this paper, we presented ACCTEE, a system that offers a two-way
sandbox enabling mutually trusted accounting of resource usage
for workload and infrastructure providers. Utilised core technolo-
gies are hardware-protected trusted execution and WebAssembly.
While the former helps protect the integrity and confidentiality of
consumer-owned workloads, the latter helps protect the provider
from malicious code and enables fine-grained and low-overhead
resource accounting based on automated code instrumentation and
a weighted instruction counter.
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