
CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

ENDBOX: Scalable Middlebox Functions
Using Client-Side Trusted Execution

David Goltzsche∗, Signe Rüsch∗, Manuel Nieke∗, Sébastien Vaucher†, Nico Weichbrodt∗, Valerio Schiavoni†,
Pierre-Louis Aublin‡, Paolo Costa§, Christof Fetzer¶, Pascal Felber†, Peter Pietzuch‡ and Rüdiger Kapitza∗

∗TU Braunschweig, Germany, goltzsche@ibr.cs.tu-bs.de, rrkapitz@ibr.cs.tu-bs.de
†University of Neuchâtel, Switzerland, pascal.felber@unine.ch

‡Imperial College London, United Kingdom, prp@imperial.ac.uk
§Microsoft Research, United Kingdom, paolo.costa@microsoft.com

¶TU Dresden, Germany, christof.fetzer@tu-dresden.de

Abstract—Many organisations enhance the performance, secu-
rity, and functionality of their managed networks by deploying
middleboxes centrally as part of their core network. While this
simplifies maintenance, it also increases cost because middlebox
hardware must scale with the number of clients. A promising
alternative is to outsource middlebox functions to the clients
themselves, thus leveraging their CPU resources. Such an ap-
proach, however, raises security challenges for critical middlebox
functions such as firewalls and intrusion detection systems.

We describe ENDBOX, a system that securely executes mid-
dlebox functions on client machines at the network edge. Its
design combines a virtual private network (VPN) with middlebox
functions that are hardware-protected by a trusted execution
environment (TEE), as offered by Intel’s Software Guard Exten-
sions (SGX). By maintaining VPN connection endpoints inside
SGX enclaves, ENDBOX ensures that all client traffic, including
encrypted communication, is processed by the middlebox. Despite
its decentralised model, ENDBOX’s middlebox functions remain
maintainable: they are centrally controlled and can be updated
efficiently. We demonstrate ENDBOX with two scenarios involving
(i) a large company; and (ii) an Internet service provider that
both need to protect their network and connected clients. We
evaluate ENDBOX by comparing it to centralised deployments of
common middlebox functions, such as load balancing, intrusion
detection, firewalling, and DDoS prevention. We show that
ENDBOX achieves up to 3.8× higher throughput and scales
linearly with the number of clients.

I. INTRODUCTION

Middleboxes are part of backbones of large networks that are
managed by organisations (managed networks), and implement
diverse sets of functions related to security (e.g. firewalls and
intrusion detection), and performance (e.g. caching and load bal-
ancing). At the same time, they must handle growing network
traffic [1] and ever-increasing network-based attacks [2], [3],
all while remaining efficiently manageable and cost-effective.

The current best practice is to deploy middleboxes centrally
as part of a network, despite high infrastructure and manage-
ment costs [4]. Recent research proposals, instead, investigate
the benefits of outsourcing middleboxes to cloud infrastruc-
tures [4], [5]. While this reduces maintenance effort and, in
turn, cost, deploying critical network functions externally and
redirecting sensitive network traffic off-site introduces potential
security risks and may be illegal.

To address these limitations, we propose a new decentralised
deployment approach in which middlebox functions are placed
on client machines at the network edge. Thus, middlebox

functions can exploit the potentially idle resources of client
machines for processing client traffic. This approach is espe-
cially efficient as client traffic constitutes a large fraction of
traffic in managed networks [6], [7].

A decentralised deployment model for middleboxes raises
two new challenges: (i) it requires clients to be trusted
to execute middlebox functions faithfully, and (ii) network
administrators must retain control over middlebox functions [6],
which is more challenging with distributed middleboxes. While
this is achievable for tightly administered machines such as
servers, it is in contrast with today’s IT management practices
in which employees working as developers retain administrative
privileges on their machines. Due to missing patches, improper
configuration, careless users, or rogue insiders, client machines
are more vulnerable to malicious software which try to
circumvent client-side middlebox functions.

Many organisations would therefore consider essential mid-
dlebox functions such as firewalls or intrusion detection systems
as too critical to be entrusted to client machines not under
their control. For example, Internet service providers (ISPs)
would typically be reluctant to deploy intrusion detection and
prevention systems (IDPSs) at customers’ client machines to
prevent malware from spreading; companies would refrain from
performing data leak prevention (DLP) on employee machines
but rather install it at a centralised gateway. Thus far, research
proposals have mostly considered host-based deployments of
network functions for trusted server machines [4]–[6].

We describe ENDBOX, a new system for the trusted
execution of middlebox functions on client machines. The
design of ENDBOX is based on a virtual private network (VPN),
namely OpenVPN [8], which is used to access a managed
network from an untrusted one. We enhance the VPN client
with support for the execution of trusted middlebox functions
through the Click software router [9]. ENDBOX intercepts
all traffic between the client and the network and ensures
that it is processed by middlebox functions executing on the
client machine. The functions are guarded by trusted hardware
features available in modern CPUs—ENDBOX uses Intel’s
Software Guard Extensions (SGX) to enforce their use when
clients communicate with a managed network and to protect
their integrity.

1



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

To support also widely prevalent encrypted network traf-
fic [10], [11], ENDBOX leverages its trusted execution model
for encrypted traffic analysis. In contrast to man-in-the-middle
(MITM) proxies, which may compromise encrypted sessions,
ENDBOX shields encryption keys locally on the clients, thereby
enabling decryption without weakening overall security.

Despite its decentralised deployment model, middlebox
functions executed by ENDBOX can be reconfigured securely,
rapidly, and seamlessly. ENDBOX uses user-defined in-band
VPN control messages that are periodically exchanged between
a control server in the managed network and all ENDBOX
clients. Control messages announce configuration updates
to middlebox functions, forcing clients to always use the
latest configuration version. The overhead of exchanging
control messages and applying new middlebox configurations
is low because ENDBOX clients retrieve new configurations
asynchronously.

The remainder of the paper is organised around its main
contributions:

§II introduces two scenarios for ENDBOX and discusses the
problem statement as well as the threat model that we
consider when outsourcing middlebox functions to untrusted
clients;

§III describes the ENDBOX design, thereby explaining how it
secures middlebox functions using Intel SGX, maintains
VPN connection endpoints inside SGX enclaves, and securely
processes encrypted network traffic without compromising
end-to-end security;

§IV describes implementation details on how ENDBOX integrates
with the VPN client and the Click software router. We also
detail our approach to reduce the number of SGX enclave
transitions, enable use case specific traffic protection, and
optimise communication between ENDBOX clients;

§V evaluates ENDBOX and shows that it is immune to many
attacks such as rollback, replay, denial-of-service (DoS) or
cipher downgrade attacks. We show ENDBOX scales linearly
with the number of connected clients and achieves 2.6× to
3.8× higher throughput compared to a centralised middlebox
deployment. Finally, we show that ENDBOX has a low
performance overhead of 16%.

II. TOWARDS SECURE CLIENT-SIDE MIDDLEBOXES

We first present explicit scenarios that benefit from the
deployment of secure client-side middleboxes (§ II-A). We then
describe how middleboxes are deployed in today’s managed
networks and why state-of-the-art solutions are not suitable for
implementing the aforementioned scenarios (§ II-B). Finally,
we explain the Intel Software Guard Extensions (SGX) as an
enabling technology for our solution (§ II-C) and discuss our
assumed threat model with respect to untrusted clients (§ II-D).
A. Scenarios
We describe two representative scenarios that benefit from
secure client-side middleboxes as provided by ENDBOX.

Scenario 1: Enterprise network. A large company seeks to
protect their network using middleboxes. Due to the increasing

cost of centralised hardware middleboxes, the company decides
to offload middlebox functions. It is decided to let client
machines execute middlebox functions using ENDBOX. In
line with employees working from remote locations, clients
can be connected either to the internal network or join the
network remotely using a VPN client.

