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Abstract
We provide a tight result for a fundamental problem arising from packing disks into a circular
container: The critical density of packing disks in a disk is 0.5. This implies that any set of (not
necessarily equal) disks of total area δ ≤ 1/2 can always be packed into a disk of area 1; on the
other hand, for any ε > 0 there are sets of disks of area 1/2 + ε that cannot be packed. The proof
uses a careful manual analysis, complemented by a minor automatic part that is based on interval
arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma
for the analysis of recursive packing algorithms.
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1 Introduction

Deciding whether a set of disks can be packed into a given container is a fundamental
geometric optimization problem that has attracted considerable attention. Disk packing also
has numerous applications in engineering, science, operational research and everyday life,
e.g., for the design of digital modulation schemes [24], packaging cylinders [1, 10], bundling
tubes or cables [29, 27], the cutting industry [28], or the layout of control panels [1], or radio
tower placement [28]. Further applications stem from chemistry [30], foresting [28], and
origami design [16].

Like many other packing problems, disk packing is typically quite difficult; what is more,
the combinatorial hardness is compounded by the geometric complications of dealing with
irrational coordinates that arise when packing circular objects. This is reflected by the
limitations of provably optimal results for the optimal value for the smallest sufficient disk
container (and hence, the densest such disk packing in a disk container), a problem that was
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35:2 Worst-Case Optimal Disks Packing into Disks

Figure 1 (1) An instance of critical density for packing squares into a square. (2) An example
packing produced by Moon and Moser’s shelf-packing. (3) An instance of critical density for packing
disks into a square. (4) An example packing produced by Morr’s Split Packing.

discussed by Kraviz [15] in 1967: Even when the input consists of just 13 unit disks, the
optimal value for the densest disk-in-disk packing was only established in 2003 [9], while the
optimal value for 14 unit disks is still unproven. The enormous challenges of establishing
densest disk packings are also illustrated by a long-standing open conjecture by Erdős and
Oler from 1961 [23] regarding optimal packings of n unit disks into an equilateral triangle,
which has only been proven up to n = 15. For other examples of mathematical work on
densely packing relatively small numbers of identical disks, see [11, 19, 7, 8], and [25, 18, 12]
for related experimental work. Many authors have considered heuristics for circle packing
problems, see [28, 13] for overviews of numerous heuristics and optimization methods. The
best known solutions for packing equal disks into squares, triangles and other shapes are
continuously published on Specht’s website http://packomania.com [26].

For the case of packing not necessarily equal disks into a square container, Demaine,
Fekete, and Lang in 2010 [2] showed that deciding whether a given set of disks can be packed
is NP-hard by using a reduction from 3-Partition. This means that there is (probably) no
deterministic polynomial-time algorithm that can decide whether a given set of disks can be
packed into a given container.

On the other hand, the literature on exact approximation algorithms which actually give
performance guarantees is small. Miyazawa et al. [20] devised asymptotic polynomial-time
approximation schemes for packing disks into the smallest number of unit square bins. More
recently, Hokama, Miyazawa, and Schouery [14] developed a bounded-space competitive
algorithm for the online version of that problem.

The related problem of packing square objects has also been studied for a long time. The
decision problem whether it is possible to pack a given set of squares into the unit square
was shown to be strongly NP-complete by Leung et al. [17], also using a reduction from
3-Partition. Already in 1967, Moon and Moser [21] found a sufficient condition. They
proved that it is possible to pack a set of squares into the unit square in a shelf-like manner
if their combined area, the sum of all squares’ areas, does not exceed 1

2 . At the same time,
1
2 is the largest upper area bound one can hope for, because two squares larger than the
quarter-squares shown in Figure 1 cannot be packed. We call the ratio between the largest
combined object area that can always be packed and the area of the container the problem’s
critical density, or optimal worst-case density.

The equivalent problem of establishing the critical packing density for disks in a square
was posed by Demaine, Fekete, and Lang [2] and resolved by Morr, Fekete and Scheffer [22, 4].
Making use of a recursive procedure for cutting the container into triangular pieces, they
proved that the critical packing density of disks in a square is π

3+2
√

2 ≈ 0.539.

http://packomania.com
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Figure 2 (1) A critical instance that allows a packing density no better than 1
2 . (2) An example

packing produced by our algorithm.

It is quite natural to consider the analogous question of establishing the critical packing
density for disks in a disk. However, the shelf-packing approach of Moon and Moser [21] uses
the fact that rectangular shapes of the packed objects fit well into parallel shelves, which is
not the case for disks; on the other hand, the split packing method of Morr et al. [22, 4] relies
on recursively splitting triangular containers, so it does not work for a circular container that
cannot be partitioned into smaller circular pieces.

Note that the main objective of this line of work is to compute tight worst-case bounds.
For specific instances, a packing may still be possible, even if the density is higher; this also
implies that proofs of infeasibility for specific instances may be trickier. However, the idea of
using the total item volume for computing packing bounds can still be applied. See the work
by Fekete and Schepers [5, 6], which shows how classes of functions called dual-feasible can
be used to compute a modified volume for geometric objects, yielding good lower bounds for
one- or higher-dimensional scenarios.

