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Abstract. Given a polygon and a visibility range, the Myopic Watch-
man Problem with Discrete Vision (MWPDV) asks for a closed path P
and a set of scan points S, such that (i) every point of the polygon is
within visibility range of a scan point; and (ii) path length plus weighted
sum of scan number along the tour is minimized. Alternatively, the bi-
criteria problem (ii’) aims at minimizing both scan number and tour
length. We consider both lawn mowing (in which tour and scan points
may leave P ) and milling (in which tour, scan points and visibility must
stay within P ) variants for the MWPDV; even for simple special cases,
these problems are NP-hard.

We sketch a 2.5-approximation for rectilinear MWPDV milling in grid
polygons with unit scan range; this holds for the bicriteria version, thus
for any linear combination of travel cost and scan cost. For grid polygons
and circular unit scan range, we describe a bicriteria 4-approximation.
These results serve as stepping stones for the general case of circular scans
with scan radius r and arbitrary polygons of feature size a, for which
we extend the underlying ideas to a π( r

a
+ r+1

2
) bicriteria approximation

algorithm. Finally, we describe approximation schemes for MWPDV lawn
mowing and milling of grid polygons, for fixed ratio between scan cost
and travel cost.

1 Introduction

Covering a given polygonal region by a small set of disks or squares is a problem
with many applications. Another classical problem is finding a short tour that
visits a number of objects. Both of these aspects have been studied separately,
with generalizations motivated by natural constraints.

In this paper, we study the combination of these problems, originally moti-
vated by challenges from robotics, where accurate scanning requires a certain
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(a)

(b) (c)

Fig. 1. (a) An MWPDV solution with a minimum number of scans; (b) an MWPDV
solution with a minimum tour length. (c) A minimum guard cover may involve scan
points that are not from an obvious set of candidate points.

amount of time for each scan; obviously, this is also the case for other surveil-
lance tasks that combine changes of venue with stationary scanning. The crucial
constraints are (a) a limited visibility range, and (b) the requirement to stop
when scanning the environment, i.e., with vision only at discrete points. These
constraints give rise to the Myopic Watchman Problem with Discrete Vision
(MWPDV), the subject of this paper.

For a scan range that is not much bigger than the feature size of the poly-
gon, the MWPDV combines two geometric problems that allow approximation
schemes (minimum cover and TSP). This makes it tempting to assume that
combining two approximation schemes will yield a polynomial-time approxima-
tion scheme (PTAS), e.g., by using a PTAS for minimum cover (Hochbaum and
Maass [11]), then a PTAS for computing a tour on this solution. As can be seen
from Figure 1 (a) and (b), this is not the case; moreover, an optimal solution
depends on the relative weights of tour length and scan cost. This turns the task
into a bicriteria problem; the example shows that there is no simultaneous PTAS
for both aspects. As we will see in Sections 3 and 4, a different approach allows
a simultaneous constant-factor approximation for both scan number and tour
length, and thus of the combined cost. We show in Section 7, a more involved
integrated guillotine approach allows a PTAS for combined cost in the case of a
fixed ratio between scan cost and travel cost.

A different kind of difficulty is highlighted in Figure 1 (c): For a visibility
range r that is large compared to the feature size a, it may be quite hard to
determine a guard cover of small size. In fact, there is no known constant-factor
approximation for minimum guard cover in general polygons; currently, the best
result is an O(log OPT )-approximation by Efrat and Har-Peled [7]. In addition,
the optimal solution may change significantly with the relative weights between
tour length: If tour length dominates the number of scans, an optimal tour can
be forced to follow the row of niches on the right. We will show in Section 6 how
to obtain a constant-factor approximation for bounded value r

a .

Related Work. Closely related to practical problems of searching with an au-
tonomous robot is the classical theoretical problem of finding a shortest watch-
man tour; e.g., see [4,5]. Planning an optimal set of scan points (with unlimited
visibility) is the art gallery problem [14]. Finally, visiting all grid points of a given
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set is a special case of the classical Traveling Salesman Problem (TSP); see [12].
Two generalizations of the TSP are the so-called lawn mowing and milling prob-
lems: Given a cutter of a certain shape, e.g., an axis-aligned square, the milling
problem asks for a shortest tour along which the (center of the) cutter moves,
such that the entire region is covered and the cutter stays inside the region at all
times. Clearly, this takes care of the constraint of limited visibility, but it fails
to account for discrete visibility. At this point, the best known approximation
method for milling is a 2.5-approximation [2]. Related results for the TSP with
neighborhoods (TSPN) include [6,13]; further variations arise from considering
online scenarios, either with limited vision [3] or with discrete vision [10,8], but
not both. Finally, [1] consider covering a set of points by a number of scans, and
touring all scan points, with the objective function being a linear combination
of scan cost and travel cost; however, the set to be scanned is discrete, and scan
cost is a function of the scan radius, which may be small or large.