Scenario 2: ISP network. An Internet service provider (ISP)
with hundreds of thousands of customers wants to offer
additional protection by performing deep packet inspection
(DPI) on network packets. The goal is to protect customers’
client machines as well as the ISP’s network components from
malware, such as ransomware. However, it is challenging for
the provider to implement such a system because (i) they need
to access encrypted traffic payload, which is impossible without
creating security vulnerabilities [12], changing well-established
protocols [13], [14] , or inflicting a non-justifiable performance
overhead [15]; and (ii) the acquisition of middleboxes being
capable of performing extensive analysis on considerable
amounts of traffic is too costly [16]. The product portfolio
of the ISP is extended by a data plan that deploys ENDBOX
for network traffic analysis on the client machines of customers.
The plan includes a discount to compensate for the allocation
of client-side resources.
B. Middleboxes today
Middleboxes play a central role in analysing, filtering, and
manipulating network traffic. Typical examples are firewalls
and IDPSs for improved security; or caches and load balancers
for better performance. We observe three fundamentally dif-
ferent approaches of deploying middleboxes: (i) centralised
deployment as part of the managed network; (ii) cloud-based
deployment; and (iii) deployment as part of end-hosts.

Centralised middlebox deployments. This is the most com-
mon type of deployment in managed networks in which the
middleboxes are placed between servers and the gateway to
the Internet (see Fig. 1a). As middleboxes are diverse and
often complex, there is a trend to replace costly specialised
hardware appliances by software-based solutions running on top
of commodity hardware [17]. With ever-growing network traffic
and enterprise links offering capacities reaching 100 Gbps, this
requires scalable software solutions. Since middleboxes are
often stateful (e.g. during intrusion detection), it is challenging
to perform simple horizontal packet-based scaling, as each
network flow must be assigned to an individual middlebox
instance [7]. Centralised middlebox deployments are non-trivial
to scale with the number of client machines, resource-intensive
and consequently costly [4].

Cloud-based middlebox deployments. In line with the trend
of network functions virtualization (NFV) [18], middleboxes
are outsourced to public clouds operated by a third party [4]
or private telco clouds operated by ISPs [19] (see Fig. 1b).
Although using public clouds relieves network administrators
from the management of middleboxes, it comes with several
downsides: (i) in order to be processed in a cloud infrastructure,
traffic must be redirected thereby incurring additional latency;
(ii) public clouds are external, untrusted infrastructure, i.e.

2



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

ServerServer Server

Middlebox

Managed 
Network Gateway

ClientClient Client

(a) centralised

ServerServer Server

Gateway

Middle
boxC

lo
ud

Managed 
Network

Client
Client

Client

(b) cloud-based

Gateway

Middle
box

Server
Middle
box

Server
Middle
box

Server

Managed 
Network

ClientClient Client

(c) server-side

ServerServer Server

Gateway
Managed 
Network

Middle
box

Middle
box

Middle
box

Client Client Client

(d) client-side

Fig. 1: Different middlebox deployment models: (a) traditional centralised hardware middleboxes, (b) outsourcing of software
middleboxes into public or private cloud environments, and (c, d) software middleboxes at end-hosts

critical functions are moved off-site; and (iii) traffic redirected
to clouds may be filtered or manipulated outside the network.

Offloading middlebox functions to private telco clouds may
incur less latency and the infrastructure can be regarded as
more trustworthy. However, it still needs substantial investment
by ISPs. In summary, cloud-based middleboxes are convenient
to manage, but potentially reduce the reliability of managed
networks. They are often discarded because of concerns
regarding security, latency, and legality.
Middleboxes at end-hosts. Finally, middlebox functions may
also be placed at end-hosts, be it servers in a data centre
(see Fig. 1c) [6] or clients inside an enterprise environment
(see Fig. 1d) [20]. These approaches benefit from network
traffic being processed directly at its source or destination,
improving scalability as each host handles its own traffic.
However, fully untrusted end-hosts have not been considered,
which is the key challenge introduced by the scenarios described
in § II-A. In contrast, ETTM [20] does consider untrusted
end-hosts, but its approach is limited: Contrary to ENDBOX,
ETTM (i) provides lower security guarantees; e.g. it cannot
withstand physical attacks; (ii) relies on traffic being correctly
forwarded by physical switches, thus, extending the trusted
computing base (TCB) of the whole system; and (iii) builds
on an expensive distributed consensus algorithm (see §VI).
In this paper, our goal is to explore a deployment model
that targets entirely untrusted clients and network hardware
in order to reap the following benefits: (i) network traffic
can be filtered or processed at the source or destination;
(ii) processing encrypted traffic does not create vulnerabilities
and is practical; (iii) central network devices in a managed
network are relieved from having to provide middlebox
functions; and (iv) deployments can be made to scale because
middlebox functions are executed by potentially under-utilised
client machines.
C. Intel SGX
Recent Intel CPUs include support for trusted execution envi-
ronments (TEEs), in the form of Software Guard Extensions
(SGX). SGX enables the protection of data and code through
safe compartments called enclaves. Computations performed
inside an enclave are isolated from potentially malicious
software, including the operating system.

SGX uses special x86 instructions to create and manage
enclaves. Enclaves occupy an isolated logical memory range

inside the address space of a process. SGX protects the integrity
as well as the confidentiality of this range with checksums and
memory encryption. Enclave memory is stored in a system-
reserved memory range called enclave page cache (EPC) that
is transparently encrypted [21].

The Intel SGX software development kit (SDK) offers
functionality to help with enclave software development, such
as life cycle management or support for function calls across the
enclave boundary. Function calls that cross from the untrusted to
the trusted environment are called ecalls, while ocalls perform
the opposite.

In addition to protecting code and data, SGX can authenticate
enclaves through local or remote attestation: local attestation
provides a way for two enclaves on the same machine to
authenticate each other based on measurements, which basically
are hashes of the enclaves. Attestation depends on messages
called reports that can contain user-defined data, e.g. for binding
data to an enclave instance. Remote attestation is based on
keys fused into the CPU during manufacturing and extends
attestation to a remote machine [22]. The process involves
data structures called quotes that are generated by a special
enclave called Quoting Enclave (QE). Using the web-based
Intel Attestation Service (IAS), quotes can be remotely verified
to originate from a genuine SGX CPU.

The use of SGX involves some restrictions. Since enclave
code must be isolated from the untrusted environment, it is
not possible to make system calls to the OS. Prior work has
addressed this issue by embedding system support inside the
enclave [23]–[25] while increasing the TCB size. The EPC
size in the current version of SGX is limited to 128 MB per
machine. It is possible to create larger enclaves by swapping
EPC pages to regular memory, but this results in a substantial
performance penalty [23], [26]. While SGX is vulnerable to
side-channel attacks [27]–[29], research exists on mitigation
techniques [30], [31].
D. Threat model
Client machines are typically untrusted, as they elude from
the control of network owners. In companies, not all enter-
prise machines are managed by a central IT department, i.e.
developers or administrators typically possess administrative
rights for their own and others’ machines. In the case of the
ISP scenario, the client machines of customers are and should
be totally out of control of the provider. Also, client machines

3



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

may lack essential security patches or be misconfigured, and,
thus, are vulnerable to attacks which could circumvent any
security critical middlebox functions.

We therefore assume that client machines are not trustworthy,
and an adversary may have full control over a client machine,
including its operating system, hypervisor, and hardware. They
can make it send any traffic, and they have access to inbound
traffic, i.e. they can drop or modify packet contents. In addition,
they have full control over the OS networking stack, and can
bypass or modify any of its functionality. With physical access
to the client machines, the adversary can read from or write
to any memory address.

The adversary can also mount DoS attacks against the
enclave, i.e. not starting or entering it. However, we ignore
distributed denial-of-service (DDoS) attacks on the server
infrastructure: while malicious clients can collude and send
spurious traffic to servers, existing mitigation approaches can
be applied [32].

In line with typical assumptions about managed networks,
we consider all servers to be under central administrative
control and thus trustworthy. Client machines are not allowed
unrestricted access to the network because they can be subject
to the above attacks and act maliciously.

