Institut für Mathematische Optimierung TU Braunschweig

SS 2006

Prof. Dr. Sándor Fekete Nils Schweer

Coding Theory / Discrete Mathematics II Assignment 5 (June 1, 2006)

(This assignment is due on June 15, 2006, 1.00 p.m., by dropping it into the wooden box in front of F 310)

Exercise 1 (Product mod f(x)):

Because $f(x) = 1 + x + x^3$ is an irreducible polynomial from $\mathbb{Z}_2[x]$, we know from Theorem 3.7 that $\mathbb{Z}_2(f)$ is a field. $g(x) = 1 + x + x^2$ and $h(x) = 1 + x^2$ are two elements of $\mathbb{Z}_2(f)$. Compute the sum and the product (mod f(x)) of g(x) and h(x).

(2+13 Points)

Exercise 2 (Proof of Theorem 3.7):

Complete the proof of Theorem 3.7 by adding all necessary details.

(20 Points)

Exercise 3 (Irreducible polynomial):

Let $f(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_0$ with $a_i \in \mathbb{Z}$. Let p be a prime number with the following properties: p does not divide a_m , p divides a_{m-1}, \ldots, a_0 and p^2 does not divide a_0 . Show that f is irreducible over \mathbb{Z} .

(Hint: Suppose f is reducible. How are the coefficients a_0, \ldots, a_m determined? Try to find a contradiction to the first property of p.)

(25 Points)