For an online watchman problem with unrestricted but discrete vision, Fekete
and Schmidt [10] present a comprehensive study of the milling problem, including
a strategy with constant competitive ratio for polygons of bounded feature size
and with the assumption that each edge of the polygon is fully visibly from
some scan point. For limited visibility range, Wagner et al. [15] discuss an online
strategy that chooses an arbitrarily uncovered point on the boundary of the
visibility circle and backtracks if no such point exists. For the cost they only
consider the length of the path used between the scan points, scanning causes
no cost. Then, they can give an upper bound on the cost as a ratio of total area
to cover and squared radius.

Our Results. On the positive side, we give a 2.5-approximation for the case
of grid polygons and a rectangular range of unit-range visibility, generalizing
the 2.5-approximation by Arkin, Fekete, and Mitchell [2] for continuous milling.
The underlying ideas form the basis for more general results: For circular scans
of radius r = 1 and grid polygons we give a 4-approximation. Moreover, for
circular scans of radius r and arbitrary polygons of feature size a, we extend the
underlying ideas to a π( r

a + r+1
2 )-approximation algorithm. All these results also

hold for the bicriteria versions, for which both scan cost and travel cost have
to approximated simultaneously. Finally, we present a PTAS for MWPDV lawn
mowing, and sketch a PTAS for MWPDV milling, both for the case of fixed ratio
between scan cost and travel cost.

2 Notation and Preliminaries

We are given a polygon P . In general, P may be a polygon with holes; in Sections
3, 4 and 5, P is an axis-parallel polygon with integer coordinates.

Our robot, R, has discrete vision, i.e., it can perceive its environment when
it stops at a point and performs a scan, which takes c time units. From a scan
point p, only a ball of radius r is visible to R, either in L∞- or L2-metric. A set
S of scan points covers the polygon P , if and only if for each point q ∈ P there
exists a scan point p ∈ S such that q sees p (i.e., qp ⊂ P ) and |qp| ≤ r.
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We then define the Myopic Watchman Problem with Discrete Vision (MW-
PDV) as follows: Our goal is to find a tour T and a set of scan points S(T ) that
covers P , such that the total travel and scan time is optimal, i.e., we minimize
t(T ) = c · |S(T )| + L(T ), where L(T ) is the length of tour T . Alternatively, we
may consider the bicriteria problem, and aim for a simultaneous approximation
of both scan number and tour length.

3 NP-Hardness

Even the simplest and extreme variants of MWPDV lawn mowing are still gen-
eralizations of NP-hard problems; proofs are omitted.

Theorem 1. (1) The MWPDV is NP-hard, even for polyominoes and small or
no scan cost, i.e., c � 1 or c = 0.

(2) The MWPDV is NP-hard, even for polyominoes and small or no travel
cost, i.e., c � 1 or t(T ) = |S|.

4 Approximating Rectilinear MWPDV Milling for
Rectangular Visibility Range

As a first step (and a warmup for more general cases), we sketch an approxima-
tion algorithm for rectilinear visibility range in rectilinear grid polygons.

Our approximation proceeds in two steps; details can be found in [9].

(I) Construct a set of scan points that is not larger than 2.5 times a minimum
cardinality scan set.

(II) Construct a tour that contains all constructed scan points and that does
not exceed 2.5 times the cost of an optimum milling tour.

First we describe how to construct a covering set of scan points:

1. Let S4e be the “even quadruple” centers of all 2x2-squares that are fully
contained in P , and which have two even coordinates.

2. Remove all 2x2-squares corresponding to S4e from P ; in the remaining poly-
omino P4e, greedily pick a maximum disjoint set S4o of “odd quadruple”
2x2-squares.

3. Remove all 2x2-squares corresponding to S4o from P4e; greedily pick a max-
imum disjoint set S3 of “triple” 2x2-squares that cover 3 pixels each in the
remaining polyomino P4e,4o,

4. Remove all 2x2-squares corresponding to S3 from P4e,4o; in the remaining set
P4e,4o,3 of pixels, no three can be covered by the same scan. Considering edges
between pixels that can be covered by the same scan, pick a minimum set of
(“double” S2 and “single” S1) scans by computing a maximum matching.