In contrast, we assume that users put trust in the provider
of middlebox functions (e.g. the company or the ISP). Note
that this assumption is also valid for traditional approaches
involving middleboxes. However, this assumption could be
weakened or removed by enabling users to enforce policies
during runtime on SGX enclaves [33].

III. DESIGN

We describe ENDBOX, a system that securely executes mid-
dleboxes at client machines. In accordance with a deployment
scenario as part of untrusted clients (see § II-D), ENDBOX
must satisfy the following requirements:
R1: Flexibility. ENDBOX should support flexible development
for tailored middlebox functions for a wide range of use cases.
R2: Enforcement. ENDBOX should ensure that all traffic
between the client and the managed network is processed
by middlebox functions.
R3: Integrity and privacy. ENDBOX should protect the integrity
of middlebox functions and the privacy of client traffic.
R4: Manageability. Despite middleboxes being distributed, it
should remain easy for network administrators to rapidly and
seamlessly manage middlebox functions, such as updating their
configurations.
R5: Low overhead and good scalability. To be practical,
ENDBOX should introduce only a low performance overhead
compared to existing solutions and scale linearly with the
number of clients, in order to support fluctuating client numbers
and prevent idle middleboxes at the same time.
A. ENDBOX in a nutshell
Fig. 2 details the deployment of ENDBOX for our two repre-
sentative scenarios introduced in § II-A. In both scenarios, a
number of ENDBOX clients connect to an ENDBOX server.
The ENDBOX client allows applications on client machines

configures
Admin

EndBox Server

FW
/G

W

Enterprise
Network

Apps

TEE

EndBox
Client

Client machine

Applications

EndBox Client
TEE

(a) enterprise network scenario

EndBox 
Server

ISP
network

Client machine

Applications

EndBox Client
TEEH

om
e 

N
et

w
or

k

Home Network
FW/GW H

om
e N

etw
ork

FW
/G

W

FW
/G

W

(b) ISP network scenario

Fig. 2: ENDBOX system deployment of two scenarios (a) and
(b), FW/GW is firewall/gateway

to access the managed network. Clients execute middlebox
functions in a TEE (SGX enclaves in our prototype, denoted
in green throughout the paper). The TEE guards the secure
endpoint of the VPN communication and secures the necessary
encryption keys. The keys are injected inside the TEE as
part of a secure bootstrapping process, so neither the user
of the machine nor software outside the TEE are granted
access to them (see § III-C). Packet en- and decryption, as
well as arbitrary processing, happen within the TEE. This
enables the implementation of a wide range of middlebox
functions (R1), including caching, malware detection, licensing
controls, and functions such as compression that all cannot
operate on encrypted packets (see § III-D). Moreover, this
enables organisations to adapt middlebox functions executed
with ENDBOX to their specific use case.

In the case of the enterprise network scenario (Fig. 2a),
clients are allowed to be inside the network or to connect
remotely (e.g. employees in home office). In contrast, in the
ISP network scenario (Fig. 2b), clients are private machines
that connect to the ISP network.

In both scenarios, the use of ENDBOX is enforced when
accessing a managed network because the ENDBOX server
is the only entry point: it only accepts traffic encrypted with
the key owned by a correct ENDBOX client. This ensures that
all traffic is processed by ENDBOX and prevents users from
bypassing the middlebox functionality, because bypassed traffic
is either blocked or encrypted, thus not readable (R2).

In addition, ENDBOX uses the SGX attestation support to
guarantee that (i) the enclave is initialised with the correct code
and data; and (ii) the encryption and decryption of network
packets can only occur within the enclave (R3).

The ENDBOX server provides a management interface
that enables administrators to deploy middlebox configuration
changes (R4), e.g. to issue updates for middlebox functions. The
updates are disseminated to all (connected and reconnecting)
clients, which are responsible for fetching and applying the
configuration changes. After a configurable grace period, the

4



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

Virtual Network 
Interface

Client Machine EndBox Client

Applications
1

2

4

IDPS, Firewall, … 3

Cryptography

C
lic

k

Fragmentation, Encapsulation

U
ser Space

Kernel Space

Network Stack

Network 
Interface

En
cl

av
e

Fig. 3: Architecture of the ENDBOX client

update is enforced by accepting only traffic from ENDBOX
clients with the latest middlebox configuration (see § III-E)

ENDBOX is designed to induce a low performance overhead,
and scale with the number of connected clients (R5). This
is achieved by (i) reducing the number of enclave mode
transitions; and (ii) by moving middlebox functions to clients,
thus removing load from centralised middleboxes as part of
the managed network.

B. Architecture of the ENDBOX client

The ENDBOX client architecture shown in Fig. 3 consists
of two components: a VPN client and a set of middlebox
functions. The VPN client is based on OpenVPN [8] and
is partitioned; security-sensitive parts (such as cryptographic
functions and encryption keys) are moved into the enclave to
prevent an attacker from gaining knowledge about the secret.
Other parts that are not important for security (such as packet
encapsulation and fragmentation) are executed outside of the
enclave. ENDBOX implements middlebox functions using the
Click modular router [9], which can be used to implement a
diverse set of middlebox functions (R1). ENDBOX routes all
traffic through middlebox functions: before encrypting egress
or decrypting ingress traffic, OpenVPN hands all packets to
Click for processing.

To ensure that all network traffic is intercepted by ENDBOX
(R2), a client can only connect to the network through the
VPN. The VPN client processes each IP packet individually
in four steps: after the packet is copied inside the enclave 1©,
it is processed by one or more middlebox functions according
to the system configuration 2©. Depending on the specific
function, the packet header or payload may be modified or the
whole packet marked to be discarded (e.g. due to firewall or
IDPS rules). After the execution of the middlebox functions,
the packet is either accepted or rejected 3©. Finally, the packet
is signed and encrypted and then copied outside of the enclave,
where it is passed back to the VPN client running in untrusted
space 4© for transmission over the network.

Each packet arriving from the network is processed in the
opposite order: it is first copied into the enclave, where its
signature is checked and its content decrypted. It is then
processed by middlebox functions, accepted or discarded, and
finally copied outside the enclave and passed to the application.

6

2

37 1 4

Managed
Network

Intel
Attestation

Service

EndBox
Client Client Machine

Enclave Certificate
Authority5

Quoting
Enclave

Fig. 4: ENDBOX remote attestation and key management

C. Attestation and key management
To achieve our desired level of security (R3), ENDBOX
leverages the Intel SGX enclave attestation facilities [22]
described in § II-C and. Fig. 4 shows the steps executed to attest
the correctness of the enclave as well as to protect and sign the
VPN keys. ENDBOX’s key management is based on a certificate
authority (CA) operated by network owners. The public key
of the CA is pre-deployed into enclave binaries during system
compilation to prevent MITM attacks. An asymmetric key pair
is generated in the enclave 1©, the private key never leaves
the enclave. Next, the VPN client creates a report containing
the public key of the aforementioned key pair and passes it to
the QE to obtain a quote 2© (see § II-C). This is forwarded
to the CA 3©, which relays it to the IAS and receives a
reply 4©. If that reply is positive and the quote contains a
known measurement, the CA signs the public key, creating
a certificate 5©. The certificate and a symmetric shared key
encrypted with the enclave’s public key are provisioned to the
enclave 6©. Finally, after checking the received certificate with
the CA’s public key, the enclave persistently stores the generated
key pair as well as the certificate using the SGX sealing
feature 7©. The client can now use that certificate to connect
to the VPN server. Consequently, an enclave only has to be
attested once and unattested clients cannot establish connections
because of missing certificates. The symmetric shared key is
used for decrypting configuration files as described in § III-E.
D. Processing encrypted network traffic
Although half of today’s network traffic is encrypted [10], [11],
many middlebox functions, e.g. for deep packet inspection or
caching, need to access the payload of packets, i.e. cannot
operate on encrypted traffic. This problem became particularly
visible when the Internet Engineering Task Force (IETF)
heavily discussed whether the key exchange in TLS 1.3 should
be degraded to allow network monitoring [34].