1.1 Results
We prove that the critical density for packing disks into a disk is 1/2: Any set of not
necessarily equal disks with a combined area of not more than half the area of a circular
container can be packed; this is best possibly, as for any ε > 0 there are instances of total
area 1/2 + ε that cannot be packed. See Fig. 2 for the critical configuration.

Our proofs are constructive, so they can also be used as a constant-factor approximation
algorithm for the smallest-area container of a given shape in which a given set of disks can
be packed. Due to the higher geometric difficulty of fitting together circular objects, the
involved methods are considerably more complex than those for square containers. We make
up for this difficulty by developing more intricate recursive arguments, including appropriate
and powerful tools based on interval arithmetic.

2 Preliminaries

Let r1, . . . , rn be a set of disks in the plane. Two point sets A,B ⊂ R2 overlap if their
interiors have a point in common. A container disk C is a disk that may overlap with disks
from {r1, . . . , rn}. The original container disk O is the unit disk. Due to recursive calls of our
algorithm there may be several container disks that lie nested inside each other. Hence, the
largest container disk will be the unit disk O. For simplification, we simultaneously denote
by ri or C the disk with radius ri or C and its radius. Wl.o.g., we assume r1 ≥ · · · ≥ rn. We

SoCG 2019



35:4 Worst-Case Optimal Disks Packing into Disks

pack the disks r1, . . . , rn by positioning their centers inside a container disk such that ri lies
inside C and two disks from {r1, . . . , rn} do not overlap. Given two sets A ⊆ B ⊆ R2, we say
that A is a sector of B. Furthermore, we denote the volume of a point set A by |A|.

3 A Worst-Case Optimal Algorithm

I Theorem 1. Every set of disks with total area π
2 can be packed into the unit disk O with

radius 1. This induces a worst-case optimal packing density of 1
2 , i.e., a ratio of 1

2 between
the area of the unit disk and the total area to be packed.

The worst case consists of two disks D1, D2 with radius 1
2 , see Fig. 2. The total area of

these two disks is π
4 + π

4 = π
2 , while the smallest disk containing D1, D2 has an area of π.

In the remainder of Section 3, we give a constructive proof for Theorem 1. Before we
proceed to describe our algorithm in Section 3.4, we give some definitions and describe
Boundary Packing and Ring Packing as two subroutines of our algorithm.

3.1 Preliminaries for the Algorithm
We make use of the following definitions, see Fig. 3.

w

R
r

m

1

rout

r
in

Figure 3 A ring R ⊂ O with width w and a disk with its corresponding tangents.

For rout > rin > 0 and a container disk C such that rout ≤ 2rin, we define a ring
R := R[rout, rin] of C as the closure of rout \ rin, see Fig. 3. The boundary of R consists of
two connected components. The inner boundary is the component lying closer to the center
m of rout and the outer boundary is the other component. The inner radius and the outer
radius of R are the radius of the inner boundary and the radius of outer boundary. Each ring
is associated with one of three states {open,closed, full}. Initially, each ring is open.

Let r be a disk inside a container disk C. The two tangents of r are the two rays starting
in the midpoint of C and touching the boundary of r. We say that a disk lies adjacent to
rout when the disk is touching the boundary of rout from the inside of rout.

3.2 Boundary Packing: A Subroutine
Consider a container disk C, a (possibly empty) set S of already packed disks that overlap
with C, and another disk ri to be packed, see Fig. 4. We pack ri into C adjacently to the
boundary of C as follows: Let α be the maximal polar angle realized by a midpoint of a disk
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C
2

C

Figure 4 Boundary Packing places disks into a container disk C adjacent to the boundary of C as
long as the diameter of the disks to be packed is at least as large as a given threshold T or until the
current disk does no longer fit into C. Initially, we have T = 1

4 .

from S. We choose the midpoint of ri realizing the smallest possible polar angle β ≥ α such
that ri touches the outer boundary of C from the interior of C without overlapping another
disk from S, see Fig. 4. If ri cannot be packed into C, we say that ri does not fit into R.

Let 0 < T ≤ 1
4 , called the threshold. Boundary Packing iteratively packs disks in

decreasing order into C until the current disk ri does not fit into C or the radius of ri is
smaller than T .

3.3 Ring Packing: A Subroutine
Consider a ring R := R[routrin] with inner radius rin and outer radius rout, a (possibly empty)
set S of already packed disks that overlap with R, and another disk ri to be packed, see
Fig. 5. We pack ri into R adjacent to the outer (inner) boundary of R as follows: Let α be
the maximal polar angle realized by a midpoint of a disk from S. We choose the midpoint of
ri realizing the smallest possible polar angle β ≥ α such that ri touches the outer (inner)
boundary of R from the interior of R without overlapping another disk from S. If ri cannot
be packed into R, we say that ri does not fit into R (adjacent to the outer (inner) boundary).

Ring Packing iteratively packs disks into R alternating adjacent to the inner and outer
boundary. If the current disk ri does not fit into R Ring Packing stops and we declare R to
be full. If ri−1 and ri could pass each other, i.e., the sum of the diameters of ri−1 and ri
are smaller than the width of R, Ring Packing stops and we declare R to be closed.