Claim 1. The total number of scans is at most 2.5 times the size of a minimum
cardinality scan set.
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Fig. 2. An example for our approximation method: The set of “even quadruple”scans
is shown in gray; the “odd quadruple” scans are light gray. A possible (greedy!) set of
“triple” scan is shown in black, leaving the maximum matching (and the corresponding
“double scans”) shown in dark gray. The leftover single pixels are filled squares. The
ellipse indicates a part that is covered by three scans instead of two: the triple scan
with adjacent single and double scans could be covered by two triple scans.

Claim 2. All scan points lie on a 2.5-approximative milling tour.

The tour consists of (a) a “boundary” part following the contour of the polygon;
(b) a “strip” part that covers the interior; (c) a “matching” part that allows an
Eulerian tour. The cost for (a) and (b) is L(T ∗), while (c) can be bounded by
L(T ∗)/2. Proofs are omitted for lack of space.

Theorem 2. A polyomino P allows a MWPDV with rectangular vision solution
that contains at most 2.5 times the minimum number of scans necessary to scan
the polygon, and has tour length at most 2.5 times the length of an optimum
milling tour.

5 Approximating Rectilinear MWPDV Milling for
Circular Visibility Range

When considering a circular scan range, one additional difficulty are boundary
effects of discrete scan points: While continuous vision allows simply sweeping a
corridor of width 2r, additional cleanup is required for the gaps left by discrete
vision; this requires additional mathematical arguments.

We overlay the polyomino with a point grid as in Figure 3, left, i.e., a diagonal
point grid with L2-distance of

√
2. These are used as scan points; it is relatively

straightforward to prove that this number is within a factor of 4 of the optimum
number of scans.

For the movement between interior scan points and the boundary we use
horizontal strips located on grid lines (and distance 1 to the boundary). As
before, these are combined with a boundary tour. As strip ends do not fully
extend to the boundary of the polygon, we link pairs of strips and connect them
to the left boundary, other scan points are visited by paths of length 2 from the
boundary. This can be achieved at the cost of one additional tour; see Figure 3,
right, for an example.
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Fig. 3. Left: Point grid (light gray) with grid points within a polyomino (black) in
dark gray. Circular visibility ranges of the grid points covering the plane, one square
of side length

√
2 is indicated by a dashed line. Right: A polyomino P with the tour

given by our strategy. Scan points are displayed in black. The horizontal strips of total
length Lstrips are indicated in bold light gray, the tour is in black for the links to the
boundary and between strips (dotted) as well as for connections of points (dash-dotted)
and parts located on the strips are indicated as a continuous line. (The rest of the tour
runs on the boundary.)

Theorem 3. A polyomino P allows a MWPDV solution for a circular visibility
range with r = 1 that is 4-competitive.

6 Approximating General MWPDV Milling for a
Circular Visibility Range

In this section we discuss MWPDV milling for a circular visibility range r in
general polygons. As discussed in Section 1, even the problem of minimum guard
coverage has no known constant-factor approximation; therefore, we consider a
bounded ratio r/a between visibility range and feature size.

Just as in the rectilinear case for a rectilinear scan range, our approximation
proceeds in the two steps (I) and (II), see Section 4.

We start with a description of the second step, which will form the basis for
the placement of scan points. Just as in the rectilinear case, we consider three
parts.

(1) A “boundary” part: We use two “boundary tours” within distance of (at
most) 1

2r and (at most) 3
2r to the boundary, TR1 and TR2 of length LTR1

and LTR2, respectively. With LδB denoting the length of the boundary δB of
B (B ⊂ P is the inward offset region of all points within P that are feasible
placements for the center of a milling cutter), we get:

LTR1 + LTR2 = 2 · LδB ≤ 2 · L(T ∗) (1)

(The length of the three tours differs at the vertices: drawing a line per-
pendicular there from TR2 to TR1 the Intercept Theorem shows that the
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distance to the diagonal through the vertices of all tours on TR1 is twice as
much as on the boundary tour with distance r to the boundary.)
The two “boundary” tours allow us to cover a corridor of width 2r with a
bounded number of scans, while (1) enables us to bound the tour length in
terms of the optimal length.