There are different state-of-the-art solutions for this problem:
(i) middleboxes performing a MITM attack on users; (ii) apply-
ing modifications to the TLS protocol to allow middleboxes to
intercept traffic [13], [14]; and (iii) searchable or homomorphic
encryption schemes [15]. These solutions solve the problem, but
have drastic disadvantages: they break end-to-end security, are
incompatible with technologies like HTTP public key pinning
(HPKP), are impractical or are notoriously slow. Therefore,
ENDBOX implements a new approach of decrypting network
traffic. We assume that a client application, such as a web
browser, is linked against a custom untrusted TLS library. This
library forwards all negotiated session keys to the trusted Click
instance, running inside the ENDBOX VPN client. The keys

5



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

are used to decrypt the packets inside a special Click element.
For our prototype implementation, we modify OpenSSL by
adding a single call to a custom function, which forwards
negotiated keys via the OpenVPN management interface. Using
this approach, ENDBOX can decrypt traffic transparently to
the client. The client neither needs to trust a custom certificate
authority nor does it see different certificates than those offered
by the accessed services. Also, we do not have to change the
TLS protocol or rely on special encryption schemes. Note that
transferring the keys to the ENDBOX enclave is not a security
risk for the client: the keys are generated by the untrusted TLS
library and are therefore also stored in untrusted memory.

Our approach to analyse encrypted traffic also works with the
upcoming TLS version 1.3, which today’s middleboxes cannot
handle correctly [35]. Additionally, our solution is applicable
in our targeted scenarios: In an enterprise network, employees
trust their employer to some extent and should refrain from
handling private matters using company networks either way.
In the ISP scenario, we assume customers opt-in for traffic
analysis by the ISP to improve security, i.e. they are aware of
it and consent.
E. Configuration updates
To improve manageability (R4), ENDBOX supports updates of
Click configuration files at runtime. Network administrators
can define the importance of updates by specifying a grace
period of n ≥ 0 seconds. During the grace period, the ENDBOX
server allows both old and new configurations to be active.
After its expiry, the server blocks traffic from clients that are
not applying the new configuration.

We use in-band ping messages from OpenVPN to notify
ENDBOX clients about configuration updates and to enforce
them. These ping messages are sent periodically by both the
VPN client and the server to keep the connection alive. We
extend the message format with two extra fields: the version
number of the latest configuration file and its grace period. To
prevent malicious clients from sending crafted ping messages,
the authenticity of all packets is validated inside the enclave.

The CA’s public key and the pre-shared key (see § III-C)
are used to sign and optionally encrypt configuration files to,
for example, hide IDPS rules from employees in the enterprise
scenario. In the ISP scenario, the configuration files are not
encrypted to allow customers to inspect rules. The files are
stored on a trusted server located in the managed network that
is publicly accessible to ensure that clients can always obtain
up-to-date configurations before connecting. When network
administrators create an updated configuration file, they sign
and optionally encrypt it, upload it to the configuration server,
and instruct the VPN server to send out a ping message with
the new version number. When the ENDBOX client notices that
a new configuration file is available, it fetches the configuration
file, decrypts it inside the enclave and applies it. To prevent
clients from replaying old configuration files, the version
number of the update is incorporated inside the update itself.
Version numbers increase monotonically with each update.

The whole update process is shown in Fig. 5. To start it,
the network administrator uploads the configuration file to the

Client 
Machine

Config 
File 

Server

EndBox 
Client

Enclave
8

4

7
6

3

1

2EndBox
Server9

Admin

5

Fig. 5: Updating configuration files within ENDBOX

configuration server 1© and triggers a configuration update at
the ENDBOX VPN server 2©. The VPN server starts a timer
that, when expired, blocks clients with old configurations 3©.
With the next periodic ping message, the VPN server sends the
new version number to all clients 4©. When a client receives
a ping message, it checks whether an update is necessary 5©.
If this is the case, it fetches the new configuration from the
configuration server 6©- 7©, decrypts it, and replaces its current
configuration 8©. Finally, the client sends a ping message with
the new version number to prove its successful update 9©.

IV. IMPLEMENTATION

The implementation of ENDBOX is based on Open-
VPN v2.4.0 [8], the Intel SGX SDK v1.9 [36], the TaLoS library
for terminating TLS connections inside SGX enclaves [37],
and the latest version of the Click software router [9]. We
use OpenVPN as the basis for the ENDBOX client because it
(i) is open-source; (ii) has relatively few dependencies; (iii) is
implemented in user-space; and (iv) is widely used. This allows
us to port parts of its implementation to an SGX enclave,
especially given that OpenVPN is entirely executed in user-
space. TaLoS is based on LibreSSL and acts as a drop-in
replacement running in SGX enclaves for existing applications.

ENDBOX uses the Intel SGX SDK to define ecalls and ocalls
as well as to handle the life cycle of the enclave. In addition,
it uses the SDK’s trusted (but functionally limited) C library
implementation and extends it with further functions used
by OpenVPN and Click. The ENDBOX implementation also
utilises the SDK support for trusted time in order to implement
traffic shaping (see § V-B). Additionally, the SDK offers a
simulation mode that allows the execution of SGX applications
on unsupported hardware without security guarantees but
similar runtime behaviour.

ENDBOX relies on Click to implement middlebox functions.
To configure Click, so-called elements are interconnected. An
element can fetch packets from or forward packets to other
elements, and process packets. We choose Click because it
(i) is widely used; (ii) has many existing elements to realise
various middlebox functions; (iii) provides a configuration hot-
swapping mechanism; and (iv) is easily extensible. ENDBOX
uses Click’s configuration hot-swapping mechanism to effi-
ciently update the middlebox configuration. It uses elements
shipped with Click to implement middlebox functions and
extends Click by adding custom elements for an IDPS function,
to decrypt application-level traffic, and to perform traffic
shaping using a trusted time source provided by SGX.

Changes to Click and OpenVPN. ENDBOX requires minor
changes to Click: (i) the ToDevice element is modified to signal
OpenVPN when a packet was accepted or rejected. There are

6



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

also changes to Click core: (ii) we disable signal handling
for state clean-up and control sockets for communication with
specific elements, as signals are not supported inside enclaves;
and (iii) we adapt the hot-swapping mechanism to work with
configuration files stored in memory. OpenVPN is linked
against the TaLoS library, which results in all cryptographic
operations being executed inside the enclave. Additionally, we
compile Click as a library and link it against the enclave code
to allow fast interaction.
TCB size. The total number of lines of code (LOC) within the
enclave is an important factor for the TCB size. The trusted
part of ENDBOX comprises 320 kLOC: 219 kLOC for TaLoS,
80 kLOC for Click, 20 kLOC for the SGX SDK, and 1 kLOC
for the sensitive parts of OpenVPN. The number of lines of
code for TaLoS should be regarded as an upper bound: while
TaLoS provides the same API and functionalities as LibreSSL,
ENDBOX only uses a small subset.
A. Optimisations
ENDBOX implements several optimisations to improve its
performance and security: (i) reduce the number of enclave
transitions; (ii) enable use case specific traffic protection; and
(iii) optimise client-to-client communication. These optimisa-
tions are detailed in the following and evaluated in § V-G.
Enclave transitions. The performance of SGX enclaves is neg-
atively impacted by transitions between trusted and untrusted
code. Previous work [23], [26] has shown that an enclave
transition is more costly than a system call. To reduce this cost,
ENDBOX shifts parts of the OpenVPN encryption logic into
the enclave to reduce the number of enclave transitions per
processed packet: ENDBOX performs only one ecall per sent
or received packet. As described in § V-G, this optimisation
drastically improves the overall throughput of ENDBOX.
Scenario-specific traffic protection. Depending on the sce-
nario in which ENDBOX is used, weaker traffic protection can
be applied. In the ISP scenario, AES-128-CBC packet encryption
is optional, because the trust relationship is different from the
enterprise use case: users decided to let the ISP apply ENDBOX,
therefore the fact that traffic is routed through Click does not
have to be enforced by encrypting it. However, the fact that
egress traffic is analysed by Click needs to be ensured by the
ISP by applying integrity protection. This optimisation only
targets the ISP scenario and improves the overall throughput
of ENDBOX, as described in § V-G.
Client-to-client communication. In the case of client-to-
client connections, our approach would lead to packets being
processed multiple times, once on every client. This is not
reasonable for most use cases, for example IDPSs. Therefore,
ENDBOX clients flag outgoing packets after they have been
processed by Click, enabling other ENDBOX clients to bypass
Click. We implemented the flagging mechanism by setting the
Quality of Service (QoS) byte in the IP header to 0xeb. In order
to prevent external attackers from sending IP packets containing
this byte, the ENDBOX server removes the QoS byte if it is
set to 0xeb. Finally, as all packets are integrity-protected by
OpenVPN, flagged packets cannot be forged. This optimisation