Figure 5 Ring Packing packs disks into a ring R[rout, rin], alternating adjacent to the outer and
to the inner boundary of R.

SoCG 2019
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3.4 Description of the Algorithm

C

r1

r2

(b)(a)

r3 r4

md

r

T ← r−d
4

C

Figure 6 (a): If r1, r2 ≥ 0495C, Boundary Packing packs r1, r2 into C. We update the current
container disk C as the largest disk that fits into C and recurse on C with r3, . . . , rn. (b): Determining
the threshold T for disks packed by Boundary Packing.

Our algorithm creates rings. A ring only exists after it is created. We stop packing at
any point in time when all disks are packed. Furthermore, we store the current threshold T
for Boundary Packing and the smallest inner radius rmin of a ring created during the entire
run of our algorithm. Initially, we set T ← 1

4 , rmin ← 1. Our algorithm works in five phases:
Phase 1 – Recursion: If r1, r2 ≥ 0.495C, apply Boundary Packing to r1, r2, update C
as the largest disk that fits into C and T as the radius of C, and recurse on C, see Fig. 6.
Phase 2 – Boundary Packing: Let r be the radius of C. If the midpoint m of C lies
inside a packed disk ri, let d be the minimal distance of m to the boundary of ri, see
Fig. 6(b). Otherwise, we set d = 0.
We apply Boundary Packing to the container disk C with the threshold T ← r−d

4 .
Phase 3 – Ring Packing: We apply Ring Packing to the ring R := R[rout, rin]
determined as follows: Let ri be the largest disk not yet packed. If there is no open ring
inside C, we create a new open ring R[rout, rin]← R[rmin, rmin− 2ri]. Else, let R[rout, rin]
be the open ring with the largest inner radius rin.
Phase 4 – Managing Rings: Let R[rout, rin] be the ring filled in Phase 3. We declare
R[rout, rin] to be closed and proceed as follows: Let ri be the largest disk not yet packed.
If ri and ri+1 can pass one another inside R[rout, rin], i.e., if 2ri + 2ri+1 ≤ rout − rin, we
create two new open rings R[rout, rout − 2ri] and R[rout − 2ri, rin].
Phase 5 – Continue: If there is an open ring, we go to Phase 3. Otherwise, we set C as
the largest disk not covered by created rings, set T as the radius of C, and go to Phase 2.

4 Analysis of the Algorithm

4.1 Analysis of Phase 1 - The Recursion
If r2 ≥ 0.495, Lemma 2 allows us to recurse on C as required by Phase 1.

I Lemma 2. If r1, r2 ≥ 0.495C, the volume of the largest container disk that fits into C after
packing r1, r2 is at least twice the total volume of r3, . . . , rn, see Fig. 7.

Proof. W.l.o.g., assume that the original container disk is the unit disk. Lemma 3 implies
r1 +r2 ≤ 1, which means r1, r2 ≤ 0.505, because r2 ≥ 0.495. Furthermore, r1 +r2 ≤ 1 implies
that we can move (w.l.o.g.) r1, r2 into two disks D1, D2 with radius 0.505, touching the
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r2 r1

C

C

Figure 7 If r2 ≥ 0.495, we can pack r1, r2 into container disks D1, D2 and recurse on a third disk
c whose area is twice the total area of the remaining disks.

boundary of C and with their midpoints m1,m2 on the horizontal diameter of C, see Fig. 7.
This decreases the volume of the largest disk that still fits into C. Consider the disk C := 1

5
lying adjacent to C and with its midpoint m on the vertical diameter `1 of C. Pythagoras’
Theorem implies that |m1m| =

√
(1− 0.505)2 +

(
1− 1

5
)2 ≈ 0.94075 > 0.505 + 1

5 . Finally, we
observe that the area of C is π

25 = 0.4π > 0.0199 = 2
(
π
2 − 2 · π0.4952). This means that the

area of C is twice the total area of the remaining disks r3, r4, r5, . . ., concluding the proof. J

A technical key ingredient in the proof of Lemma 2 is the following lemma:

I Lemma 3. The area of two disks r1, r2 is at least π
2 (r1 + r2)2.

Proof. The first derivative of the function mapping a radius onto the area of the corresponding
disk is the periphery of the corresponding circle. As r1 ≥ r2, decreasing r1 and increasing
r2 by the same value δ reduces the total area of r1, r2, while the value r1 + r2 stays the
same. Hence, we assume w.l.o.g. that r1 = r2. This implies that the total area of r1, r2 is
2πr2

1 = π
2 (r1 + r2)2, concluding the proof. J

This allows us to assume r2 < 0.495C during the following analysis.

4.2 Outline of the Remaining Analysis
Once our algorithm stops making recursive calls, i.e., stops applying Phase 1, Phase 1 is
never applied again. W.l.o.g., let r1, . . . , rn be the remaining disks and O the container disk
after the final recursion call.

The main idea of the remaining analysis is the following: We cover the original container
disk O by a set of sectors that are subsets of O. Let ri be a disk packed by Boundary Packing
into the current container disk C. We define the cone induced by ri as the area of C between
the two tangents of ri. We say that C is the radius of the cone. textA sector is a subset of O.