(2) A “strip” part: For the interior we use strips again: Pint := P\PδB—if
nonempty—can be covered by a set of k1 horizontal strips Σ1

i . The y-
coordinates of two strips differ by multiples of 2r. We can consider another
set of strips, Σ2

i , shifted by r. Then, let Lj
str =

∑kj

i=1 LΣj
i
. Similar to the

argument for L∞, we have L1
str + L2

str ≤ 2 · L(T ∗).
(3) A “matching” part: In order to combine the two “boundary parts” and the

two sets of strips for a tour we add two more set of sections.
• The center lines of the strips have a distance of r to the boundary, thus

they do not yet touch TR1. Consequently, we add 1/2r to each center line
(on each end). For that purpose, we consider the matchings as defined
above. (Consider the endpoints of strips on δBi: every δBi contains an
even number of such endpoints. Hence, every δBi is partitioned into two
disjoint portions, M1(δBi) and M2(δBi). Using the shorter of these two
(M∗(δBi)) for every δBi we obtain for the combined length, LM : LM ≤
Lstr/2 ≤ L(T ∗)/2.) Because two strips are at least a distance of r apart,
the connection to TR1 costs less than 1/2 ·LM ≤ 1/2 ·Lstr/2 ≤ L(T ∗)/4.

• Moreover, we consider the above matchings defined on TR1 and insert
the shorter sections of the disjoint parts, (M1∗ (δBi)), for every δBi. The
Intercept Theorem in combination with the analogously defined sections
on TR2 enables us to give an upper bound of LM1 ≤ Lstr ≤ L(T ∗).

Starting on some point on TR1, tracing the strips, and the inner “boundary”
TR2 at once when passing it yields a tour; the above inequalities show that
L(T ) ≤ 21/4 · L(T ∗).

Now we only have to take care of (I), i.e., construct an appropriate set of scan
points. For the “boundary” part we place scans with the center points located
on TR1 and TR2 in distance

√
3 · r if possible, but at corners we need to place

scans, so the minimum width we are able to cover with the two scans (on both
tours) is a. For the “strip” part the distance of scans is also

√
3 · r on both strip

sets, exactly the distance enabling us to cover a width of r.
It remains to consider the costs for the scans. We start with the inner part.

Taking scans within a distance of
√

3 · r, we may need the length divided by this
value, plus one scan. We only charge the first part to the strips, the (possible)
additional scans are charged to the “boundary” part, as we have no minimum
length of the strips. The optimum cannot cover more than πr2 with one scan.
Let Lstr = max(L1

str, L
2
str):

|S(T ∗)| ≥ Lstr

πr/2
, |S(T )| ≤ 2Lstr√

3 · r ⇒ |S(T )|
|S(T ∗)| ≤

2Lstr√
3 · r · πr/2

Lstr
=

π√
3

(2)

Finally, we consider the “boundary”. We assume LδB ≥ 1. So |S(T ∗)| ≥ LδB

πr/2 .
We may need to scan within a distance of a—on two strips—, need additional
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scans and have to charge the scans from the “strip” part, hence, this yields:
|S(T )| ≤ LδB

a/2 + 1 + LδB

r . Consequently, for r ≥ a: |S(T )|
|S(T∗)| ≤ πr

a + πr
2 + π

2 .

Theorem 4. A polygon P allows a MWPDV solution that contains at most a
cost of max(21

4 , πr
a + πr

2 + π
2 ) times the cost of an optimum MWPDV solution

(for r ≥ a).

Note that Theorem 4 covers the case from Section 5; however, instead of the
custom-built factor of 4 it yields a factor of 2 · π.

7 A PTAS for MWPDV Lawn Mowing

We describe here the following special case, which we generalize in the full paper.
Consider a polyomino P (the “grass”) that is to be “mowed” by a k × k square,
M . At certain discrete set S(T ) of positions of M along a tour T , the mower
is activated (a “scan” is taken), causing all of the grass of P that lies below M
at such a position to be mowed. For complete coverage, we require that P be
contained in the union of k × k squares centered at points S(T ). Between scan
positions, the mower moves along the tour T .

In this “lawn mower” variant of the problem, the mower is not required to be
fully inside P ; the mower may extend outside P and move through the exterior
of P , e.g., in order to reach different connected components of P . Since P may
consist of singleton pixels, substantially separated, the problem is NP-hard even
for k = 1, from TSP.

