Institut für Mathematische Optimierung TU Braunschweig

SS 2006

Prof. Dr. Sándor Fekete Nils Schweer

Coding Theory / Discrete Mathematics II Assignment 4 (May 18, 2006)

(This assignment is due on May 26, 2006, 1.00 p.m., by dropping it into the wooden box in front of F 310)

Exercise 1 (Ring of polynomials):

Let K be a field and K[x] the ring of polynomials over K.

- a) Let $h \in K[x] \setminus \{0\}$ and $h(\alpha) = 0$ for some $\alpha \in K$. Show that $h = g \cdot (x \alpha)$ for $q \in K[x]$.
- b) Let $f \in K[x] \setminus \{0\}$ with degree 2 or 3. Show that f is irreducible if and only if $f(\alpha) \neq 0$ for every $\alpha \in K$.

(Hint: Use Theorem 3.5 about the division of polynomials to prove part a).) (15+15 Points)

Exercise 2 (Irreducible polynomials):

- a) Determine all irreducible polynomials of degree 2 in $\mathbb{Z}_3[x]$.
- b) Write $x^5 x^4 x^3 + x + 1$ as a product of irreducible polynomials over \mathbb{Z}_3 .
- c) Write $x^4 + 8x^2 + 15$ as a product of irreducible polynomials over \mathbb{R} .

(15+8+7 Points)