Each disk pays portions, called atomic potentials, of its volume to different sectors of O.
The total atomic potential paid by a disk r will be at most the volume of the disk r. Let
A1, . . . , Ak be the total atomic potentials paid to the sectors S1, . . . , Sk ⊂ O. The potential
of a sector S ⊆ O is the sum of the proportionate atomic potentials from S1, . . . , Sk, i.e., the
sum of all |Si∩S|

|Si| Ai for i = 1, . . . , k. The (virtual packing) density ρ(S) of the sector S is
defined as the ratio between the potential of S and the volume of S. If a sector achieves a
density of 1

2 , we say that the sector is saturated, otherwise its unsaturated.

SoCG 2019



35:8 Worst-Case Optimal Disks Packing into Disks

Figure 8 Different sequences of rings packed by different applications of Ring Packing. The
minimal rings into which the orange and red disks are packed are full. The minimal ring into
which the turquoise disks are packed is open. The uncolored, crossed-out circles illustrate that the
corresponding disk did not fit into the current ring, causing it to be declared full.

Our approach for proving Theorem 1 is by induction over n. In particular, we assume
that O \ C is saturated; we show that each disk ri can be packed by our algorithm, as long as
C is unsaturated implying that each set of disks with total volume of at most |O|2 is packed.
We assume for the remainder of the paper that C is the unit disk, i.e., C = 1.

We consider the configuration achieved after termination.
If there is a ring that is neither full nor closed, all disks are packed.
Thus, we assume that all rings computed by our algorithm are full or closed. In order to

avoid that Boundary Packing stops due to a disk r not fitting, we consider the gap that is left
by Boundary Packing, see Fig. 9. This gap achieves its maximum for r = 1

4 . We guarantee
that C has a density of

ρ := 180◦

360◦ − 2 arcsin
(

1/4
3/4

) < 0.56065.

4.3 Analysis of Boundary Packing
The following lemma is the key ingredient for the analysis of Boundary Packing.

I Lemma 4. Let r ∈ [0.2019, 1
2 ] be a disk lying adjacent to C. The cone C induced by r has

a density better than ρ if r ∈ [ 1
4 , 0.495] and at least 1

2 if r ∈ [0.2019, 1
2 ], see Fig. 10.

density ≥ ρ density ≥ 0.5

⇒

1
1
2 1

4

C

Figure 9 Ensuring a density of at least 0.5 for a ring R needs a density of 0.5606 for R \ C.
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r

Figure 10 A disk r ∈ [ 1
4 , 0.495] lying adjacent to C induces a cone with density of at least 0.56127

if r ∈ [ 1
4 , 0.495] and of least 1

2 if r ∈ [ 1
4 ,

1
2 ].

Proof. Let f(r) := πr2

arcsin( r
1−r ) for 1

4 ≤ r ≤
1
2 . Thus we have

f ′(r) = 2πr
arcsin

(
r

1−r

) − πr2
(

1
1−r + r

(1−r)2

)
arcsin

(
r

1−r

)2√
1− r2

(1−r)2

.

Solving f ′(r) = 0 yields r ≈ 0.39464. Furthermore, we have f( 1
4 ) ≈ 0.57776, f(0.39464) =

0.68902, f( 1
2 ) = 0.5, and f(0.495) ≈ 0.56127. Thus, f restricted to [ 1

4 , 0.495] achieves at
0.495 its global minimum 0.56127. A similar approach implies that f restricted to [0.2019, 1

2 ]
attains its global minimum 1

2 at 1
2 . J

The following lemma proves that all disks ri ≥ C4 that are in line to be packed into a
container disk C can indeed be packed into C.

I Lemma 5. All disks ri ≥ 1
4 that are in line to be packed into C by Boundary Packing do

fit into C.

Proof. Assume that there is a largest disk rk ≥ 1
4 not packed adjacent to C. Each disk ri

from r1, . . . , rk−1 pays its entire volume to the cone induced by ri. Lemma 4 implies that
each cone is saturated. As rk does not fit between r1, rk−1 and is adjacent to C, Lemma 4
implies that the area of C that is not covered by a cone induced by r1, . . . , rk−1 has a volume
smaller than twice the volume of rk. This implies that the total volume of r1, . . . , rk is larger
than half of the volume of C. This implies that the total input volume of r1, . . . , rn is larger
than twice the volume of the container. This is a contradiction, concluding the proof. J

I Corollary 6. If rn ≥ 1
4 , our algorithm packs all input disks.

Thus, we assume w.l.o.g. rn < 1
4 , implying that our algorithm creates rings.

4.4 Analysis of Ring Packing
For the following definition, see Fig. 11 (Middle).

I Definition 7. A zipper Z is a (maximal) sequence 〈rk, . . . , r`〉 of disks that are packed
into a ring R during an application of Ring Packing. The length of Z is defined as k− `+ 1.

SoCG 2019



35:10 Worst-Case Optimal Disks Packing into Disks

Consider a zipper 〈rk, . . . , r`〉 packed into a ring R. For a simplified presentation, we
assume in Section 4.4 that the lower tangent of rk realizes a polar angle of zero, see Fig. 11.