rather targets the enterprise scenario, but can also be applied to
the ISP network and improves the latency between ENDBOX
clients, as described in § V-G.
B. Secure Enclave Interface
The enclave interface of ENDBOX consists of 90 calls: 70
ecalls and 20 ocalls. Most of the ecalls are called only during
initialisation of OpenVPN and Click. ENDBOX defines only
4 ecalls that are executed during normal operation: (i) packet
en- and decryption; and (ii) message authentication code
(MAC) generation and verification. While (i) are triggered
by normal traffic, (ii) are used for integrity protection of the
OpenVPN control channel. With the exception of the ENDBOX-
specific en- and decryption and Click initialisation ecalls, all
ecalls match the TaLos/LibreSSL library calls, which perform
security checks. The ocalls perform different tasks, among
them managing untrusted memory and accessing (encrypted)
configuration files. Note that they could be omitted by using
in-enclave configuration files and exitless enclave services [38].

To ensure a secure interface, we closely examined all ecalls
and ocalls and augmented them with sanity checks on input
(resp. return) values of ecalls (resp. ocalls), and bound checking
of pointers either passed to ecalls or returned from ocalls to
guarantee that they point to enclave memory.

V. EVALUATION

We evaluate the security and performance of ENDBOX by
discussing different attacks on ENDBOX and performing
different measurements. Our results show that: (i) ENDBOX
is secure against a wide range of attacks (§ V-A); (ii) it only
affects network latency in a minimal way (§ V-C); (iii) it
induces an acceptable best-case performance overhead of
16% (§ V-D); (iv) it scales linearly with the number of clients;
(v) clients can achieve a 2.6×–3.8× higher throughput than
a traditional centralised middlebox (§ V-E); (vi) our runtime
reconfiguration mechanism has a 30% lower latency than the
original Click implementation (§ V-F); and lastly, (vii) our
optimisations described in § IV-A actually improve ENDBOX’s
impact on latency or throughput (§ V-G).
A. Security evaluation
Following an exhaustive evaluation of our threat model, we
discuss typical attacks against ENDBOX and state how it can
defend against these or why they are not applicable.
Bypassing middlebox functions. A malicious client may try
to access the network without using ENDBOX. We assume
that the network is guarded by a static firewall limiting traffic
to VPN usage: without a properly configured ENDBOX client
establishing a valid VPN connection, it is not possible for an
attacker to send valid traffic that would bypass the middlebox
functions in ENDBOX. Instead, the traffic will be dropped by
the firewall. For incoming traffic, clients are indirectly forced
to route their traffic through the ENDBOX client if they want to
access the encrypted payload. ENDBOX ensures the authenticity
of connections using remote attestation (§ III-C).
Using old or invalid middlebox configurations. An attacker
may rollback configuration updates, or use unauthorised
configurations. Once an adjustable grace period for an update

7



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

has passed, the server only accepts ENDBOX clients that use
the currently valid configuration, as described in § III-E. The
ENDBOX client and server periodically exchange ping messages
containing configuration information to prevent clients from
using stale configurations.

Replaying traffic. If a malicious client replays traffic, e.g. in
order to establish a connection without a genuine enclave, the
ENDBOX server detects this, due to OpenVPN’s implementa-
tion of packet replay protection.

Denial-of-service attacks. Malicious clients can prevent en-
claves from starting or being entered, as the enclave life
cycle is managed by untrusted code. However, this would
result in the inability of the client to communicate with the
network. In contrast, a denial-of-service attack on the ENDBOX
server would have the same effect as a traditional centralised
middlebox deployment, thus, the attack can be mitigated using
classical techniques [32].

Downgrade attacks. Attackers could try to force the usage
of a weaker TLS version or cipher. However, OpenVPN
implements server-side checks that ensure the minimal TLS
version to be used. On the client-side, the corresponding check
happens within the enclave during connection establishment
and therefore cannot be circumvented.

Interface attacks. A client may try to break into the enclave
by manipulating the parameters at the enclave interface similar
to Iago attacks [39]. To mitigate such attacks, every ecall and
ocall has been augmented with checks on input parameters
and return values (see § IV-B). In addition, ENDBOX exposes
a limited interface with a restricted attack surface.

Failure of a middlebox. If a middlebox fails, only the client
running this middlebox is impacted; other clients and the
managed network remain unaffected. This differs from the
behaviour of traditional centralised middlebox set-ups in which
a failure would affect many clients or even whole networks. In
contrast, the failure of the ENDBOX server managing all VPN
connections is equivalent to a failure of traditional centralised
middleboxes, resulting in network outages.
B. Experimental set-up and use cases
We evaluate the performance of ENDBOX on a cluster of
seven machines of two classes. Class A© consists of five
machines, equipped with SGX-capable 4-core Xeon v5 CPUs
with 32 GB of memory, while class B© are two machines
with non-SGX 4-core Xeon v2 CPUs and 16 GB of memory.
All machines are configured with hyper-threading and are
connected to a 10 Gbps switch via two 10 Gbps network
interfaces per machine. The maximum transmission unit (MTU)
of the network links is configured to 9000 bytes. We conduct
the throughput measurements using iperf, while for latency
measurements we rely on ICMP pings. Throughout this section,
we evaluate multiple set-ups, including these reoccurring
ones: (i) vanilla OpenVPN, an unmodified OpenVPN v2.4.0;
(ii) OpenVPN+Click, the same OpenVPN version, but traffic
is processed by server-side Click instances; (iii) ENDBOX
in simulation mode to show the overhead of partitioning the

VPN client; and (iv) ENDBOX in hardware mode to show the
overhead of using SGX instructions. Throughout this section,
we report average values of 10 consecutive runs; the variance
of results is omitted if the reported error is negligible.

In the following, we describe five middlebox functions we
implemented for the evaluation. They are either based on
standard or custom Click elements.

Forwarding (NOP). The first middlebox function we consider
provides a baseline for our measurements. It forwards packets
without accessing or modifying any headers or payloads.

Load balancing (LB). The RoundRobinSwitch Click element
allows us to balance IP packets or TCP flows across several
machines, thus balancing load.

IP firewall (FW). A firewall accesses packet headers and con-
trols traffic based on a set of rules. We use the IPFilter Click
element without any code modifications. For our evaluation
we use a set of 16 rules that do not match any packet.

Intrusion detection and prevention system (IDPS). An IDPS
monitors network traffic for unauthorised accesses and policy
violations. We support Snort [40] rule sets and execute its string
matching algorithm [41] using a library from [42]. The IDPS
is implemented as a custom Click element called IDSMatcher.
For the evaluation, we use a subset of 377 rules of the Snort
community rule set. Again, the rules do not match packets
generated for our evaluation.