Here we describe a PTAS for the problem. We apply the m-guillotine method,
with special care to handle the fact that we must have full coverage of P . Since
the problem is closely related to the TSPN [6,13], we must address some of
the similar difficulties in applying PTAS methods for the TSP: in particular, a
mower centered on one side of a cut may be responsible to cover portions of P
on the opposite side of the cut.

At the core of the method is a structure theorem, which shows that we can
transform an arbitrary tour T , together with a set S(T ) of scan points, into a
tour and scan-point set, (TG,S(TG)), that are m-guillotine in the following sense:
the bounding box of the set of k×k squares centered at S(T ) can be recursively
partitioned into a rectangular subdivision by “m-perfect cuts”. An axis-parallel
cut line � is m-perfect if its intersection with the tour has O(m) connected
components and its intersection with the union of k × k disks centered at scan
points consists of O(m) disks or “chains of disks” (meaning a set of disks whose
centers lie equally spaced, at distance k, along a vertical/horizontal line).

The structure theorem is proved by showing the following lemma; the proof
is omitted due to lack of space and can be found in the full version of the paper.

Lemma 1. For any fixed m = 
1/ε� and any choice of (T,S(T )), one can add
a set of doubled bridge segments, of total length O(|T |/m), to T and a set of
O(|S(T )|/m) bridging scans to S(T ) such that the resulting set, (TG,S(TG)), is
m-guillotine, with points S(TG) on tour TG and with TG containing an Eulerian
tour of S(TG).
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The algorithm is based on dynamic programming to compute an optimal m-
guillotine network. A subproblem is specified by a rectangle, R, with integer
coordinates. The subproblem includes specification of boundary information for
each of the four sides of R. The boundary information includes: (i) O(m) integral
points (“portals”) where the tour is to cross the boundary, (ii) at most one
(doubled) bridge and one disk-bridge (chain) per side of R, with each bridge
having a parity (even or odd) specifying the parity of the number of connections
to the bridge from within R, (iii) O(m) scan positions (from S(T )) such that a
k × k square centered at each position intersects the corresponding side of R,
(iv) a connection pattern, specifying which subsets of the portals/bridges are
required to be connected within R. We summarize:

Theorem 5. There is a PTAS for MWPDV lawn mowing of a (not necessarily
connected) set of pixels by a k × k square.

The Milling Variant. Our method does apply also to the “milling” variant of the
MWPDV, in which the scans all must stay within the region P , provided that P
is a simple rectilinear polygon. The details are rather involved and not included
here. The main idea is this: Subproblems are defined, as before, by axis-aligned
rectangles R. The difficulty now is that the restriction of R to P means that
there may be many (Ω(n)) vertical/horizontal chords of P along one side of
R. We can ignore the boundary of P and construct an m-bridge (which we can
“afford” to construct and charge off, by the same arguments as above) for T , but
only the portions of such a bridge that lie inside P (and form chords of P ) are
traversable by our watchman. For each such chord, the subproblem must “know”
if the chord is crossed by some edge of the tour, so that connections made inside
R to a chord are not just made to a “dangling” component. We cannot afford
to specify one bit per chord, as this would be 2Ω(n) information. However, in
the case of a simple polygon P , no extra information must be specified to the
subproblem – a chord is crossed by T if and only if the mower (scan) fits entirely
inside the simple subpolygon on each side of the chord. Exploiting this fact, we
are able to modify our PTAS to apply to MWPDV problem within a simple
rectilinear polygon.

Theorem 6. There is a PTAS for MWPDV milling of a simple rectilinear poly-
gon by a k × k square.

8 Conclusion

A number of open problems remain. Is it possible to remove the dependence on
the ratio (r/a) of the approximation factor in our algorithm for general MWPDV
milling? This would require a breakthrough for approximating minimum guard
cover; a first step may be to achieve an approximation factor that depends on
log(r/a) instead of (r/a).

For combined cost, we gave a PTAS for a lawn mowing variant, based on guil-
lotine subdivisions. The PTAS extends to the milling case for simple rectilinear



402 S.P. Fekete, J.S.B. Mitchell, and C. Schmidt

polygons. It is likely that the PTAS extends to other cases too (circular scan
disks, Euclidean tour lengths), but the generalization to arbitrary domains with
(many) holes seems particularly challenging. Our method makes use of a fixed
ratio between scan cost and travel cost; as discussed in Figure 1, there is no
PTAS for the bicriteria version.
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