We refine the potential assignments of zippers as follows. Let Z = 〈rk, . . . , r`〉 be an
arbitrary zipper and R the ring into which Z is packed. In order to subdivide R into sectors
corresponding to specific parts of the zipper, we consider for each disk ri the center ray,
which is the ray starting from m and passing the midpoint of ri. Let t1, t2 be two rays
starting in m. We say that t1 lies above t2 when the polar angle realized by t1 is at least
as large as the polar angle realized by t2. t1 is the minimum (maximum) of t1, t2 if t1 does
not lie above (below) t2. Furthermore, the upper tangent (lower tangent) of a disk ri is the
maximal (minimal) tangent of ri.

Figure 11 A maximal sequence of disks that are packed into a ring during an application of
Boundary Packing. The corresponding sectors are illustrated in light gray. Left: A zipper of size
one and the corresponding sector. Middle: A zipper of size 14, the resulting directed adjacency
graph (black/red), and the path (red) leading from the largest disk to the smallest disk. The first
seven edges of P are diagonal and the remaining edges of P are vertical. Right: The zipper and
the sector disassembled into smaller sectors corresponding to the edges of the red path.

If the zipper Z consists of one disk rk, the sector S of Z is that part of R between the
two tangents to rk and rk pays its entire volume to S.

I Lemma 8. The density of the sector S of a zipper of length one is at least 0.77036.

Proof. As the zipper consists of only one disk rk, rk touches both the inner and the outer
boundary of R. Hence, the density of S is not increased by assuming that the inner radius of
R is equal to the diameter of rk. Hence, the density of S is at least π

12 arcsin(1/3) ≈ 0.77036. J

Assume the zipper 〈rk, . . . , r`〉 consists of at least two disks. We define the adjacency
graph G = ({rk, . . . , r`}, E) as a directed graph as follows: There is an edge (rj , ri) if (1)
ri ≤ rj and (2) ri, rj are touching each other, see Fig. 11 (Right). As Ring Packing packs
each disk ri with midpoint mi such that mi realizes the smallest possible polar angle, there is
a path ek, . . . , e`−1 =: P connecting rk to r` in the adjacency graph G, see Fig. 11 (Middle).
ek is the start edge of P and e`−1 is the end edge of P . The remaining edges of P that
are neither the start nor the end edge of G, are middle edges of P . Furthermore, an edge
(rj , rm) = ei ∈ P is diagonal if rj , rm are touching different boundary components of R.
Otherwise, we call ei vertical.

Depending on whether ei is a start, middle, or an end edge and on whether ei is diagonal
or vertical, we classify the edges of the path P by eight different types T1-T8. For each type
we individually define the sector Ai belonging to an edge (rj , rm) = ei ∈ P and the potential
assigned to Ai, called the potential of ei. Let tlower be the minimum of the lower tangents of
rj , rm and tupper the maximum of the upper tangents of rj , rm, see Fig. 12 (a). Furthermore,
let t1, t2 be the center rays of rj , rm, such that t1 does not lie above t2.
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For the case that ei = (rj , rm) is a vertical edge, we consider additionally the disk rp that
is packed into R after rj and before rm, see Fig. 12 (f). Let t3 be the maximum of t2 and
the upper tangent of rp, see Fig. 12.

tupper

tlower

t1

t2

tupper

tlower

t1

t2
t3

(a) (b) (c) (d)

(f) (g) (h) (i) (j)

rj

R

R

rm

rj

rm

rp

diagonal
start edge

diagonal diagonal
middle edge end edge

vertical vertical vertical vertical
start edge middle edge end edge start and end

edge

Rm

Rm

T1: T2: T3:

T5: T6: T7: T8:

(e)

diagonal
start and end
edge

T4:

Figure 12 The eight possible configurations of an edge ei (red) of P , the corresponding sectors
(light gray), and the potentials (dark gray) payed by the involved disks to the sector.

T1 The sector of ei: If ei = (rj , rm) is a diagonal start edge (as shown in Fig. 12(b)), the
sector of ei is that part of R that lies between tlower and t2.
The potential of ei: rj pays its entire volume and rm the half of its volume to the
sector of ei.

T2 The sector of ei: If ei = (rj , rm) is a diagonal middle edge, (as shown in Fig. 12(c)),
the sector of ei is that part of R that lies between t1 and t2.
The potential of ei: rj and rm pay the half of its volume to the sector of ei.

T3 The sector of ei: If ei = (rj , rm) is a diagonal end edge, (as shown in Fig. 12(d)), the
sector of ei consists of two parts: (1) The first is the part of R that lies between the
upper tangent and the center ray of rj . (2) Let Rm be the smallest ring enclosing rm.
The second part of the sector is that part of Rm that lies between the upper tangent of
rm and the minimum of t1 and the lower tangent of rm.
The potential of ei: rj pays the half of its volume and rm its entire volume to the
sector of ei.