DDoS prevention (DDoS). Distributed denial-of-service attacks
can generally be mitigated by throttling or dropping packets that
occur repeatedly or if source address spoofing is detected. We
implement this middlebox function by rate limiting identical
packets using our custom Click elements IDSMatcher and
TrustedSplitter. The latter allows the shaping of traffic to a
given bandwidth in a trusted way: to reduce expensive calls to
obtain trusted time, the TrustedSplitter samples timestamps
by issuing calls after a certain configurable number of packets
has been processed. This number is set to 500,000 for our
measurements. For OpenVPN+Click, we use a similar Click
element called UntrustedSplitter which obtains timestamps
using system calls. This use case is well-suited for the ISP
scenario, as it enables the provider to detect malware or bot
nets directly on client-side.

C. Latency
In the following, we evaluate the latency impact of ENDBOX,
as this has a notable influence on user experience. We
use the forwarding middlebox function (NOP) and perform
local experiments using class A© machines. For cloud-based
measurements, we rely on Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) and use m3.medium instances
with 1 virtual CPU and 3.75 GB RAM in different regions.

HTTP request handling. ENDBOX’s impact on latency can
be observed in Fig. 6, which plots the cumulative distribution
function (CDF) for HTTP page load times of 1,000 popular
websites provided by Alexa [43]. Results show that the time
needed to load these websites is very similar when using

8



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

0 5 10 15 20
0

0.2
0.4
0.6
0.8
1

Page load time [s]

F
ra
ct
io
n

Through EndBox

Direct connection

Fig. 6: CDF of HTTP page load times for Alexa top 1,000
sites with and without ENDBOX

0

100

200

10.8 11.3 11.5 17.4

202.3

P
in
g
R
T
T

[m
s] no redirection

local redirection

EndBox SGX

AWS eu-central

AWS us-east

Fig. 7: Average ping RTT for different redirection methods

ENDBOX or a direct connection, and hence that the latency
overhead of ENDBOX is negligible.
Traffic redirection. By further exploring ENDBOX’s impact
on latency, we want to show that offloading middlebox
functions to cloud environments has more disadvantages than
only losing control and trust. Inspired by [4], we create a
setup of software middleboxes executing in AWS EC2 and
measure the ping round-trip times (RTTs) to a fixed location.
Fig. 7 shows the average ping RTT for different redirection
methods: (i) no redirection with no middlebox or VPN;
(ii) local redirection through a VPN and server-side middlebox
using OpenVPN+Click; (iii) redirection trough ENDBOX; and
(iv) redirection through middleboxes deployed on EC2 instances
in different AWS regions, also using OpenVPN+Click. The
results show that depending on the location a cloud provider
chooses, the latency overhead ranges between 61% and 1773%
and that ENDBOX’s latency overhead is only 6%.
Handling of encrypted traffic. As mentioned in III-D,
ENDBOX is able to transparently decrypt TLS traffic. We
measure the overhead of this functionality by letting an
HTTPS client fetch static web pages of different sizes from
a web server. This client is using one configuration among:
(i) ENDBOX with custom OpenSSL and traffic decryption
inside Click; (ii) ENDBOX with custom OpenSSL but without
traffic decryption; or (iii) ENDBOX with system OpenSSL
and without traffic decryption. We measure the HTTPS GET
request latency, and report the results in Table I. They show
that the overhead introduced by our custom OpenSSL and
traffic decryption is less than 8%. The two sources of overhead
are ENDBOX’s custom OpenSSL forwarding of keys to the
enclave, and the actual decryption.

ENDBOX OpenSSL vanilla OpenSSL
Resp. size w/ dec w/o dec w/o dec
4 KB 1.08 ms 1.04 ms 1.00 ms
16 KB 1.34 ms 1.29 ms 1.26 ms
32 KB 1.78 ms 1.75 ms 1.70 ms

TABLE I: HTTPS GET request latency for different response
sizes and configurations

256 1K 1500 4K 16K 64K

0

1,000

2,000

3,000

4,000

1
5
2 6
4
2

8
1
3 1

,5
4
1

2
,6

7
4

3
,1

6
8

1
4
6 6
1
7

7
6
4 1
,2

8
8

1
,8

8
8

2
,1

3
2

1
3
2 5
8
6

7
2
0

1
,5

1
4 2
,3

2
5

2
,8

1
3

9
2 4
0
1

5
3
0 1
,0

4
4

1
,9

8
7 2
,6

5
9

Packet size [bytes]

T
h
ro
u
g
h
p
u
t
[M

b
p
s]

vanilla OpenVPN EndBox SIM

OpenVPN+Click EndBox SGX

Fig. 8: Average maximum throughput of different set-ups for
packet sizes 256 bytes to 64 kilobytes

NOP LB FW IDPS DDoS

0

200

400

600

800
764 761 747

692 662

530 496 527

422 414

T
p
u
t
[M

b
p
s]

OpenVPN+Click

EndBox SGX

Fig. 9: Average maximum throughput of NOP, FW, LB, IDPS
and DDoS use cases for OpenVPN+Click and ENDBOX with a
packet size of 1500 bytes

D. Throughput

Besides network latency, throughput performance is also an
important parameter impacting user experience. All these
measurements are performed on two class A© machines.

Packet size. In this experiment, we measure the maximum
throughput reached in different configurations for various
packet sizes from 256 bytes to 64 kB. We compare four set-
ups: (i) vanilla OpenVPN, (ii) OpenVPN+Click: the same
OpenVPN version with an attached server-side Click instance;
(iii) ENDBOX in simulation mode; and (iv) ENDBOX in
hardware mode. The results are represented in Fig. 8. As
expected, the throughput increases for all configurations as
the payload size increases. Moreover, we see that ENDBOX
has an acceptable performance overhead: It varies between
2% and 13% for ENDBOX in simulation mode. Using actual
SGX instructions (hardware mode) adds overhead, resulting
in a worst-case overhead of 39% for small packets, but in
a best-case overhead of only 16% for large packets. This is
due to the fact that larger packets allow higher throughput
with less enclave transitions. We also see that a server-side
Click instance has an average performance penalty of 26%;
values range between 5% and 29% depending on packet size.
Finally, we observe that, for large packets, a server-side Click
instance achieves a throughput almost one third lower than
vanilla OpenVPN due to the Click instance’s packet fetching.

Middlebox functions. Fig. 9 shows the average maximum
throughput achieved by a traditional middlebox set-up with
VPN compared to ENDBOX. We evaluate all middlebox
functions presented in § V-B using one client machine and a
medium packet size of 1500 bytes.

9



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

With NOP representing a baseline, we first observe that the
impact of a Click configuration on OpenVPN+Click is rather
low: in the worst case, for the DDoS prevention use case,
the throughput drops by 13%, from 764 Mbps to 662 Mbps.
Second, ENDBOX incurs around 30% overhead for the use
cases NOP, LB, and FW. The more computation intensive use
cases IDPS and DDoS have an overhead of 39%. Note that this
overhead is lower for larger packets, as shown in Fig. 8.

Summary. Results show that ENDBOX introduces an accept-
able throughput overhead of only 16% for large packets in
the NOP use case. For medium sized packets, the overhead is
30% regarding lightweight middlebox functions and 39% for
specific heavy-duty use cases. As expected, we observe that
the throughput of ENDBOX increases with the size of packets.
Furthermore, ENDBOX does not have any user-perceivable
impact on the latency of HTTP page load times. As a result,
from a performance perspective, ENDBOX is a viable alternative
to existing middlebox deployments.
E. Scalability
After evaluating user-facing properties of ENDBOX like latency
and throughput, we evaluate the scalability of ENDBOX, which
is important to its operators. Therefore, we measure the
throughput and CPU usage on server side. The throughput is
aggregated over all virtual interfaces set up by the OpenVPN
servers, which is one per client. The CPU usage applies for
all cores, i.e. 100% represents all cores being fully utilised.
The scalability measurements use five class A© machines to
execute multiple ENDBOX clients and two class B© machines,
each running the ENDBOX server or iperf servers. For the
measurement, we compare four set-ups: (i) vanilla OpenVPN
without middlebox function as baseline; (ii) ENDBOX in
hardware mode; (iii) vanilla Click on server side without
encryption; and (iv) OpenVPN+Click: multiple server-side
vanilla Click instances attached to OpenVPN servers. In these
experiments, each client generates a workload of 200 Mbps.
For (i), (iii) and (iv), we use one OpenVPN server instance
per client, as OpenVPN does not support multithreading.