T4 The sector of ei: If ei = (rj , rm) is a diagonal start and end edge, (as shown in
Fig. 12(e)), the sector of ei is the union of two sectors: (1) The first is the part of R that
lies between the lower and the upper tangent of rj . (2) The second is that part of Rm
that lies between the lower and the upper tangent of rm.
The potential of ei: rj , rm pay their entire volume to the sector of ei.

T5 The sector of ei: If ei = (rj , rm) is a vertical start edge, (as shown in Fig. 12(g)), the
sector of ei is that part of R that lies between the minimum of the lower tangents of
rj , rp and the center ray of rm.
The potential of ei: rj , rp pay their entire volume and rm the half of its volume to the
sector of ei.
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T6 The sector of ei: If ei = (rj , rm) is a vertical middle edge, (as shown in Fig. 12(h)),
the sector of ei is that part of R that lies between the center rays of rj , rm.
The potential of ei: rp pays its entire volume and rj , rm pay half of their respective
volume to the sector of ei.

T7 The sector of ei: If ei = (rj , rm) is a vertical end edge, (as shown in Fig. 12(i)), the
sector of ei consists of two parts: (1) The first is that part of R that lies between the
center ray of rj and the upper tangent of rp. (2) Let Rm be the smallest ring enclosing
rm. The second part of the sector is the part of Rm that lies between the center ray of rj
and the upper tangent of rm.
The potential of ei: rj pays the half of its volume and rp, rm their entire volumes to
the sector of ei.

T8 The sector of ei: If ei = (rj , rm) is a vertical start and end edge, (as shown in
Fig. 12(j)), the sector of ei is consists of two parts: (1) The first is that part of R that
lies between the minimum of the lower tangents of rj , rp and the maximum of the upper
tangents rj , rp. (2) Let Rm be the smallest ring enclosing rm. The second part of the
sector is that part of Rm that lies between the lower and the upper tangent of rm.
The potential of ei: rj , rp, rm pay their entire volume to the sector of ei.

For simplicity, we also call the density of the sector of an edge ei ∈ P the density of ei.
The sector of a zipper is the union of the sectors of the edges of P .

I Lemma 9. Let Z = 〈rk, . . . , r`〉 be a zipper of length at least two and P a path in the
adjacency graph of Z connecting rk with r`. Each edge ei ∈ P has a density of at least ρ.

The proof of Lemma 9 is the only computer-assisted proof. All remaining proofs are
analytic. Due to space constraints, the proof of Lemma 9 is given in the full version of the
paper [3]. Combining Lemmas 8 and 9 yields the following.

I Corollary 10. Sectors of zippers have a density of at least ρ.

Ring Packing stops when the sum of the diameters of the current disk ri and the disk
packed last ri−1 is smaller than the width w of the current ring, i.e., if 2ri−1 + 2ri < w. If
2ri−1 + 2ri < w, Phase 5 partitions the current ring into two new open rings with widths
2ri, w− 2ri. Hence, the sectors of zippers packed by Ring Packing become firmly interlocked
without leaving any gaps between two zippers, see Fig. 13. The only sectors that we need to

Figure 13 The sectors of rings packed by Ring Packing become firmly interlocked without leaving
any gaps between two sectors. The minimal rings into which the orange and the red zippers are
packed are full. The minimal ring into which the turquoise zipper is packed is open.

care about are the gaps that are left by Ring Packing due to the second break condition, i.e.,
the current disk does not fit into the current ring, see the black sectors in Fig. 13.
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r`
r`−1

R rf

A unit sector of R

The lid h of R

The gap of Ru

rf

R

r`

r`−1

rf

Figure 14 The lid, the gap (shaded white-gray), and a unit sector of a ring R.

I Corollary 11. Let R be a minimal ring and G its gap. R \G has a density of at least ρ.

In order to analyze the gaps left by Ring Packing, we first need to observe for which rings
we need to consider gaps. In particular, we have two break conditions for Ring Packing:

(1) The current disk ri does not fit into the current ring R, causing us to close the ring
and disregard it for the remainder of the algorithm?

(2) The current and the last disk ri−1 packed into R can pass one another, resulting in R
to be partitioned into several rings with smaller widths. Thus, we obtain that two computed
rings R1, R2 either do not overlap or R1 lies inside R2.

I Definition 12. Consider the set of all rings R1, . . . , Rk computed by our algorithm. A ring
Ri is maximal if there is no ring Rj with Ri ⊂ Rj. A ring Ri is minimal if there is no ring
Rj with Ri ⊃ Rj.

By construction of the algorithm, each ring is partitioned into minimal rings. Thus, we
define gaps only for minimal rings, see Figure 14 and Definition 13.

I Definition 13. Let Z = 〈. . . , r`−1, r`〉 be a zipper of length at least 2 inserted into a
minimal ring R. The lid h of R is the ray above the upper tangent u of r` such that h realizes
a maximal polar angle while h∩R does not intersect an already packed disk rf with f ≤ `− 1,
see Fig. 14. The gap of R is the part of R between the upper tangent u of r`−1 and the lid of
R which is not covered by sectors of Z, see the white-gray striped sectors in Fig. 14.

A unit sector of R is a sector of R that lies between the two tangents of a disk touching
the inner and the outer boundary of R, see Fig. 14. The unit volume UR of R is the volume
of a unit sector of R.

The lid of a gap lies either inside a cone induced by a disk packed by Boundary Packing,
see Fig. 14 (Left), or inside the sector of a zipper packed by Ring Packing, see Fig. 14 (Right).
This leads to the following observation: Each minimal ring R is covered by the union of
cones induced by disks packed by Boundary Packing into R, sectors of zippers packed by
Ring Packing into R, and the gap of R.

Next, we upper bound the volume of the gap of minimal rings.

I Lemma 14. The gap of a minimal ring R has a volume of at most 1.07024UR.
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R1

r`

(a): A1 (b): A2

w.l.o.g. w.l.o.g.

(c): A3

A

λ

D

(d): A4 (e)

µ

w.l.o.g.

B

Figure 15 Simplifying assumptions that do not increase the density.

Proof. As we want to upper bound the volume of the gap w.r.t. the unit volume UR of R,
w.l.o.g. we make the following assumptions (A1)-(A4), see Fig. 15:

(A1) The largest disk λ inside R touching h from below, the upper tangent of r` from
above, and the inner boundary of R, such that λ does not overlap with any other disks
from below, has the same radius as r`, see Fig. 15(a).
(A2) The last disk r` packed into R touches the inner boundary of R, see Fig. 15(b).
(A3) The empty pocket A left by the sector of the end edge of the zipper inside R is
bounded from below by the lower tangent of r` but not by the upper tangent of r`−1, see
Fig. 15(c).
(A4) rout = 1, rin = 1

2 , see Fig. 15(d).

Let B be the sector of R that lies between the two tangents of λ, see Fig. 15(d). We
upper bound the volume of the gap of R as |A|+ |B| ≤ 1.07024UR, as follows.

Let µ ⊂ R be the disk touching the inner and the outer boundary of R1 and the upper
tangent of r` from above, see Fig. 15(e). Furthermore, let D be the part of the cone induced
by µ which lies inside R and between the upper and lower tangent of µ, see Fig. 15(e).

In the following, we show that |A| − |D| ≤ 0.07024UR.

|A| − |D| ≤
2 arcsin
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2 +λ

)
2π π

(
1−

(
1
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)2
)
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( 1
3
)
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1
2 +λ

)
2π π
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3
4

)
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The first derivative of VAD is

d VAD λ

d λ
=

(
1

1
2 +λ −

λ

( 1
2 +λ)2

)(
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4 −

(
2λ+ 1

2
)2)

√
1− λ2

( 1
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(
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1
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)(
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2

)
.

Solving d VAD λ
d λ = 0 yields λ ≈ 0.196638. Finally, we observe that VAD

( 1
8
)
≈ −0.01576,

VAD (0.196638) ≈ 0.01756, VAD
( 1

4
)

= 0. This implies that |A|− |D| ≤ 0.01756 ≤ 0.07024UR,
because UR ≥ 1

4 . J
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4.5 Analysis of the Algorithm for the Case r1 ≤ 0.495
We show that each computed minimal ring is saturated, see Corollary 17. Let R1, . . . , Rh ⊆ C
be the created minimal rings ordered decreasingly w.r.t. their outer radii. The inner boundary
of Ri is the outer boundary of Ri+1 for i = 1, . . . , h− 1.

We show by induction over h that R := R[rout, rin] := Rh is saturated. Thus, we assume
that R1, . . . , Rh−1 are saturated, implying that C \ rout is saturated, where rout is the outer
radius of Rh.

For the remainder of Section 4.5, each disk ri packed by Boundary Packing pays its entire
volume to the cone induced by ri.

I Lemma 15. Assume rn < 1
4 . There is at least one disk rk packed into R and touching

both the inner and the outer boundary of R.

Proof. Assume that our algorithm did not pack a disk with radius smaller than 1
4 adjacent

to C. Let rk be the largest disk not packed adjacent to C into R.
By Lemma 5, we obtain that rk is smaller than 1

4 . This implies that the volume of
the sector that is not covered by the cones induced by r1, . . . , rk−1 is upper bounded by
arcsin

( 1
3
)
, see Fig. 16.

⇒

1 1
2

1
4

density ≥ ρ density ≥ 0.5

Figure 16 Ensuring density of at least ρ for all cones induced by disks packed by Boundary
Packing implies a density of at least 0.5 for the entire container disk.

Each disk ri from r1, . . . , rk−1 pays its entire volume to the cone induced by ri. Lemma 4
implies that each cone has a density of at least ρ, because r1, . . . , rn ≤ 0.495. This implies
that the total volume of r1, . . . , rk−1 is at least π ·ρ · 2π−2 arcsin(1/3)

2π = ρ(π−arcsin (1/3)) > π
2

contradicting the assumption that the total input volume is no larger than π
2 . J

I Lemma 16. Rh is saturated.

Proof. Let S1 be the sector of Rh that is covered by cones induced by disks packed by
Boundary Packing or by sectors of zippers packed by Ring Packing. Lemma 15 implies that
there is a disk rk packed into Rh such that rk touches the inner and the outer boundary of
Rh. Let S2 be the sector of Rh between the lower and the upper tangent of rk.