First, we evaluate the scalability using a forwarder as
middlebox function (NOP). The results in Fig. 10a show that
vanilla OpenVPN and ENDBOX achieve the same throughput
of 6.5 Gbps at an almost identical CPU usage. This shows
that client-side execution of middleboxes has no impact on
throughput or CPU usage on server side. For OpenVPN+Click,
the bottleneck is the CPU, which is fully utilised earlier
than with ENDBOX, because Click requires a substantial
amount of cycles. In contrast, the throughput of vanilla Click
is limited to 5.5 Gbps by the Click process which cannot
handle more packets. Finally, our measurements report an
even lower throughput for OpenVPN+Click of 2.5 Gbps, which
continuously decreases with a growing number of clients, as
OpenVPN+Click is limited by the servers’ CPUs.

Use case evaluation. We conduct the same measurement for
our five use cases presented in § V-B. In Fig. 10b we use the
results for OpenVPN+Click and ENDBOX from the previous
measurements as baselines and show how ENDBOX scales with

Phase vanilla Click ENDBOX

fetch - 0.86 ms
decryption - 0.07 ms
hotswap 2.4 ms 0.74 ms
Total 2.4 ms 1.67 ms

TABLE II: Timings of different phases of vanilla Click and
ENDBOX configuration updates

the number of clients when different middlebox configurations
are applied. When network traffic en- and decryption fully
utilises the VPN server (at 40 clients with our machine) it
becomes the bottleneck of ENDBOX: we observe a maximum
throughput of 6.5 Gbps for all use cases. Due to the server-side
execution of middlebox functions, OpenVPN+Click reaches
this limit earlier at 30 clients with a maximum throughput of
2.5 Gbps FW and LB use cases. The computation intensive IDPS
and DDoS middlebox functions only achieve 1.7 Gbps.

Our evaluation shows that ENDBOX scales linearly with
the number of clients. Additionally, for 60 clients, ENDBOX
achieves a 2.6× higher throughput across all use cases, and
3.8× for computation intensive workloads induced by IDPS
and DDoS. This is not a general limitation of ENDBOX—it is
due to our evaluation setup and caused by the computation-
intensive nature of pattern matching on network packets,
which overloads central middleboxes faster. Thus, we show
that ENDBOX performs especially well for CPU intensive
middlebox functions.

Summary. Results indicate that ENDBOX scales linearly with
the number of clients until the VPN server is fully utilised.
They also show that by executing middlebox functions on
the client side, ENDBOX can achieve 2.6× to 3.8× higher
throughput than centrally deployed middleboxes, depending on
the use case.
F. Reconfiguration overhead
One advantage of deploying middleboxes centrally is a simple
configuration update mechanism. For ENDBOX, this is far more
challenging, as middleboxes are distributed across untrusted
client machines. Therefore, ENDBOX implements mechanisms
to apply configuration updates across all client-side middle-
boxes in a secure way and enables administrators to verify that
correct configurations are applied, as described in § III-E.

Breakdown of an update operation. Table II shows the
different phases of configuration updates performed by vanilla
Click and ENDBOX. We use a minimal configuration file with
a size of 42 and 59 bytes, respectively. Since vanilla Click
does not need to fetch and decrypt the configuration file, the
only operation is hotswapping the configuration, which takes
2.4 ms in average. In contrast, ENDBOX spends in average
0.86 ms for fetching the new configuration and 0.07 ms for
decrypting the new configuration. However, both operations do
not influence the traffic filtering of ENDBOX and are performed
in the background. Finally, it takes 0.74 ms for hotswapping
the configuration. Thus, ENDBOX requires only 30% of the
time for the actual reconfiguration compared to vanilla Click.
This is due to the fact that vanilla Click needs to set up file

10



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

0

2

4

6

T
p
u
t
[G

b
p
s]

vanilla OpenVPN EndBox SGX

vanilla Click OpenVPN+Click

1 10 20 30 40 50 60

0

25

50

75

100

Number of clients

C
P
U

u
sa
g
e
[%

]

(a) NOP use case applied to different middlebox deployments

0

2

4

6

T
p
u
t
[G

b
p
s]

EndBox SGX NOP LB DDoS

OpenVPN+Click FW IDPS

1 10 20 30 40 50 60
0

25

50

75

100

Number of clients

C
P
U

u
sa
g
e
[%

]

(b) Five middlebox functions for OpenVPN+Click and ENDBOX

Fig. 10: Server-side aggregated throughput and CPU usage of (a) different middlebox deployments and (b) specific use cases

−2 −1 0 1 2
0

0.2
0.4
0.6
0.8
1

Relative time [s]

L
a
te
n
cy

[m
s]

EndBox OpenVPN+Click

Fig. 11: Impact of configuration updates on ping latency shown
for FW use case, time of reconfiguration at 0 seconds

descriptors for the ToDevice and FromDevice elements, which
is not necessary for ENDBOX because OpenVPN took care of
this task earlier.
Latency impact of updates. Additionally, we compare the
impact of configuration updates with respect to latency of
two set-ups: ENDBOX and OpenVPN+Click, both applying
our firewall use case. In our experiment, a single client sends
periodic pings at a rate of 10 requests per second and we
measure the round trip time. As shown in Fig. 11, we observe
that both OpenVPN+Click and ENDBOX lose one single ping
packet during reconfiguration. This shows that the overhead of
distributed compared to local reconfiguration is negligible if
implemented correctly.
G. Evaluation of Optimisations
Finally, we evaluate impact of the optimisations described in
§ IV-A either on throughput or latency. Reducing the number
of enclave transitions per packet results in a substantially higher
throughput of 342%, while refraining from packet encryption in
the ISP scenario leads to a 11% higher throughput. In contrast,
optimising the client-to-client communication has no effect on
throughput, but decreases the latency between clients by up to
13% for the IDPS use case.

VI. RELATED WORK

We are not the first to advocate the benefits of moving
middleboxes to end hosts, e.g. [6], [7], [20], [44]. However,
the vast majority of these solutions assumes trusted end hosts

and, hence, they are not suitable for a client-side deployment
like the ones targeted in this paper because users have full
physical access to the machine and cannot be trusted.

One notable exception is ETTM [20], which relies on a
trusted platform module (TPM). This approach is inflexible
because it only supports attestation at bootstrap time and lacks
integrity checks during execution. Most importantly, it does
not protect against malicious users with physical access to
the machine as ENDBOX does. Further, ETTM is impractical
because it requires the entire hypervisor to be part of the
TCB; and physical network hardware to correctly forward
traffic. While assuming that network hardware is trusted may
be conceivable for enterprise settings, it is infeasible in the ISP
scenario. Finally, the design of ETTM follows a distributed
approach that does not involve trusted configuration servers
as ENDBOX does. Therefore, ETTM applies Paxos [45] for
consensus, but Paxos does not scale well [46], induces high
latencies, and is not applicable when mobile nodes with an
unstable connection are involved, as discussed in our enterprise
scenario. Other proposals such as Eden [6] rely on specialised
hardware on end hosts to implement middlebox functionality.
While these solutions can achieve higher performance than
ENDBOX, their hardware exceed the specifications of today’s
laptops and average desktops, and, hence, do not meet the
requirements of our scenarios.

Middlebox functionality can be entirely moved to the
cloud [4], [5], [47]. This solution avoids the risk of users
mounting physical attacks and can provide great scalability.
These benefits, however, come at the cost of increased expenses
and higher latency due to traffic redirection (see § V-C). Further,
outsourcing traffic processing entails security risks as well as
privacy and legal issues.