We move potentials δ1, δ2 from S1, S2 to a potential variable ∆ and guarantee that ∆ is
at least 1

2 times the volume of the gap G of Rh. Finally, we move ∆ to G, implying that G
is saturated, which in turn implies that Rh is saturated.

Lemma 8 implies that the density of S2 is at least 0.77036. We move a potential
δ2 := (0.77036− ρ) |S1| > 0.20971URh

from S2 to ∆, implying that S2 has still a density of ρ.
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Combining Lemma 4 and Corollary 10 yields that S1 has a density of at least ρ. Lemma 14
implies that the volume of the gap of Rh is at most 1.07024UR. The volume of Rh is at least

2π
2 arcsin( 1

3 )URh
> 9.24441URh

. Thus, the volume of S1 is at least (9.24441− 1.07024)URh
=

8.17417URh
. Hence, we move a potential δ1 :=

(
ρ− 1

2
)

8.17417URh
> 0.49576URh

to ∆.
We have ∆ = δ1 + δ2 > 0.49576 + 0.20971 = 0.70547, which is large enough to saturate a

sector of volume V∆ = 2 · 0.70547 = 1.41094URh
. As |G| ≤ 1.07024, moving ∆ to G yields

that G is saturated, which implies that Rh is saturated. This concludes the proof. J

I Corollary 17. Each minimal ring is saturated.

As each ring can be partitioned into minimal rings, we obtain the following.

I Corollary 18. All rings are saturated.

Combining Lemma 5 and Corollary 18 yields that all disks are packed.

I Lemma 19. Our algorithm packs all input disks.

Proof. By induction assumption we know that O \ C is saturated and Corollary 18 implies
that all rings inside C are also saturated.

Let C be the disk left after removing all rings from C, implying that C is empty. Lemma 5
implies that a final iteration of Boundary Packing to C yields that all remaining disks are
packed into C. This concludes the proof. J

4.6 Analysis of the Algorithm for the Case 0.495 ≤ r1

We prove that all disks are packed if 0.495 ≤ r1 by distinguishing whether 0.495 ≤ r1 ≤ 1
2 or

1
2 < r1. If 0.495 ≤ r1 ≤ 1

2 , we apply a similar approach as used for the case r1 ≤ 0.495. The
additional difficulty for the case of 0.495 ≤ r1 ≤ 1

2 is that the cone induced by r1 may have a
density of 1

2 . Thus, we have to generate some extra potential from the remaining sectors in
order to ensure that the gaps of the rings are saturated, see [3] for details.

I Lemma 20. If 0.495 ≤ r1 ≤ 1
2 , our algorithm packs all disks into the container disk.

If 1
2 < r1, we need to refine our analysis because the midpoint of the container disk C

lies inside r1. In particular, we consider a half disk H lying inside C such that H and r1
are touching each other. The volume of H is at least twice the volume of the remaining
disks to be packed, see Figure 17. Finally, applying a similar approach as used in the case of
0.495 ≤ r1 ≤ 1

2 to H yields that all disks are packed, see [3] for details.

I Lemma 21. If 1
2 < r1, our algorithm packs all disks into the original container disk.

Lemma 21 concludes the proof of Theorem 1.

5 Hardness

It is straightforward to see that the hardness proof for packing disks into a square can be
adapted to packing disks into a disk, as follows.

I Theorem 22. It is NP-hard to decide whether a given set of disks fits into a circular
container.
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∑n
i=2 |ri| r1

D
H

Figure 17 The total volume of the remaining disks to be packed is smaller than the volume of
the white disk D. As |H| = 2|D|, it suffices to guarantee that H is saturated.

The proof is completely analogous to the one by Demaine, Fekete, and Lang in 2010 [2],
who used a reduction from 3-Partition. Their proof constructs a disk instance which
first forces some symmetrical free “pockets” in the resulting disk packing. The instance’s
remaining disks can then be packed into these pockets if and only if the related 3-Partition
instance has a solution. Similar to their construction, we construct a symmetric triangular
pocket by using a set of three identical disks of radius

√
3

2+
√

3 that can only be packed into
a unit disk by touching each other. Analogous to [2], this is further subdivided into a
sufficiently large set of identical pockets. The remaining disks encode a 3-Partition instance
that can be solved if and only if the disks can be partitioned into triples of disks that fit into
these pockets.

c

pi1 pi2

pi3

Ci1
Ci2

Ci3

Figure 18 Elements of the hardness proof: (1) A symmetric triangular pocket from [2], allowing
three disks with centers pi1 , pi2 , pi3 to be packed if and only if the sum of the three corresponding
numbers from the 3-Partition instance is small enough. (2) Creating a symmetric triangular pocket
in the center by packing three disks of radius

√
3

2+
√

3 and the adapted argument from [2] for creating
a sufficiently large set of symmetric triangular pockets.

6 Conclusions

We have established the critical density for packing disks into a disk, based on a number
of advanced techniques that are more involved than the ones used for packing squares or
disks into a square. Numerous questions remain, in particular the critical density for packing
disks of bounded size into a disk or the critical density of packing squares into a disk. These
remain for future work; we are optimistic that some of our techniques will be useful.
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