Executing middlebox functions inside SGX enclaves has
been proposed [48]–[51]. Contrary to ENDBOX, these systems
are not designed to be deployed on clients. Instead, they
execute entire middleboxes or specific functions in the cloud
to guarantee integrity and confidentiality of network traffic.

11



CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18).

As detailed in § III-D, ENDBOX is able to execute middlebox
functions on encrypted traffic. The following four proposals
also target this problem. BlindBox [15] presents an encryption
scheme to perform a limited set of computations on encrypted
traffic, but at a much lower cost than traditional homomorphic
encryption. In mcTLS [13] and mbTLS [14] packets are
encrypted in a way such that middleboxes that require access
can decrypt them. SGX-Box [52] utilises SGX on centralised
middleboxes to enable DPI on encrypted network traffic.
Similarly to ENDBOX, TLS session keys are securely shared
with the enclave.

VII. CONCLUSION

In this paper, we presented ENDBOX, a scalable system that
enables the secure deployment and execution of middlebox
functions on untrusted client machines. For typical middlebox
functions, it scales linearly with the number of clients, thereby
achieving a 2.6× to 3.8× higher throughput than a traditional
deployment at the core of a managed network. Despite
being distributed, configuration changes to ENDBOX-based
middlebox services are centrally controlled and enforced.
Finally, encrypted application traffic can be efficiently and
securely decrypted and filtered using ENDBOX, due to its
location at the client side.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valuable
feedback. This work has received funding from the EU’s
Horizon 2020 research and innovation programme under grant
agreements 645011 (SERECA) and 690111 (SecureCloud).

REFERENCES

[1] Cisco Visual Networking Index, “The zettabyte era–trends and analysis,”
Cisco white paper, 2013.

[2] Kaspersky Lab, “Global IT Security Risks Survey 2014 – Distributed
Denial of Service (DDoS) Attacks,” https://goo.gl/dbg3wZ.

[3] Verisign Blog, “Verisign Q1 2016 DDos Trends: Attack Activity Increases
111 Percent Year Over Year,” https://goo.gl/Srm3cW.

[4] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy et al., “Making
Middleboxes Someone Else’s Problem: Network Processing as a Cloud
Service,” in ACM SIGCOMM’12.

[5] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely Outsourcing Middleboxes to the Cloud,” in USENIX NSDI’16.

[6] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor et al., “Enabling
End-Host Network Functions,” in ACM SIGCOMM’15.

[7] W. Zhang, G. Liu, A. Mohammadkhan, J. Hwang et al., “SDNFV:
Flexible and Dynamic Software Defined Control of an Application- and
Flow-Aware Data Plane,” in Middleware’16.

[8] M. Feilner, OpenVPN: Building and integrating virtual private networks.
Packt Publishing Ltd, 2006.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” ACM Transactions on Computer Systems, 2000.

[10] EFF, “We’re Halfway to Encrypting the Entire Web,” https://goo.gl/
VdUj5b, 2017.

[11] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger et al., “The cost
of the S in HTTPS,” in ACM CoNEXT’14.

[12] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing forged
SSL certificates in the wild,” in IEEE S&P 2014.

[13] D. Naylor et al., “Multi-Context TLS (mcTLS): Enabling Secure In-
Network Functionality in TLS,” in ACM SIGCOMM’15.

[14] D. Naylor et al., “And then there were more: Secure communication for
more than two parties,” in CoNEXT’17.

[15] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep
Packet Inspection over Encrypted Traffic,” in ACM SIGCOMM’15.

[16] 1&1 Internet Ltd., “IP Spoofing: Simple manipulation of data packets
by attackers,” https://goo.gl/Dn1CaV, 2017.

[17] D. Kreutz et al., “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, 2015.

[18] B. Han et al., “Network function virtualization: Challenges and opportu-
nities for innovations,” IEEE Communications Magazine, 2015.

[19] J. Soares et al., “Toward a telco cloud environment for service functions,”
IEEE Communications Magazine, 2015.

[20] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon et al., “ETTM: a scalable
fault tolerant network manager,” in USENIX NSDI’11.

[21] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose
Processors.” IACR Cryptology ePrint Archive, 2016.

[22] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for CPU based attestation and sealing,” in HASP’13.

[23] S. Arnautov, B. Trach, F. Gregor, T. Knauth et al., “SCONE: Secure
Linux Containers with Intel SGX,” in USENIX OSDI’16.

[24] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX,” in USENIX ATC’17.

[25] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “PANOPLY: Low-TCB
Linux Applications With SGX Enclaves,” in NDSS’17.

[26] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt et al., “SecureKeeper:
Confidential ZooKeeper using Intel SGX,” in Middleware’16.

[27] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Determin-
istic Side Channels for Untrusted Operating Systems,” in IEEE SP’15.

[28] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “AsyncShock:
Exploiting Synchronisation Bugs in Intel SGX Enclaves,” in ESORICS’16.

[29] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical attack
framework for precise enclave execution control,” 2017.

[30] J. Seo, B. Lee, S. Kim, M.-W. Shih et al., “SGX-Shield: Enabling address
space layout randomization for SGX programs,” in NDSS’17.

[31] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
controlled-channel attacks against enclave programs,” in NDSS’17.

[32] A. Garg and A. N. Reddy, “Mitigation of DoS attacks through QoS
regulation,” Microprocessors and Microsystems, 2004.

[33] H. Nguyen and V. Ganapathy, “EnGarde: Mutually-Trusted Inspection
of SGX Enclaves,” in IEEE ICDCS’17.

[34] M. Green, R. Droms, R. Housley, P. Turner, S. Fenter, “Data Center use
of Static Diffie-Hellman in TLS 1.3,” https://goo.gl/95FaWD.

[35] E. Rescorla, “Update on TLS 1.3 Middlebox Issues,” https://goo.gl/
zCUuRG, 2017.

[36] Intel Corp, “Intel Software Guard Extensions for Linux OS (Intel SGX)
SDK,” https://01.org/intel-software-guard-extensions, 2017.

[37] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran et al., “TaLoS:
Secure and Transparent TLS Termination inside SGX Enclaves,” Imperial
College London, Tech. Rep. 2017/5, Mar. 2017.

[38] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: ExitLess
OS Services for SGX Enclaves,” in EuroSys ’17.

[39] S. Checkoway and H. Shacham, “Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface,” in ASPLOS’13.

[40] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks.” in
USENIX LISA’99.

[41] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, 1975.

[42] W. Sun and R. Ricci, “Fast and flexible: Parallel packet processing with
GPUs and Click,” in ACM/IEEE ANCS’13.

[43] Alexa., http://www.alexa.com/, 2017.
[44] T. Karagiannis et al., “Network Exception Handlers: Host-network

Control in Enterprise Networks,” in ACM SIGCOMM’08.
[45] L. Lamport et al., “Paxos made simple,” ACM Sigact News, 2001.
[46] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs.

BFT replication,” in iNetSec’15.
[47] X. Yuan, X. Wang, J. Lin, and C. Wang, “Privacy-preserving deep packet

inspection in outsourced middleboxes,” in IEEE INFOCOM’16.
[48] H. Duan, X. Yuan, and C. Wang, “LightBox: SGX-assisted Secure

Network Functions at Near-native Speed,” arXiv:1706.06261, 2017.
[49] M. Coughlin, E. Keller, and E. Wustrow, “Trusted Click: Overcoming

Security issues of NFV in the Cloud,” in ACM SDN-NFV Security’17.
[50] D. Kuvaiskii, S. Chakrabarti, and M. Vij, “Snort Intrusion Detection

System with Intel Software Guard Extension,” arXiv:1802.00508, 2018.
[51] B. Trach et al., “ShieldBox: Secure Middleboxes using Shielded

Execution,” in ACM SOSR’18, 2018.
[52] J. Han, S. Kim, J. Ha, and D. Han, “SGX-Box: Enabling Visibility on

Encrypted Traffic using a Secure Middlebox Module,” in ACM APNet’17.

12


